ScaLAPACK 2.1  2.1
ScaLAPACK: Scalable Linear Algebra PACKage
pzgemm_.c
Go to the documentation of this file.
1 /* ---------------------------------------------------------------------
2 *
3 * -- PBLAS routine (version 2.0) --
4 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5 * and University of California, Berkeley.
6 * April 1, 1998
7 *
8 * ---------------------------------------------------------------------
9 */
10 /*
11 * Include files
12 */
13 #include "pblas.h"
14 #include "PBpblas.h"
15 #include "PBtools.h"
16 #include "PBblacs.h"
17 #include "PBblas.h"
18 
19 #ifdef __STDC__
20 void pzgemm_( F_CHAR_T TRANSA, F_CHAR_T TRANSB,
21  int * M, int * N, int * K,
22  double * ALPHA,
23  double * A, int * IA, int * JA, int * DESCA,
24  double * B, int * IB, int * JB, int * DESCB,
25  double * BETA,
26  double * C, int * IC, int * JC, int * DESCC )
27 #else
28 void pzgemm_( TRANSA, TRANSB, M, N, K, ALPHA, A, IA, JA, DESCA,
29  B, IB, JB, DESCB, BETA, C, IC, JC, DESCC )
30 /*
31 * .. Scalar Arguments ..
32 */
33  F_CHAR_T TRANSA, TRANSB;
34  int * IA, * IB, * IC, * JA, * JB, * JC, * K, * M, * N;
35  double * ALPHA, * BETA;
36 /*
37 * .. Array Arguments ..
38 */
39  int * DESCA, * DESCB, * DESCC;
40  double * A, * B, * C;
41 #endif
42 {
43 /*
44 * Purpose
45 * =======
46 *
47 * PZGEMM performs one of the matrix-matrix operations
48 *
49 * sub( C ) := alpha*op( sub( A ) )*op( sub( B ) ) + beta*sub( C ),
50 *
51 * where
52 *
53 * sub( C ) denotes C(IC:IC+M-1,JC:JC+N-1), and, op( X ) is one of
54 * op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ).
55 *
56 * Thus, op( sub( A ) ) denotes A(IA:IA+M-1,JA:JA+K-1) if TRANSA = 'N',
57 * A(IA:IA+K-1,JA:JA+M-1)' if TRANSA = 'T',
58 * conjg(A(IA:IA+K-1,JA:JA+M-1)') if TRANSA = 'C',
59 *
60 * and, op( sub( B ) ) denotes B(IB:IB+K-1,JB:JB+N-1) if TRANSB = 'N',
61 * B(IB:IB+N-1,JB:JB+K-1)' if TRANSB = 'T',
62 * conjg(B(IB:IB+N-1,JB:JB+K-1)') if TRANSB = 'C'.
63 *
64 * Alpha and beta are scalars. A, B and C are matrices; op( sub( A ) )
65 * is an m by k submatrix, op( sub( B ) ) is an k by n submatrix and
66 * sub( C ) is an m by n submatrix.
67 *
68 * Notes
69 * =====
70 *
71 * A description vector is associated with each 2D block-cyclicly dis-
72 * tributed matrix. This vector stores the information required to
73 * establish the mapping between a matrix entry and its corresponding
74 * process and memory location.
75 *
76 * In the following comments, the character _ should be read as
77 * "of the distributed matrix". Let A be a generic term for any 2D
78 * block cyclicly distributed matrix. Its description vector is DESC_A:
79 *
80 * NOTATION STORED IN EXPLANATION
81 * ---------------- --------------- ------------------------------------
82 * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
83 * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
84 * the NPROW x NPCOL BLACS process grid
85 * A is distributed over. The context
86 * itself is global, but the handle
87 * (the integer value) may vary.
88 * M_A (global) DESCA[ M_ ] The number of rows in the distribu-
89 * ted matrix A, M_A >= 0.
90 * N_A (global) DESCA[ N_ ] The number of columns in the distri-
91 * buted matrix A, N_A >= 0.
92 * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
93 * block of the matrix A, IMB_A > 0.
94 * INB_A (global) DESCA[ INB_ ] The number of columns of the upper
95 * left block of the matrix A,
96 * INB_A > 0.
97 * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
98 * bute the last M_A-IMB_A rows of A,
99 * MB_A > 0.
100 * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
101 * bute the last N_A-INB_A columns of
102 * A, NB_A > 0.
103 * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
104 * row of the matrix A is distributed,
105 * NPROW > RSRC_A >= 0.
106 * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
107 * first column of A is distributed.
108 * NPCOL > CSRC_A >= 0.
109 * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
110 * array storing the local blocks of
111 * the distributed matrix A,
112 * IF( Lc( 1, N_A ) > 0 )
113 * LLD_A >= MAX( 1, Lr( 1, M_A ) )
114 * ELSE
115 * LLD_A >= 1.
116 *
117 * Let K be the number of rows of a matrix A starting at the global in-
118 * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
119 * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
120 * receive if these K rows were distributed over NPROW processes. If K
121 * is the number of columns of a matrix A starting at the global index
122 * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
123 * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
124 * these K columns were distributed over NPCOL processes.
125 *
126 * The values of Lr() and Lc() may be determined via a call to the func-
127 * tion PB_Cnumroc:
128 * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
129 * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
130 *
131 * Arguments
132 * =========
133 *
134 * TRANSA (global input) CHARACTER*1
135 * On entry, TRANSA specifies the form of op( sub( A ) ) to be
136 * used in the matrix multiplication as follows:
137 *
138 * TRANSA = 'N' or 'n' op( sub( A ) ) = sub( A ),
139 *
140 * TRANSA = 'T' or 't' op( sub( A ) ) = sub( A )',
141 *
142 * TRANSA = 'C' or 'c' op( sub( A ) ) = conjg( sub( A )' ).
143 *
144 * TRANSB (global input) CHARACTER*1
145 * On entry, TRANSB specifies the form of op( sub( B ) ) to be
146 * used in the matrix multiplication as follows:
147 *
148 * TRANSB = 'N' or 'n' op( sub( B ) ) = sub( B ),
149 *
150 * TRANSB = 'T' or 't' op( sub( B ) ) = sub( B )',
151 *
152 * TRANSB = 'C' or 'c' op( sub( B ) ) = conjg( sub( B )' ).
153 *
154 * M (global input) INTEGER
155 * On entry, M specifies the number of rows of the submatrix
156 * op( sub( A ) ) and of the submatrix sub( C ). M must be at
157 * least zero.
158 *
159 * N (global input) INTEGER
160 * On entry, N specifies the number of columns of the submatrix
161 * op( sub( B ) ) and the number of columns of the submatrix
162 * sub( C ). N must be at least zero.
163 *
164 * K (global input) INTEGER
165 * On entry, K specifies the number of columns of the submatrix
166 * op( sub( A ) ) and the number of rows of the submatrix
167 * op( sub( B ) ). K must be at least zero.
168 *
169 * ALPHA (global input) COMPLEX*16
170 * On entry, ALPHA specifies the scalar alpha. When ALPHA is
171 * supplied as zero then the local entries of the arrays A and
172 * B corresponding to the entries of the submatrices sub( A )
173 * and sub( B ) respectively need not be set on input.
174 *
175 * A (local input) COMPLEX*16 array
176 * On entry, A is an array of dimension (LLD_A, Ka), where Ka is
177 * at least Lc( 1, JA+K-1 ) when TRANSA = 'N' or 'n', and is at
178 * least Lc( 1, JA+M-1 ) otherwise. Before entry, this array
179 * contains the local entries of the matrix A.
180 *
181 * IA (global input) INTEGER
182 * On entry, IA specifies A's global row index, which points to
183 * the beginning of the submatrix sub( A ).
184 *
185 * JA (global input) INTEGER
186 * On entry, JA specifies A's global column index, which points
187 * to the beginning of the submatrix sub( A ).
188 *
189 * DESCA (global and local input) INTEGER array
190 * On entry, DESCA is an integer array of dimension DLEN_. This
191 * is the array descriptor for the matrix A.
192 *
193 * B (local input) COMPLEX*16 array
194 * On entry, B is an array of dimension (LLD_B, Kb), where Kb is
195 * at least Lc( 1, JB+N-1 ) when TRANSB = 'N' or 'n', and is at
196 * least Lc( 1, JB+K-1 ) otherwise. Before entry, this array
197 * contains the local entries of the matrix B.
198 *
199 * IB (global input) INTEGER
200 * On entry, IB specifies B's global row index, which points to
201 * the beginning of the submatrix sub( B ).
202 *
203 * JB (global input) INTEGER
204 * On entry, JB specifies B's global column index, which points
205 * to the beginning of the submatrix sub( B ).
206 *
207 * DESCB (global and local input) INTEGER array
208 * On entry, DESCB is an integer array of dimension DLEN_. This
209 * is the array descriptor for the matrix B.
210 *
211 * BETA (global input) COMPLEX*16
212 * On entry, BETA specifies the scalar beta. When BETA is
213 * supplied as zero then the local entries of the array C
214 * corresponding to the entries of the submatrix sub( C ) need
215 * not be set on input.
216 *
217 * C (local input/local output) COMPLEX*16 array
218 * On entry, C is an array of dimension (LLD_C, Kc), where Kc is
219 * at least Lc( 1, JC+N-1 ). Before entry, this array contains
220 * the local entries of the matrix C.
221 * On exit, the entries of this array corresponding to the local
222 * entries of the submatrix sub( C ) are overwritten by the
223 * local entries of the m by n updated submatrix.
224 *
225 * IC (global input) INTEGER
226 * On entry, IC specifies C's global row index, which points to
227 * the beginning of the submatrix sub( C ).
228 *
229 * JC (global input) INTEGER
230 * On entry, JC specifies C's global column index, which points
231 * to the beginning of the submatrix sub( C ).
232 *
233 * DESCC (global and local input) INTEGER array
234 * On entry, DESCC is an integer array of dimension DLEN_. This
235 * is the array descriptor for the matrix C.
236 *
237 * -- Written on April 1, 1998 by
238 * Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
239 *
240 * ---------------------------------------------------------------------
241 */
242 /*
243 * .. Local Scalars ..
244 */
245  char DirAB, DirBC, OpC, OpR, TrA, TrB, ctop, ctopsave, rtop,
246  rtopsave;
247  int Ai, Aj, Bi, Bj, ChooseAB, ChooseBC, Ci, Cj, ForceTop, ctxt,
248  info, mycol, myrow, nb, nota, notb, npcol, nprow;
249  double ABest, ACest, BCest, tmp1, tmp2, tmp3, tmp4;
250  PBTYP_T * type;
251 /*
252 * .. Local Arrays ..
253 */
254  int Ad[DLEN_], Bd[DLEN_], Cd[DLEN_];
255 /* ..
256 * .. Executable Statements ..
257 *
258 */
259  nota = ( ( TrA = Mupcase( F2C_CHAR( TRANSA )[0] ) ) == CNOTRAN );
260  notb = ( ( TrB = Mupcase( F2C_CHAR( TRANSB )[0] ) ) == CNOTRAN );
261  PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
262  PB_CargFtoC( *IB, *JB, DESCB, &Bi, &Bj, Bd );
263  PB_CargFtoC( *IC, *JC, DESCC, &Ci, &Cj, Cd );
264 #ifndef NO_ARGCHK
265 /*
266 * Test the input parameters
267 */
268  Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow,
269  &mycol );
270  if( !( info = ( ( nprow == -1 ) ? -( 1001 + CTXT_ ) : 0 ) ) )
271  {
272  if( ( !nota ) && ( TrA != CTRAN ) && ( TrA != CCOTRAN ) )
273  {
274  PB_Cwarn( ctxt, __LINE__, "PZGEMM", "Illegal TRANSA = %c\n", TrA );
275  info = -1;
276  }
277  else if( ( !notb ) && ( TrB != CTRAN ) && ( TrB != CCOTRAN ) )
278  {
279  PB_Cwarn( ctxt, __LINE__, "PZGEMM", "Illegal TRANSB = %c\n", TrB );
280  info = -2;
281  }
282  if( nota )
283  PB_Cchkmat( ctxt, "PZGEMM", "A", *M, 3, *K, 5, Ai, Aj, Ad, 10,
284  &info );
285  else
286  PB_Cchkmat( ctxt, "PZGEMM", "A", *K, 5, *M, 3, Ai, Aj, Ad, 10,
287  &info );
288  if( notb )
289  PB_Cchkmat( ctxt, "PZGEMM", "B", *K, 5, *N, 4, Bi, Bj, Bd, 14,
290  &info );
291  else
292  PB_Cchkmat( ctxt, "PZGEMM", "B", *N, 4, *K, 5, Bi, Bj, Bd, 14,
293  &info );
294  PB_Cchkmat( ctxt, "PZGEMM", "C", *M, 3, *N, 4, Ci, Cj, Cd, 19,
295  &info );
296  }
297  if( info ) { PB_Cabort( ctxt, "PZGEMM", info ); return; }
298 #endif
299 /*
300 * Quick return if possible
301 */
302  if( ( *M == 0 ) || ( *N == 0 ) ||
303  ( ( ( ALPHA[REAL_PART] == ZERO && ALPHA[IMAG_PART] == ZERO ) ||
304  ( *K == 0 ) ) &&
305  ( BETA [REAL_PART] == ONE && BETA [IMAG_PART] == ZERO ) ) )
306  return;
307 /*
308 * Get type structure
309 */
310  type = PB_Cztypeset();
311 /*
312 * If alpha or K is zero, sub( C ) := beta * sub( C ).
313 */
314  if( ( ( ALPHA[REAL_PART] == ZERO ) &&
315  ( ALPHA[IMAG_PART] == ZERO ) ) || ( *K == 0 ) )
316  {
317  if( ( BETA[REAL_PART] == ZERO ) && ( BETA[IMAG_PART] == ZERO ) )
318  {
319  PB_Cplapad( type, ALL, NOCONJG, *M, *N, type->zero, type->zero,
320  ((char * ) C), Ci, Cj, Cd );
321  }
322  else if( !( ( BETA[REAL_PART] == ONE ) &&
323  ( BETA[IMAG_PART] == ZERO ) ) )
324  {
325  PB_Cplascal( type, ALL, NOCONJG, *M, *N, ((char *) BETA),
326  ((char * ) C), Ci, Cj, Cd );
327  }
328  return;
329  }
330 /*
331 * Start the operations
332 */
333 #ifdef NO_ARGCHK
334  Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
335 #endif
336 /*
337 * Algorithm selection is based on approximation of the communication volume
338 * for distributed and aligned operands.
339 *
340 * ABest: both operands sub( A ) and sub( B ) are communicated (M, N >> K)
341 * ACest: both operands sub( A ) and sub( C ) are communicated (K, N >> M)
342 * BCest: both operands sub( B ) and sub( C ) are communicated (M, K >> N)
343 */
344  ABest = (double)(*K);
345  ACest = (double)(*M);
346  BCest = (double)(*N);
347 
348  if( notb )
349  {
350  if( nota )
351  {
352  tmp1 = DNROC( *M, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
353  ABest *= ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 ) +
354  ( ( ( Bd[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 );
355 
356  tmp1 = DNROC( *K, Bd[MB_], nprow ); tmp2 = DNROC( *N, Bd[NB_], npcol );
357  tmp3 = DNROC( *K, Ad[NB_], npcol );
358  ACest *= ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) +
359  CBRATIO * ( nprow == 1 ? ZERO : tmp2 );
360 
361  tmp1 = DNROC( *M, Ad[MB_], nprow ); tmp2 = DNROC( *K, Ad[NB_], npcol );
362  tmp4 = DNROC( *K, Bd[MB_], nprow );
363  BCest *= CBRATIO * ( npcol == 1 ? ZERO : tmp1 ) +
364  ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 );
365  }
366  else
367  {
368  tmp1 = DNROC( *M, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
369  tmp3 = DNROC( *M, Ad[NB_], npcol );
370  ABest *= ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) +
371  ( nprow == 1 ? ZERO : tmp2 );
372 
373  tmp1 = DNROC( *K, Bd[MB_], nprow ); tmp2 = DNROC( *N, Bd[NB_], npcol );
374  ACest *= ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 ) +
375  CBRATIO *
376  ( ( ( Bd[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 );
377 
378  tmp1 = DNROC( *K, Ad[MB_], nprow ); tmp2 = DNROC( *M, Bd[NB_], npcol );
379  tmp4 = DNROC( *M, Cd[MB_], nprow );
380  BCest *= ( ( ( Bd[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 ) +
381  CBRATIO * ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 );
382  }
383  }
384  else
385  {
386  if( nota )
387  {
388  tmp1 = DNROC( *M, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
389  tmp4 = DNROC( *N, Bd[MB_], nprow );
390  ABest *= ( npcol == 1 ? ZERO : tmp1 ) +
391  ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 );
392 
393  tmp1 = DNROC( *N, Bd[MB_], nprow ); tmp2 = DNROC( *K, Bd[NB_], npcol );
394  tmp3 = DNROC( *N, Cd[NB_], npcol );
395  ACest *= CBRATIO * ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) +
396  ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 );
397 
398  tmp1 = DNROC( *M, Ad[MB_], nprow ); tmp2 = DNROC( *K, Ad[NB_], npcol );
399  BCest *= CBRATIO *
400  ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 ) +
401  ( ( ( Bd[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 );
402  }
403  else
404  {
405  tmp1 = DNROC( *M, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
406  tmp3 = DNROC( *M, Ad[NB_], npcol ); tmp4 = DNROC( *N, Bd[MB_], nprow );
407  ABest *= ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) +
408  ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 );
409 
410  tmp1 = DNROC( *N, Bd[MB_], nprow ); tmp2 = DNROC( *K, Bd[NB_], npcol );
411  tmp3 = DNROC( *N, Cd[NB_], npcol ); tmp4 = DNROC( *K, Ad[MB_], nprow );
412  ACest *= CBRATIO * ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) +
413  ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 );
414 
415  tmp1 = DNROC( *K, Ad[MB_], nprow ); tmp2 = DNROC( *M, Ad[NB_], npcol );
416  tmp3 = DNROC( *K, Bd[NB_], npcol ); tmp4 = DNROC( *M, Cd[MB_], nprow );
417  BCest *= ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) +
418  CBRATIO * ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 );
419  }
420  }
421  ChooseAB = ( ( ABest <= ( 1.3 * BCest ) ) && ( ABest <= ( 1.3 * ACest ) ) );
422  ChooseBC = ( ( BCest <= ACest ) && ( ( 1.3 * BCest ) <= ABest ) );
423 /*
424 * BLACS topologies are enforced iff M, N and K are strictly greater than the
425 * logical block size returned by pilaenv_. Otherwise, it is assumed that the
426 * routine calling this routine has already selected an adequate topology.
427 */
428  nb = pilaenv_( &ctxt, C2F_CHAR( &type->type ) );
429  ForceTop = ( ( *M > nb ) && ( *N > nb ) && ( *K > nb ) );
430 
431  if( ChooseAB )
432  {
433  OpR = CBCAST;
434  OpC = CBCAST;
435  }
436  else if( ChooseBC )
437  {
438  if( nota ) { OpR = CCOMBINE; OpC = CBCAST; }
439  else { OpR = CBCAST; OpC = CCOMBINE; }
440  }
441  else
442  {
443  if( notb ) { OpR = CBCAST; OpC = CCOMBINE; }
444  else { OpR = CCOMBINE; OpC = CBCAST; }
445  }
446 
447  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
448  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
449 
450  if( ForceTop )
451  {
452  rtopsave = rtop;
453  ctopsave = ctop;
454 /*
455 * No clear winner for the ring topologies, so that if a ring topology is
456 * already selected, keep it.
457 */
458  if( ( rtop != CTOP_DRING ) && ( rtop != CTOP_IRING ) &&
459  ( rtop != CTOP_SRING ) )
460  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_IRING );
461  if( ( ctop != CTOP_DRING ) && ( ctop != CTOP_IRING ) &&
462  ( ctop != CTOP_SRING ) )
463  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_IRING );
464 /*
465 * Remove the next 4 lines when the BLACS combine operations support ring
466 * topologies
467 */
468  if( OpR == CCOMBINE )
469  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_DEFAULT );
470  if( OpC == CCOMBINE )
471  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_DEFAULT );
472  }
473 
474  DirAB = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD );
475  DirBC = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD );
476 
477  if( ChooseAB )
478  {
479  PB_CpgemmAB( type, &DirAB, &DirBC, ( nota ? NOTRAN :
480  ( ( TrA == CCOTRAN ) ? COTRAN : TRAN ) ), ( notb ? NOTRAN :
481  ( ( TrB == CCOTRAN ) ? COTRAN : TRAN ) ), *M, *N, *K,
482  ((char *)ALPHA), ((char *)A), Ai, Aj, Ad, ((char *)B), Bi,
483  Bj, Bd, ((char *)BETA), ((char *)C), Ci, Cj, Cd );
484  }
485  else if( ChooseBC )
486  {
487  PB_CpgemmBC( type, &DirAB, &DirBC, ( nota ? NOTRAN :
488  ( ( TrA == CCOTRAN ) ? COTRAN : TRAN ) ), ( notb ? NOTRAN :
489  ( ( TrB == CCOTRAN ) ? COTRAN : TRAN ) ), *M, *N, *K,
490  ((char *)ALPHA), ((char *)A), Ai, Aj, Ad, ((char *)B), Bi,
491  Bj, Bd, ((char *)BETA), ((char *)C), Ci, Cj, Cd );
492  }
493  else
494  {
495  PB_CpgemmAC( type, &DirAB, &DirBC, ( nota ? NOTRAN :
496  ( ( TrA == CCOTRAN ) ? COTRAN : TRAN ) ), ( notb ? NOTRAN :
497  ( ( TrB == CCOTRAN ) ? COTRAN : TRAN ) ), *M, *N, *K,
498  ((char *)ALPHA), ((char *)A), Ai, Aj, Ad, ((char *)B), Bi,
499  Bj, Bd, ((char *)BETA), ((char *)C), Ci, Cj, Cd );
500  }
501 /*
502 * Restore the BLACS topologies when necessary.
503 */
504  if( ForceTop )
505  {
506  rtopsave = *PB_Ctop( &ctxt, &OpR, ROW, &rtopsave );
507  ctopsave = *PB_Ctop( &ctxt, &OpC, COLUMN, &ctopsave );
508  }
509 /*
510 * End of PZGEMM
511 */
512 }
ROW
#define ROW
Definition: PBblacs.h:46
PB_CpgemmBC
void PB_CpgemmBC()
MB_
#define MB_
Definition: PBtools.h:43
TOP_DEFAULT
#define TOP_DEFAULT
Definition: PBblacs.h:51
PB_Cwarn
void PB_Cwarn()
NB_
#define NB_
Definition: PBtools.h:44
COLUMN
#define COLUMN
Definition: PBblacs.h:45
CSRC_
#define CSRC_
Definition: PBtools.h:46
PBblacs.h
PBtools.h
PBblas.h
CBCAST
#define CBCAST
Definition: PBblacs.h:23
CCOTRAN
#define CCOTRAN
Definition: PBblas.h:22
NOCONJG
#define NOCONJG
Definition: PBblas.h:45
REAL_PART
#define REAL_PART
Definition: pblas.h:135
PBTYP_T::type
char type
Definition: pblas.h:327
PBpblas.h
PB_Cztypeset
PBTYP_T * PB_Cztypeset()
Definition: PB_Cztypeset.c:19
DLEN_
#define DLEN_
Definition: PBtools.h:48
TRAN
#define TRAN
Definition: PBblas.h:46
PB_CpgemmAB
void PB_CpgemmAB()
NOTRAN
#define NOTRAN
Definition: PBblas.h:44
CTOP_IRING
#define CTOP_IRING
Definition: PBblacs.h:27
F_CHAR_T
char * F_CHAR_T
Definition: pblas.h:118
ZERO
#define ZERO
Definition: PBtools.h:66
CTOP_DRING
#define CTOP_DRING
Definition: PBblacs.h:28
PB_CpgemmAC
void PB_CpgemmAC()
TOP_IRING
#define TOP_IRING
Definition: PBblacs.h:52
pilaenv_
int pilaenv_()
PB_Cplascal
void PB_Cplascal()
CTOP_SRING
#define CTOP_SRING
Definition: PBblacs.h:29
PB_Cabort
void PB_Cabort()
PB_Cplapad
void PB_Cplapad()
F2C_CHAR
#define F2C_CHAR(a)
Definition: pblas.h:120
pzgemm_
void pzgemm_(F_CHAR_T TRANSA, F_CHAR_T TRANSB, int *M, int *N, int *K, double *ALPHA, double *A, int *IA, int *JA, int *DESCA, double *B, int *IB, int *JB, int *DESCB, double *BETA, double *C, int *IC, int *JC, int *DESCC)
Definition: pzgemm_.c:28
TOP_GET
#define TOP_GET
Definition: PBblacs.h:50
PB_Ctop
char * PB_Ctop()
ONE
#define ONE
Definition: PBtools.h:64
RSRC_
#define RSRC_
Definition: PBtools.h:45
CNOTRAN
#define CNOTRAN
Definition: PBblas.h:18
PB_CargFtoC
void PB_CargFtoC()
COTRAN
#define COTRAN
Definition: PBblas.h:48
PB_Cchkmat
void PB_Cchkmat()
CFORWARD
#define CFORWARD
Definition: PBblas.h:38
ALL
#define ALL
Definition: PBblas.h:50
C2F_CHAR
#define C2F_CHAR(a)
Definition: pblas.h:121
CBRATIO
#define CBRATIO
Definition: pblas.h:37
MAX
#define MAX(a_, b_)
Definition: PBtools.h:77
Cblacs_gridinfo
void Cblacs_gridinfo()
PBTYP_T
Definition: pblas.h:325
Mupcase
#define Mupcase(C)
Definition: PBtools.h:83
pblas.h
CTRAN
#define CTRAN
Definition: PBblas.h:20
CCOMBINE
#define CCOMBINE
Definition: PBblacs.h:24
CBACKWARD
#define CBACKWARD
Definition: PBblas.h:39
CTXT_
#define CTXT_
Definition: PBtools.h:38
IMAG_PART
#define IMAG_PART
Definition: pblas.h:136
PBTYP_T::zero
char * zero
Definition: pblas.h:331
DNROC
#define DNROC(n_, nb_, p_)
Definition: PBtools.h:111