ScaLAPACK 2.1  2.1
ScaLAPACK: Scalable Linear Algebra PACKage
pztrmm_.c
Go to the documentation of this file.
1 /* ---------------------------------------------------------------------
2 *
3 * -- PBLAS routine (version 2.0) --
4 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5 * and University of California, Berkeley.
6 * April 1, 1998
7 *
8 * ---------------------------------------------------------------------
9 */
10 /*
11 * Include files
12 */
13 #include "pblas.h"
14 #include "PBpblas.h"
15 #include "PBtools.h"
16 #include "PBblacs.h"
17 #include "PBblas.h"
18 
19 #ifdef __STDC__
20 void pztrmm_( F_CHAR_T SIDE, F_CHAR_T UPLO, F_CHAR_T TRANS, F_CHAR_T DIAG,
21  int * M, int * N, double * ALPHA,
22  double * A, int * IA, int * JA, int * DESCA,
23  double * B, int * IB, int * JB, int * DESCB )
24 #else
25 void pztrmm_( SIDE, UPLO, TRANS, DIAG, M, N, ALPHA,
26  A, IA, JA, DESCA, B, IB, JB, DESCB )
27 /*
28 * .. Scalar Arguments ..
29 */
30  F_CHAR_T DIAG, SIDE, TRANS, UPLO;
31  int * IA, * IB, * JA, * JB, * M, * N;
32  double * ALPHA;
33 /*
34 * .. Array Arguments ..
35 */
36  int * DESCA, * DESCB;
37  double * A, * B;
38 #endif
39 {
40 /*
41 * Purpose
42 * =======
43 *
44 * PZTRMM performs one of the matrix-matrix operations
45 *
46 * sub( B ) := alpha * op( sub( A ) ) * sub( B ),
47 *
48 * or
49 *
50 * sub( B ) := alpha * sub( B ) * op( sub( A ) ),
51 *
52 * where
53 *
54 * sub( A ) denotes A(IA:IA+M-1,JA:JA+M-1) if SIDE = 'L',
55 * A(IA:IA+N-1,JA:JA+N-1) if SIDE = 'R', and,
56 *
57 * sub( B ) denotes B(IB:IB+M-1,JB:JB+N-1).
58 *
59 * Alpha is a scalar, sub( B ) is an m by n submatrix, sub( A ) is a
60 * unit, or non-unit, upper or lower triangular submatrix and op( X ) is
61 * one of
62 *
63 * op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ).
64 *
65 * Notes
66 * =====
67 *
68 * A description vector is associated with each 2D block-cyclicly dis-
69 * tributed matrix. This vector stores the information required to
70 * establish the mapping between a matrix entry and its corresponding
71 * process and memory location.
72 *
73 * In the following comments, the character _ should be read as
74 * "of the distributed matrix". Let A be a generic term for any 2D
75 * block cyclicly distributed matrix. Its description vector is DESC_A:
76 *
77 * NOTATION STORED IN EXPLANATION
78 * ---------------- --------------- ------------------------------------
79 * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
80 * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
81 * the NPROW x NPCOL BLACS process grid
82 * A is distributed over. The context
83 * itself is global, but the handle
84 * (the integer value) may vary.
85 * M_A (global) DESCA[ M_ ] The number of rows in the distribu-
86 * ted matrix A, M_A >= 0.
87 * N_A (global) DESCA[ N_ ] The number of columns in the distri-
88 * buted matrix A, N_A >= 0.
89 * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
90 * block of the matrix A, IMB_A > 0.
91 * INB_A (global) DESCA[ INB_ ] The number of columns of the upper
92 * left block of the matrix A,
93 * INB_A > 0.
94 * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
95 * bute the last M_A-IMB_A rows of A,
96 * MB_A > 0.
97 * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
98 * bute the last N_A-INB_A columns of
99 * A, NB_A > 0.
100 * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
101 * row of the matrix A is distributed,
102 * NPROW > RSRC_A >= 0.
103 * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
104 * first column of A is distributed.
105 * NPCOL > CSRC_A >= 0.
106 * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
107 * array storing the local blocks of
108 * the distributed matrix A,
109 * IF( Lc( 1, N_A ) > 0 )
110 * LLD_A >= MAX( 1, Lr( 1, M_A ) )
111 * ELSE
112 * LLD_A >= 1.
113 *
114 * Let K be the number of rows of a matrix A starting at the global in-
115 * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
116 * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
117 * receive if these K rows were distributed over NPROW processes. If K
118 * is the number of columns of a matrix A starting at the global index
119 * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
120 * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
121 * these K columns were distributed over NPCOL processes.
122 *
123 * The values of Lr() and Lc() may be determined via a call to the func-
124 * tion PB_Cnumroc:
125 * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
126 * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
127 *
128 * Arguments
129 * =========
130 *
131 * SIDE (global input) CHARACTER*1
132 * On entry, SIDE specifies whether op( sub( A ) ) multiplies
133 * sub( B ) from the left or right as follows:
134 *
135 * SIDE = 'L' or 'l' sub( B ) := alpha*op( sub( A ) )*sub( B ),
136 *
137 * SIDE = 'R' or 'r' sub( B ) := alpha*sub( B )*op( sub( A ) ).
138 *
139 * UPLO (global input) CHARACTER*1
140 * On entry, UPLO specifies whether the submatrix sub( A ) is
141 * an upper or lower triangular submatrix as follows:
142 *
143 * UPLO = 'U' or 'u' sub( A ) is an upper triangular
144 * submatrix,
145 *
146 * UPLO = 'L' or 'l' sub( A ) is a lower triangular
147 * submatrix.
148 *
149 * TRANSA (global input) CHARACTER*1
150 * On entry, TRANSA specifies the form of op( sub( A ) ) to be
151 * used in the matrix multiplication as follows:
152 *
153 * TRANSA = 'N' or 'n' op( sub( A ) ) = sub( A ),
154 *
155 * TRANSA = 'T' or 't' op( sub( A ) ) = sub( A )',
156 *
157 * TRANSA = 'C' or 'c' op( sub( A ) ) = conjg( sub( A )' ).
158 *
159 * DIAG (global input) CHARACTER*1
160 * On entry, DIAG specifies whether or not sub( A ) is unit
161 * triangular as follows:
162 *
163 * DIAG = 'U' or 'u' sub( A ) is assumed to be unit trian-
164 * gular,
165 *
166 * DIAG = 'N' or 'n' sub( A ) is not assumed to be unit tri-
167 * angular.
168 *
169 * M (global input) INTEGER
170 * On entry, M specifies the number of rows of the submatrix
171 * sub( B ). M must be at least zero.
172 *
173 * N (global input) INTEGER
174 * On entry, N specifies the number of columns of the submatrix
175 * sub( B ). N must be at least zero.
176 *
177 * ALPHA (global input) COMPLEX*16
178 * On entry, ALPHA specifies the scalar alpha. When ALPHA is
179 * supplied as zero then the local entries of the array B
180 * corresponding to the entries of the submatrix sub( B ) need
181 * not be set on input.
182 *
183 * A (local input) COMPLEX*16 array
184 * On entry, A is an array of dimension (LLD_A, Ka), where Ka is
185 * at least Lc( 1, JA+M-1 ) when SIDE = 'L' or 'l' and is at
186 * least Lc( 1, JA+N-1 ) otherwise. Before entry, this array
187 * contains the local entries of the matrix A.
188 * Before entry with UPLO = 'U' or 'u', this array contains the
189 * local entries corresponding to the entries of the upper tri-
190 * angular submatrix sub( A ), and the local entries correspon-
191 * ding to the entries of the strictly lower triangular part of
192 * the submatrix sub( A ) are not referenced.
193 * Before entry with UPLO = 'L' or 'l', this array contains the
194 * local entries corresponding to the entries of the lower tri-
195 * angular submatrix sub( A ), and the local entries correspon-
196 * ding to the entries of the strictly upper triangular part of
197 * the submatrix sub( A ) are not referenced.
198 * Note that when DIAG = 'U' or 'u', the local entries corres-
199 * ponding to the diagonal elements of the submatrix sub( A )
200 * are not referenced either, but are assumed to be unity.
201 *
202 * IA (global input) INTEGER
203 * On entry, IA specifies A's global row index, which points to
204 * the beginning of the submatrix sub( A ).
205 *
206 * JA (global input) INTEGER
207 * On entry, JA specifies A's global column index, which points
208 * to the beginning of the submatrix sub( A ).
209 *
210 * DESCA (global and local input) INTEGER array
211 * On entry, DESCA is an integer array of dimension DLEN_. This
212 * is the array descriptor for the matrix A.
213 *
214 * B (local input/local output) COMPLEX*16 array
215 * On entry, B is an array of dimension (LLD_B, Kb), where Kb is
216 * at least Lc( 1, JB+N-1 ). Before entry, this array contains
217 * the local entries of the matrix B.
218 * On exit, the local entries of this array corresponding to the
219 * to the entries of the submatrix sub( B ) are overwritten by
220 * the local entries of the m by n transformed submatrix.
221 *
222 * IB (global input) INTEGER
223 * On entry, IB specifies B's global row index, which points to
224 * the beginning of the submatrix sub( B ).
225 *
226 * JB (global input) INTEGER
227 * On entry, JB specifies B's global column index, which points
228 * to the beginning of the submatrix sub( B ).
229 *
230 * DESCB (global and local input) INTEGER array
231 * On entry, DESCB is an integer array of dimension DLEN_. This
232 * is the array descriptor for the matrix B.
233 *
234 * -- Written on April 1, 1998 by
235 * Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
236 *
237 * ---------------------------------------------------------------------
238 */
239 /*
240 * .. Local Scalars ..
241 */
242  char DiagA, DirB, OpC, OpR, SideOp, TopC, TopR, TranOp, UploA,
243  Var, ctop, ctopsave, rtop, rtopsave;
244  int Ai, Aj, Bi, Bj, ChooseAB, ForceTop, ctxt, info, lside, mycol,
245  myrow, nb, notran, nounit, npcol, nprow, upper;
246  double ABestL, ABestR, Best, tmp1, tmp2, tmp3, tmp4;
247  PBTYP_T * type;
248 /*
249 * .. Local Arrays ..
250 */
251  int Ad[DLEN_], Bd[DLEN_];
252 /* ..
253 * .. Executable Statements ..
254 *
255 */
256  lside = ( ( SideOp = Mupcase( F2C_CHAR( SIDE )[0] ) ) == CLEFT );
257  upper = ( ( UploA = Mupcase( F2C_CHAR( UPLO )[0] ) ) == CUPPER );
258  notran = ( ( TranOp = Mupcase( F2C_CHAR( TRANS )[0] ) ) == CNOTRAN );
259  nounit = ( ( DiagA = Mupcase( F2C_CHAR( DIAG )[0] ) ) == CNOUNIT );
260  PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
261  PB_CargFtoC( *IB, *JB, DESCB, &Bi, &Bj, Bd );
262 #ifndef NO_ARGCHK
263 /*
264 * Test the input parameters
265 */
266  Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
267  if( !( info = ( ( nprow == -1 ) ? -( 1101 + CTXT_ ) : 0 ) ) )
268  {
269  if( ( !lside ) && ( SideOp != CRIGHT ) )
270  {
271  PB_Cwarn( ctxt, __LINE__, "PZTRMM", "Illegal SIDE = %c\n", SideOp );
272  info = -1;
273  }
274  else if( ( !upper ) && ( UploA != CLOWER ) )
275  {
276  PB_Cwarn( ctxt, __LINE__, "PZTRMM", "Illegal UPLO = %c\n", UploA );
277  info = -2;
278  }
279  else if( ( !notran ) && ( TranOp != CTRAN ) && ( TranOp != CCOTRAN ) )
280  {
281  PB_Cwarn( ctxt, __LINE__, "PZTRMM", "Illegal TRANS = %c\n", TranOp );
282  info = -3;
283  }
284  if( ( !nounit ) && ( DiagA != CUNIT ) )
285  {
286  PB_Cwarn( ctxt, __LINE__, "PZTRMM",
287  "Illegal DIAG = %c\n", DiagA );
288  info = -4;
289  }
290  if( lside )
291  PB_Cchkmat( ctxt, "PZTRMM", "A", *M, 5, *M, 5, Ai, Aj, Ad, 11,
292  &info );
293  else
294  PB_Cchkmat( ctxt, "PZTRMM", "A", *N, 6, *N, 6, Ai, Aj, Ad, 11,
295  &info );
296  PB_Cchkmat( ctxt, "PZTRMM", "B", *M, 5, *N, 6, Bi, Bj, Bd, 15,
297  &info );
298  }
299  if( info ) { PB_Cabort( ctxt, "PZTRMM", info ); return; }
300 #endif
301 /*
302 * Quick return if possible
303 */
304  if( *M == 0 || *N == 0 ) return;
305 /*
306 * Get type structure
307 */
308  type = PB_Cztypeset();
309 /*
310 * And when alpha is zero
311 */
312  if( ( ALPHA[REAL_PART] == ZERO ) && ( ALPHA[IMAG_PART] == ZERO ) )
313  {
314  PB_Cplapad( type, ALL, NOCONJG, *M, *N, type->zero, type->zero,
315  ((char *) B), Bi, Bj, Bd );
316  return;
317  }
318 /*
319 * Start the operations
320 */
321 #ifdef NO_ARGCHK
322  Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
323 #endif
324 /*
325 * Algorithm selection is based on approximation of the communication volume
326 * for distributed and aligned operands.
327 *
328 * ABestR, ABestL : both operands sub( A ) and sub( B ) are communicated
329 * ( N >> M when SIDE is left and M >> N otherwise )
330 * Best : only sub( B ) is communicated
331 * ( M >> N when SIDE is left and N >> M otherwise )
332 */
333  if( lside )
334  {
335  if( notran )
336  {
337  tmp1 = DNROC( *M, Ad[MB_], nprow ); tmp4 = DNROC( *N, Bd[NB_], npcol );
338  ABestR = (double)(*M) *
339  ( ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 / TWO ) +
340  ( ( ( Bd[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp4 ) );
341  tmp1 = DNROC( *M, Ad[MB_], nprow ); tmp2 = DNROC( *M, Ad[NB_], npcol );
342  tmp4 = DNROC( *M, Bd[MB_], nprow );
343  Best = (double)(*N) *
344  ( CBRATIO * ( npcol == 1 ? ZERO : tmp1 ) +
345  ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 ) );
346  ChooseAB = ( ( 1.1 * ABestR ) <= Best );
347  }
348  else
349  {
350  tmp1 = DNROC( *M, Ad[MB_], nprow ); tmp2 = DNROC( *M, Ad[NB_], npcol );
351  tmp4 = DNROC( *N, Bd[NB_], npcol );
352  ABestL = (double)(*M) *
353  ( ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 / TWO ) +
354  CBRATIO *
355  ( ( ( Bd[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp4 ) );
356  ABestR = (double)(*M) *
357  ( ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 / TWO ) +
358  ( ( ( Bd[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp4 ) +
359  MAX( tmp2, tmp1 ) / TWO );
360  tmp1 = DNROC( *M, Ad[MB_], nprow ); tmp2 = DNROC( *M, Ad[NB_], npcol );
361  tmp4 = DNROC( *M, Bd[MB_], nprow );
362  Best = (double)(*N) *
363  ( ( ( ( Bd[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 ) +
364  CBRATIO * ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 ) );
365  ChooseAB = ( ( ( 1.1 * ABestL ) <= Best ) ||
366  ( ( 1.1 * ABestR ) <= Best ) );
367  }
368  }
369  else
370  {
371  if( notran )
372  {
373  tmp2 = DNROC( *N, Ad[NB_], npcol ); tmp3 = DNROC( *M, Bd[MB_], nprow );
374  ABestR = (double)(*N) *
375  ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 / TWO ) +
376  ( ( ( Bd[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp3 ) );
377  tmp1 = DNROC( *N, Ad[MB_], nprow ); tmp2 = DNROC( *N, Ad[NB_], npcol );
378  tmp3 = DNROC( *N, Bd[NB_], npcol );
379  Best = (double)(*M) *
380  ( CBRATIO * ( nprow == 1 ? ZERO : tmp2 ) +
381  ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) );
382  ChooseAB = ( ( 1.1 * ABestR ) <= Best );
383  }
384  else
385  {
386  tmp1 = DNROC( *N, Ad[MB_], nprow ); tmp2 = DNROC( *N, Ad[NB_], npcol );
387  tmp3 = DNROC( *M, Bd[MB_], nprow );
388  ABestL = (double)(*N) *
389  ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 / TWO ) +
390  CBRATIO *
391  ( ( ( Bd[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp3 ) );
392  ABestR = (double)(*N) *
393  ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 / TWO ) +
394  ( ( ( Bd[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp3 ) +
395  MAX( tmp2, tmp1 ) / TWO );
396  tmp1 = DNROC( *N, Ad[MB_], nprow ); tmp2 = DNROC( *N, Ad[NB_], npcol );
397  tmp3 = DNROC( *N, Bd[NB_], npcol );
398  Best = (double)(*M) *
399  ( ( ( ( Bd[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 ) +
400  CBRATIO * ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) );
401  ChooseAB = ( ( ( 1.1 * ABestL ) <= Best ) ||
402  ( ( 1.1 * ABestR ) <= Best ) );
403  }
404  }
405 /*
406 * BLACS topologies are enforced iff M and N are strictly greater than the
407 * logical block size returned by pilaenv_. Otherwise, it is assumed that the
408 * routine calling this routine has already selected an adequate topology.
409 */
410  nb = pilaenv_( &ctxt, C2F_CHAR( &type->type ) );
411  ForceTop = ( ( *M > nb ) && ( *N > nb ) );
412 
413  if( ChooseAB )
414  {
415  if( lside )
416  {
417  if( notran )
418  {
419  OpR = CBCAST; OpC = CBCAST; Var = CRIGHT;
420  if( upper ) { TopR = TopC = CTOP_IRING; }
421  else { TopR = TopC = CTOP_DRING; }
422  }
423  else
424  {
425  if( ABestL <= ABestR )
426  {
427  OpR = CBCAST; OpC = CCOMBINE; Var = CLEFT;
428  if( upper ) { TopR = CTOP_DRING; TopC = CTOP_IRING; }
429  else { TopR = CTOP_IRING; TopC = CTOP_DRING; }
430  }
431  else
432  {
433  OpR = CBCAST; OpC = CBCAST; Var = CRIGHT;
434  if( upper ) { TopR = TopC = CTOP_DRING; }
435  else { TopR = TopC = CTOP_IRING; }
436  }
437  }
438  }
439  else
440  {
441  if( notran )
442  {
443  OpR = CBCAST; OpC = CBCAST; Var = CRIGHT;
444  if( upper ) { TopR = TopC = CTOP_DRING; }
445  else { TopR = TopC = CTOP_IRING; }
446  }
447  else
448  {
449  if( ABestL <= ABestR )
450  {
451  OpR = CCOMBINE; OpC = CBCAST; Var = CLEFT;
452  if( upper ) { TopR = CTOP_DRING; TopC = CTOP_IRING; }
453  else { TopR = CTOP_IRING; TopC = CTOP_DRING; }
454  }
455  else
456  {
457  OpR = CBCAST; OpC = CBCAST; Var = CRIGHT;
458  if( upper ) { TopR = TopC = CTOP_IRING; }
459  else { TopR = TopC = CTOP_DRING; }
460  }
461  }
462  }
463 
464  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
465  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
466 
467  if( ForceTop )
468  {
469  if( ( rtopsave = rtop ) != TopR )
470  rtop = *PB_Ctop( &ctxt, &OpR, ROW, &TopR );
471  if( ( ctopsave = ctop ) != TopC )
472  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, &TopC );
473 /*
474 * Remove the next 4 lines when the BLACS combine operations support ring
475 * topologies
476 */
477  if( OpR == CCOMBINE )
478  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_DEFAULT );
479  if( OpC == CCOMBINE )
480  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_DEFAULT );
481  }
482 
483  PB_CptrmmAB( type, &Var, &SideOp, &UploA, &TranOp, &DiagA, *M, *N,
484  ((char *)ALPHA), ((char *)A), Ai, Aj, Ad, ((char *)B), Bi,
485  Bj, Bd );
486  }
487  else
488  {
489  if( ( lside && notran ) || ( !( lside ) && !( notran ) ) )
490  {
491  OpR = CCOMBINE; OpC = CBCAST;
492  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
493  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
494 
495  if( ForceTop )
496  {
497  rtopsave = rtop;
498  ctopsave = ctop;
499 /*
500 * No clear winner for the ring topologies, so that if a ring topology is
501 * already selected, keep it.
502 */
503  if( ( rtop != CTOP_DRING ) && ( rtop != CTOP_IRING ) &&
504  ( rtop != CTOP_SRING ) )
505  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_SRING );
506  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_DEFAULT );
507 /*
508 * Remove the next line when the BLACS combine operations support ring
509 * topologies
510 */
511  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_DEFAULT );
512  }
513  }
514  else
515  {
516  OpR = CBCAST; OpC = CCOMBINE;
517  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
518  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
519 
520  if( ForceTop )
521  {
522  rtopsave = rtop;
523  ctopsave = ctop;
524 /*
525 * No clear winner for the ring topologies, so that if a ring topology is
526 * already selected, keep it.
527 */
528  if( ( ctop != CTOP_DRING ) && ( ctop != CTOP_IRING ) &&
529  ( ctop != CTOP_SRING ) )
530  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_SRING );
531  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_DEFAULT );
532 /*
533 * Remove the next line when the BLACS combine operations support ring
534 * topologies
535 */
536  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_DEFAULT );
537  }
538  }
539 
540  if( lside )
541  DirB = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD );
542  else
543  DirB = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD );
544 
545  PB_CptrmmB( type, &DirB, &SideOp, &UploA, &TranOp, &DiagA, *M, *N,
546  ((char *)ALPHA), ((char *)A), Ai, Aj, Ad, ((char *)B), Bi,
547  Bj, Bd );
548  }
549 /*
550 * Restore the BLACS topologies when necessary.
551 */
552  if( ForceTop )
553  {
554  rtopsave = *PB_Ctop( &ctxt, &OpR, ROW, &rtopsave );
555  ctopsave = *PB_Ctop( &ctxt, &OpC, COLUMN, &ctopsave );
556  }
557 /*
558 * End of PZTRMM
559 */
560 }
TOP_SRING
#define TOP_SRING
Definition: PBblacs.h:54
ROW
#define ROW
Definition: PBblacs.h:46
MB_
#define MB_
Definition: PBtools.h:43
TOP_DEFAULT
#define TOP_DEFAULT
Definition: PBblacs.h:51
PB_Cwarn
void PB_Cwarn()
NB_
#define NB_
Definition: PBtools.h:44
COLUMN
#define COLUMN
Definition: PBblacs.h:45
CSRC_
#define CSRC_
Definition: PBtools.h:46
PBblacs.h
PBtools.h
PB_CptrmmAB
void PB_CptrmmAB()
CRIGHT
#define CRIGHT
Definition: PBblas.h:30
PBblas.h
CBCAST
#define CBCAST
Definition: PBblacs.h:23
pztrmm_
void pztrmm_(F_CHAR_T SIDE, F_CHAR_T UPLO, F_CHAR_T TRANS, F_CHAR_T DIAG, int *M, int *N, double *ALPHA, double *A, int *IA, int *JA, int *DESCA, double *B, int *IB, int *JB, int *DESCB)
Definition: pztrmm_.c:25
CCOTRAN
#define CCOTRAN
Definition: PBblas.h:22
NOCONJG
#define NOCONJG
Definition: PBblas.h:45
REAL_PART
#define REAL_PART
Definition: pblas.h:135
PBTYP_T::type
char type
Definition: pblas.h:327
PBpblas.h
PB_Cztypeset
PBTYP_T * PB_Cztypeset()
Definition: PB_Cztypeset.c:19
DLEN_
#define DLEN_
Definition: PBtools.h:48
CUNIT
#define CUNIT
Definition: PBblas.h:32
CTOP_IRING
#define CTOP_IRING
Definition: PBblacs.h:27
F_CHAR_T
char * F_CHAR_T
Definition: pblas.h:118
ZERO
#define ZERO
Definition: PBtools.h:66
CTOP_DRING
#define CTOP_DRING
Definition: PBblacs.h:28
pilaenv_
int pilaenv_()
CTOP_SRING
#define CTOP_SRING
Definition: PBblacs.h:29
PB_Cabort
void PB_Cabort()
CLOWER
#define CLOWER
Definition: PBblas.h:25
PB_Cplapad
void PB_Cplapad()
F2C_CHAR
#define F2C_CHAR(a)
Definition: pblas.h:120
TOP_GET
#define TOP_GET
Definition: PBblacs.h:50
PB_Ctop
char * PB_Ctop()
RSRC_
#define RSRC_
Definition: PBtools.h:45
CNOTRAN
#define CNOTRAN
Definition: PBblas.h:18
PB_CargFtoC
void PB_CargFtoC()
PB_Cchkmat
void PB_Cchkmat()
CFORWARD
#define CFORWARD
Definition: PBblas.h:38
ALL
#define ALL
Definition: PBblas.h:50
C2F_CHAR
#define C2F_CHAR(a)
Definition: pblas.h:121
CBRATIO
#define CBRATIO
Definition: pblas.h:37
MAX
#define MAX(a_, b_)
Definition: PBtools.h:77
Cblacs_gridinfo
void Cblacs_gridinfo()
PBTYP_T
Definition: pblas.h:325
Mupcase
#define Mupcase(C)
Definition: PBtools.h:83
pblas.h
CUPPER
#define CUPPER
Definition: PBblas.h:26
CTRAN
#define CTRAN
Definition: PBblas.h:20
CCOMBINE
#define CCOMBINE
Definition: PBblacs.h:24
PB_CptrmmB
void PB_CptrmmB()
TWO
#define TWO
Definition: PBtools.h:65
CLEFT
#define CLEFT
Definition: PBblas.h:29
CBACKWARD
#define CBACKWARD
Definition: PBblas.h:39
CTXT_
#define CTXT_
Definition: PBtools.h:38
IMAG_PART
#define IMAG_PART
Definition: pblas.h:136
PBTYP_T::zero
char * zero
Definition: pblas.h:331
CNOUNIT
#define CNOUNIT
Definition: PBblas.h:33
DNROC
#define DNROC(n_, nb_, p_)
Definition: PBtools.h:111