SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ pzhetdrv()

subroutine pzhetdrv ( character  uplo,
integer  n,
complex*16, dimension( * )  a,
integer  ia,
integer  ja,
integer, dimension( * )  desca,
double precision, dimension( * )  d,
double precision, dimension( * )  e,
complex*16, dimension( * )  tau,
complex*16, dimension( * )  work,
integer  info 
)

Definition at line 1 of file pzhetdrv.f.

3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 1, 1997
8*
9* .. Scalar Arguments ..
10 CHARACTER UPLO
11 INTEGER IA, INFO, JA, N
12* ..
13* .. Array Arguments ..
14 INTEGER DESCA( * )
15 DOUBLE PRECISION D( * ), E( * )
16 COMPLEX*16 A( * ), TAU( * ), WORK( * )
17* ..
18*
19* Purpose
20* =======
21*
22* PZHETDRV computes sub( A ) = A(IA:IA+N-1,JA:JA+N-1) from Q, the
23* Hermitian tridiagonal matrix T (or D and E), and TAU, which were
24* computed by PZHETRD: sub( A ) := Q * T * Q'.
25*
26* Notes
27* =====
28*
29* Each global data object is described by an associated description
30* vector. This vector stores the information required to establish
31* the mapping between an object element and its corresponding process
32* and memory location.
33*
34* Let A be a generic term for any 2D block cyclicly distributed array.
35* Such a global array has an associated description vector DESCA.
36* In the following comments, the character _ should be read as
37* "of the global array".
38*
39* NOTATION STORED IN EXPLANATION
40* --------------- -------------- --------------------------------------
41* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
42* DTYPE_A = 1.
43* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
44* the BLACS process grid A is distribu-
45* ted over. The context itself is glo-
46* bal, but the handle (the integer
47* value) may vary.
48* M_A (global) DESCA( M_ ) The number of rows in the global
49* array A.
50* N_A (global) DESCA( N_ ) The number of columns in the global
51* array A.
52* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
53* the rows of the array.
54* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
55* the columns of the array.
56* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
57* row of the array A is distributed.
58* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
59* first column of the array A is
60* distributed.
61* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
62* array. LLD_A >= MAX(1,LOCr(M_A)).
63*
64* Let K be the number of rows or columns of a distributed matrix,
65* and assume that its process grid has dimension p x q.
66* LOCr( K ) denotes the number of elements of K that a process
67* would receive if K were distributed over the p processes of its
68* process column.
69* Similarly, LOCc( K ) denotes the number of elements of K that a
70* process would receive if K were distributed over the q processes of
71* its process row.
72* The values of LOCr() and LOCc() may be determined via a call to the
73* ScaLAPACK tool function, NUMROC:
74* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
75* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
76* An upper bound for these quantities may be computed by:
77* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
78* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
79*
80* Arguments
81* =========
82*
83* UPLO (global input) CHARACTER
84* Specifies whether the upper or lower triangular part of the
85* Hermitian matrix sub( A ) is stored:
86* = 'U': Upper triangular
87* = 'L': Lower triangular
88*
89* N (global input) INTEGER
90* The number of rows and columns to be operated on, i.e. the
91* order of the distributed submatrix sub( A ). N >= 0.
92*
93* A (local input/local output) COMPLEX*16 pointer into the
94* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
95* This array contains the local pieces of sub( A ). On entry,
96* if UPLO='U', the diagonal and first superdiagonal of sub( A )
97* have the corresponding elements of the tridiagonal matrix T,
98* and the elements above the first superdiagonal, with the
99* array TAU, represent the unitary matrix Q as a product of
100* elementary reflectors, and the strictly lower triangular part
101* of sub( A ) is not referenced. If UPLO='L', the diagonal and
102* first subdiagonal of sub( A ) have the corresponding elements
103* of the tridiagonal matrix T, and the elements below the first
104* subdiagonal, with the array TAU, represent the unitary
105* matrix Q as a product of elementary reflectors, and the
106* strictly upper triangular part of sub( A ) is not referenced.
107* On exit, if UPLO = 'U', the upper triangular part of the
108* distributed Hermitian matrix sub( A ) is recovered.
109* If UPLO='L', the lower triangular part of the distributed
110* Hermitian matrix sub( A ) is recovered.
111*
112* IA (global input) INTEGER
113* The row index in the global array A indicating the first
114* row of sub( A ).
115*
116* JA (global input) INTEGER
117* The column index in the global array A indicating the
118* first column of sub( A ).
119*
120* DESCA (global and local input) INTEGER array of dimension DLEN_.
121* The array descriptor for the distributed matrix A.
122*
123* D (local input) DOUBLE PRECISION array, dimension LOCc(JA+N-1)
124* The diagonal elements of the tridiagonal matrix T:
125* D(i) = A(i,i). D is tied to the distributed matrix A.
126*
127* E (local input) DOUBLE PRECISION array, dimension LOCc(JA+N-1)
128* if UPLO = 'U', LOCc(JA+N-2) otherwise. The off-diagonal
129* elements of the tridiagonal matrix T: E(i) = A(i,i+1) if
130* UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. E is tied to the
131* distributed matrix A.
132*
133* TAU (local input) COMPLEX*16, array, dimension
134* LOCc(JA+N-1). This array contains the scalar factors TAU of
135* the elementary reflectors. TAU is tied to the distributed
136* matrix A.
137*
138* WORK (local workspace) COMPLEX*16 array, dimension (LWORK)
139* LWORK >= 2 * NB *( NB + NP )
140*
141* where NB = MB_A = NB_A,
142* NP = NUMROC( N, NB, MYROW, IAROW, NPROW ),
143* IAROW = INDXG2P( IA, NB, MYROW, RSRC_A, NPROW ).
144*
145* INDXG2P and NUMROC are ScaLAPACK tool functions;
146* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
147* the subroutine BLACS_GRIDINFO.
148*
149* INFO (global output) INTEGER
150* On exit, if INFO <> 0, a discrepancy has been found between
151* the diagonal and off-diagonal elements of A and the copies
152* contained in the arrays D and E.
153*
154* =====================================================================
155*
156* .. Parameters ..
157 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
158 $ LLD_, MB_, M_, NB_, N_, RSRC_
159 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
160 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
161 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
162 DOUBLE PRECISION REIGHT, RONE, RZERO
163 parameter( reight = 8.0d+0, rone = 1.0d+0,
164 $ rzero = 0.0d+0 )
165 COMPLEX*16 HALF, ONE, ZERO
166 parameter( half = ( 0.5d+0, 0.0d+0 ),
167 $ one = ( 1.0d+0, 0.0d+0 ),
168 $ zero = ( 0.0d+0, 0.0d+0 ) )
169* ..
170* .. Local Scalars ..
171 LOGICAL UPPER
172 INTEGER I, IACOL, IAROW, ICTXT, II, IPT, IPV, IPX,
173 $ IPY, J, JB, JJ, JL, K, MYCOL, MYROW, NB, NP,
174 $ NPCOL, NPROW
175 DOUBLE PRECISION ADDBND, D2, E2
176 COMPLEX*16 D1, E1
177* ..
178* .. Local Arrays ..
179 INTEGER DESCD( DLEN_ ), DESCE( DLEN_ ), DESCV( DLEN_ ),
180 $ DESCT( DLEN_ )
181* ..
182* .. External Functions ..
183 LOGICAL LSAME
184 INTEGER INDXG2P, NUMROC
185 DOUBLE PRECISION PDLAMCH
186 EXTERNAL indxg2p, lsame, numroc, pdlamch
187* ..
188* .. External Subroutines ..
189 EXTERNAL blacs_gridinfo, descset, infog2l, igsum2d,
190 $ pdelget, pzelget, pzgemm,
191 $ pzhemm, pzher2k, pzlacpy,
192 $ pzlarft, pzlaset, pztrmm
193* ..
194* .. Intrinsic Functions ..
195 INTRINSIC abs, dcmplx, max, min, mod
196* ..
197* .. Executable statements ..
198*
199 ictxt = desca( ctxt_ )
200 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
201*
202 info = 0
203 nb = desca( mb_ )
204 upper = lsame( uplo, 'U' )
205 CALL infog2l( ia, ja, desca, nprow, npcol, myrow, mycol, ii, jj,
206 $ iarow, iacol )
207 np = numroc( n, nb, myrow, iarow, nprow )
208*
209 ipt = 1
210 ipv = nb * nb + ipt
211 ipx = nb * np + ipv
212 ipy = nb * np + ipx
213*
214 CALL descset( descd, 1, ja+n-1, 1, desca( nb_ ), myrow,
215 $ desca( csrc_ ), desca( ctxt_ ), 1 )
216*
217 addbnd = reight * pdlamch( ictxt, 'eps' )
218*
219 IF( upper ) THEN
220*
221 CALL descset( desce, 1, ja+n-1, 1, desca( nb_ ), myrow,
222 $ desca( csrc_ ), desca( ctxt_ ), 1 )
223*
224 DO 10 j = 0, n-1
225 d1 = zero
226 e1 = zero
227 d2 = rzero
228 e2 = rzero
229 CALL pdelget( ' ', ' ', d2, d, 1, ja+j, descd )
230 CALL pzelget( 'Columnwise', ' ', d1, a, ia+j, ja+j, desca )
231 IF( j.LT.(n-1) ) THEN
232 CALL pdelget( ' ', ' ', e2, e, 1, ja+j+1, desce )
233 CALL pzelget( 'Columnwise', ' ', e1, a, ia+j, ja+j+1,
234 $ desca )
235 END IF
236*
237 IF( ( abs( d1-dcmplx( d2 ) ).GT.( abs( d2 )*addbnd ) ) .OR.
238 $ ( abs( e1-dcmplx( e2 ) ).GT.( abs( e2 )*addbnd ) ) )
239 $ info = info + 1
240 10 CONTINUE
241*
242* Compute the upper triangle of sub( A ).
243*
244 CALL descset( descv, n, nb, nb, nb, iarow, iacol, ictxt,
245 $ max( 1, np ) )
246 CALL descset( desct, nb, nb, nb, nb, iarow, iacol, ictxt, nb )
247*
248 DO 20 k = 0, n-1, nb
249 jb = min( nb, n-k )
250 i = ia + k
251 j = ja + k
252*
253* Compute the lower triangular matrix T.
254*
255 CALL pzlarft( 'Backward', 'Columnwise', k+jb-1, jb, a, ia,
256 $ j, desca, tau, work( ipt ), work( ipv ) )
257*
258* Copy Householder vectors into WORK( IPV ).
259*
260 CALL pzlacpy( 'All', k+jb-1, jb, a, ia, j, desca,
261 $ work( ipv ), 1, 1, descv )
262*
263 IF( k.GT.0 ) THEN
264 CALL pzlaset( 'Lower', jb+1, jb, zero, one, work( ipv ),
265 $ k, 1, descv )
266 ELSE
267 CALL pzlaset( 'Lower', jb, jb-1, zero, one, work( ipv ),
268 $ 1, 2, descv )
269 CALL pzlaset( 'Ge', jb, 1, zero, zero, work( ipv ), 1,
270 $ 1, descv )
271 END IF
272*
273* Zero out the strict upper triangular part of A.
274*
275 IF( k.GT.0 ) THEN
276 CALL pzlaset( 'Ge', k-1, jb, zero, zero, a, ia, j,
277 $ desca )
278 CALL pzlaset( 'Upper', jb-1, jb-1, zero, zero, a, i-1,
279 $ j+1, desca )
280 ELSE IF( jb.GT.1 ) THEN
281 CALL pzlaset( 'Upper', jb-2, jb-2, zero, zero, a, ia,
282 $ j+2, desca )
283 END IF
284*
285* (1) X := A * V * T'
286*
287 CALL pzhemm( 'Left', 'Upper', k+jb, jb, one, a, ia, ja,
288 $ desca, work( ipv ), 1, 1, descv, zero,
289 $ work( ipx ), 1, 1, descv )
290 CALL pztrmm( 'Right', 'Lower', 'Conjugate transpose',
291 $ 'Non-Unit', k+jb, jb, one, work( ipt ), 1, 1,
292 $ desct, work( ipx ), 1, 1, descv )
293*
294* (2) X := X - 1/2 * V * (T * V' * X)
295*
296 CALL pzgemm( 'Conjugate transpose', 'No transpose', jb, jb,
297 $ k+jb, one, work( ipv ), 1, 1, descv,
298 $ work( ipx ), 1, 1, descv, zero, work( ipy ),
299 $ 1, 1, desct )
300 CALL pztrmm( 'Left', 'Lower', 'No transpose', 'Non-Unit',
301 $ jb, jb, one, work( ipt ), 1, 1, desct,
302 $ work( ipy ), 1, 1, desct )
303 CALL pzgemm( 'No tranpose', 'No transpose', k+jb, jb, jb,
304 $ -half, work( ipv ), 1, 1, descv, work( ipy ),
305 $ 1, 1, desct, one, work( ipx ), 1, 1, descv )
306*
307* (3) A := A - X * V' - V * X'
308*
309 CALL pzher2k( 'Upper', 'No transpose', k+jb, jb, -one,
310 $ work( ipv ), 1, 1, descv, work( ipx ), 1, 1,
311 $ descv, rone, a, ia, ja, desca )
312*
313 descv( csrc_ ) = mod( descv( csrc_ ) + 1, npcol )
314 desct( csrc_ ) = mod( desct( csrc_ ) + 1, npcol )
315*
316 20 CONTINUE
317*
318 ELSE
319*
320 CALL descset( desce, 1, ja+n-2, 1, desca( nb_ ), myrow,
321 $ desca( csrc_ ), desca( ctxt_ ), 1 )
322*
323 DO 30 j = 0, n-1
324 d1 = zero
325 e1 = zero
326 d2 = rzero
327 e2 = rzero
328 CALL pdelget( ' ', ' ', d2, d, 1, ja+j, descd )
329 CALL pzelget( 'Columnwise', ' ', d1, a, ia+j, ja+j, desca )
330 IF( j.LT.(n-1) ) THEN
331 CALL pdelget( ' ', ' ', e2, e, 1, ja+j, desce )
332 CALL pzelget( 'Columnwise', ' ', e1, a, ia+j+1, ja+j,
333 $ desca )
334 END IF
335*
336 IF( ( abs( d1-dcmplx( d2 ) ).GT.( abs( d2 )*addbnd ) ) .OR.
337 $ ( abs( e1-dcmplx( e2 ) ).GT.( abs( e2 )*addbnd ) ) )
338 $ info = info + 1
339 30 CONTINUE
340*
341* Compute the lower triangle of sub( A ).
342*
343 jl = max( ( ( ja+n-2 ) / nb ) * nb + 1, ja )
344 iacol = indxg2p( jl, nb, mycol, desca( csrc_ ), npcol )
345 CALL descset( descv, n, nb, nb, nb, iarow, iacol, ictxt,
346 $ max( 1, np ) )
347 CALL descset( desct, nb, nb, nb, nb, indxg2p( ia+jl-ja+1, nb,
348 $ myrow, desca( rsrc_ ), nprow ), iacol, ictxt,
349 $ nb )
350*
351 DO 40 j = jl, ja, -nb
352 k = j - ja + 1
353 i = ia + k - 1
354 jb = min( n-k+1, nb )
355*
356* Compute upper triangular matrix T from TAU.
357*
358 CALL pzlarft( 'Forward', 'Columnwise', n-k, jb, a, i+1, j,
359 $ desca, tau, work( ipt ), work( ipv ) )
360*
361* Copy Householder vectors into WORK( IPV ).
362*
363 CALL pzlacpy( 'Lower', n-k, jb, a, i+1, j, desca,
364 $ work( ipv ), k+1, 1, descv )
365 CALL pzlaset( 'Upper', n-k, jb, zero, one, work( ipv ),
366 $ k+1, 1, descv )
367 CALL pzlaset( 'Ge', 1, jb, zero, zero, work( ipv ), k, 1,
368 $ descv )
369*
370* Zero out the strict lower triangular part of A.
371*
372 CALL pzlaset( 'Lower', n-k-1, jb, zero, zero, a, i+2, j,
373 $ desca )
374*
375* (1) X := A * V * T'
376*
377 CALL pzhemm( 'Left', 'Lower', n-k+1, jb, one, a, i, j,
378 $ desca, work( ipv ), k, 1, descv, zero,
379 $ work( ipx ), k, 1, descv )
380 CALL pztrmm( 'Right', 'Upper', 'Conjugate transpose',
381 $ 'Non-Unit', n-k+1, jb, one, work( ipt ), 1, 1,
382 $ desct, work( ipx ), k, 1, descv )
383*
384* (2) X := X - 1/2 * V * (T * V' * X)
385*
386 CALL pzgemm( 'Conjugate transpose', 'No transpose', jb, jb,
387 $ n-k+1, one, work( ipv ), k, 1, descv,
388 $ work( ipx ), k, 1, descv, zero, work( ipy ),
389 $ 1, 1, desct )
390 CALL pztrmm( 'Left', 'Upper', 'No transpose', 'Non-Unit',
391 $ jb, jb, one, work( ipt ), 1, 1, desct,
392 $ work( ipy ), 1, 1, desct )
393 CALL pzgemm( 'No transpose', 'No transpose', n-k+1, jb, jb,
394 $ -half, work( ipv ), k, 1, descv, work( ipy ),
395 $ 1, 1, desct, one, work( ipx ), k, 1, descv )
396*
397* (3) A := A - X * V' - V * X'
398*
399 CALL pzher2k( 'Lower', 'No tranpose', n-k+1, jb, -one,
400 $ work( ipv ), k, 1, descv, work( ipx ), k, 1,
401 $ descv, rone, a, i, j, desca )
402*
403 descv( csrc_ ) = mod( descv( csrc_ ) + npcol - 1, npcol )
404 desct( rsrc_ ) = mod( desct( rsrc_ ) + nprow - 1, nprow )
405 desct( csrc_ ) = mod( desct( csrc_ ) + npcol - 1, npcol )
406*
407 40 CONTINUE
408*
409 END IF
410*
411 CALL igsum2d( ictxt, 'All', ' ', 1, 1, info, 1, -1, 0 )
412*
413 RETURN
414*
415* End of PZHETDRV
416*
subroutine descset(desc, m, n, mb, nb, irsrc, icsrc, ictxt, lld)
Definition descset.f:3
integer function indxg2p(indxglob, nb, iproc, isrcproc, nprocs)
Definition indxg2p.f:2
subroutine infog2l(grindx, gcindx, desc, nprow, npcol, myrow, mycol, lrindx, lcindx, rsrc, csrc)
Definition infog2l.f:3
integer function numroc(n, nb, iproc, isrcproc, nprocs)
Definition numroc.f:2
#define max(A, B)
Definition pcgemr.c:180
#define min(A, B)
Definition pcgemr.c:181
double precision function pdlamch(ictxt, cmach)
Definition pdblastst.f:6769
subroutine pdelget(scope, top, alpha, a, ia, ja, desca)
Definition pdelget.f:2
subroutine pzlaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
Definition pzblastst.f:7509
subroutine pzelget(scope, top, alpha, a, ia, ja, desca)
Definition pzelget.f:2
subroutine pzlacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
Definition pzlacpy.f:3
subroutine pzlarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
Definition pzlarft.f:3
logical function lsame(ca, cb)
Definition tools.f:1724
Here is the call graph for this function:
Here is the caller graph for this function: