SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ psorm2r()

subroutine psorm2r ( character  side,
character  trans,
integer  m,
integer  n,
integer  k,
real, dimension( * )  a,
integer  ia,
integer  ja,
integer, dimension( * )  desca,
real, dimension( * )  tau,
real, dimension( * )  c,
integer  ic,
integer  jc,
integer, dimension( * )  descc,
real, dimension( * )  work,
integer  lwork,
integer  info 
)

Definition at line 1 of file psorm2r.f.

3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 25, 2001
8*
9* .. Scalar Arguments ..
10 CHARACTER SIDE, TRANS
11 INTEGER IA, IC, INFO, JA, JC, K, LWORK, M, N
12* ..
13* .. Array Arguments ..
14 INTEGER DESCA( * ), DESCC( * )
15 REAL A( * ), C( * ), TAU( * ), WORK( * )
16* ..
17*
18* Purpose
19* =======
20*
21* PSORM2R overwrites the general real M-by-N distributed matrix
22* sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with
23*
24* SIDE = 'L' SIDE = 'R'
25* TRANS = 'N': Q * sub( C ) sub( C ) * Q
26* TRANS = 'T': Q**T * sub( C ) sub( C ) * Q**T
27*
28* where Q is a real orthogonal distributed matrix defined as the
29* product of k elementary reflectors
30*
31* Q = H(1) H(2) . . . H(k)
32*
33* as returned by PSGEQRF. Q is of order M if SIDE = 'L' and of order N
34* if SIDE = 'R'.
35*
36* Notes
37* =====
38*
39* Each global data object is described by an associated description
40* vector. This vector stores the information required to establish
41* the mapping between an object element and its corresponding process
42* and memory location.
43*
44* Let A be a generic term for any 2D block cyclicly distributed array.
45* Such a global array has an associated description vector DESCA.
46* In the following comments, the character _ should be read as
47* "of the global array".
48*
49* NOTATION STORED IN EXPLANATION
50* --------------- -------------- --------------------------------------
51* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
52* DTYPE_A = 1.
53* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
54* the BLACS process grid A is distribu-
55* ted over. The context itself is glo-
56* bal, but the handle (the integer
57* value) may vary.
58* M_A (global) DESCA( M_ ) The number of rows in the global
59* array A.
60* N_A (global) DESCA( N_ ) The number of columns in the global
61* array A.
62* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
63* the rows of the array.
64* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
65* the columns of the array.
66* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
67* row of the array A is distributed.
68* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
69* first column of the array A is
70* distributed.
71* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
72* array. LLD_A >= MAX(1,LOCr(M_A)).
73*
74* Let K be the number of rows or columns of a distributed matrix,
75* and assume that its process grid has dimension p x q.
76* LOCr( K ) denotes the number of elements of K that a process
77* would receive if K were distributed over the p processes of its
78* process column.
79* Similarly, LOCc( K ) denotes the number of elements of K that a
80* process would receive if K were distributed over the q processes of
81* its process row.
82* The values of LOCr() and LOCc() may be determined via a call to the
83* ScaLAPACK tool function, NUMROC:
84* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
85* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
86* An upper bound for these quantities may be computed by:
87* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
88* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
89*
90* Arguments
91* =========
92*
93* SIDE (global input) CHARACTER
94* = 'L': apply Q or Q**T from the Left;
95* = 'R': apply Q or Q**T from the Right.
96*
97* TRANS (global input) CHARACTER
98* = 'N': No transpose, apply Q;
99* = 'T': Transpose, apply Q**T.
100*
101* M (global input) INTEGER
102* The number of rows to be operated on i.e the number of rows
103* of the distributed submatrix sub( C ). M >= 0.
104*
105* N (global input) INTEGER
106* The number of columns to be operated on i.e the number of
107* columns of the distributed submatrix sub( C ). N >= 0.
108*
109* K (global input) INTEGER
110* The number of elementary reflectors whose product defines the
111* matrix Q. If SIDE = 'L', M >= K >= 0, if SIDE = 'R',
112* N >= K >= 0.
113*
114* A (local input) REAL pointer into the local memory
115* to an array of dimension (LLD_A,LOCc(JA+K-1)). On entry, the
116* j-th column must contain the vector which defines the elemen-
117* tary reflector H(j), JA <= j <= JA+K-1, as returned by
118* PSGEQRF in the K columns of its distributed matrix
119* argument A(IA:*,JA:JA+K-1). A(IA:*,JA:JA+K-1) is modified by
120* the routine but restored on exit.
121* If SIDE = 'L', LLD_A >= MAX( 1, LOCr(IA+M-1) );
122* if SIDE = 'R', LLD_A >= MAX( 1, LOCr(IA+N-1) ).
123*
124* IA (global input) INTEGER
125* The row index in the global array A indicating the first
126* row of sub( A ).
127*
128* JA (global input) INTEGER
129* The column index in the global array A indicating the
130* first column of sub( A ).
131*
132* DESCA (global and local input) INTEGER array of dimension DLEN_.
133* The array descriptor for the distributed matrix A.
134*
135* TAU (local input) REAL, array, dimension LOCc(JA+K-1).
136* This array contains the scalar factors TAU(j) of the
137* elementary reflectors H(j) as returned by PSGEQRF.
138* TAU is tied to the distributed matrix A.
139*
140* C (local input/local output) REAL pointer into the
141* local memory to an array of dimension (LLD_C,LOCc(JC+N-1)).
142* On entry, the local pieces of the distributed matrix sub(C).
143* On exit, sub( C ) is overwritten by Q*sub( C ) or Q'*sub( C )
144* or sub( C )*Q' or sub( C )*Q.
145*
146* IC (global input) INTEGER
147* The row index in the global array C indicating the first
148* row of sub( C ).
149*
150* JC (global input) INTEGER
151* The column index in the global array C indicating the
152* first column of sub( C ).
153*
154* DESCC (global and local input) INTEGER array of dimension DLEN_.
155* The array descriptor for the distributed matrix C.
156*
157* WORK (local workspace/local output) REAL array,
158* dimension (LWORK)
159* On exit, WORK(1) returns the minimal and optimal LWORK.
160*
161* LWORK (local or global input) INTEGER
162* The dimension of the array WORK.
163* LWORK is local input and must be at least
164* If SIDE = 'L', LWORK >= MpC0 + MAX( 1, NqC0 );
165* if SIDE = 'R', LWORK >= NqC0 + MAX( MAX( 1, MpC0 ), NUMROC(
166* NUMROC( N+ICOFFC,NB_A,0,0,NPCOL ),NB_A,0,0,LCMQ ) );
167*
168* where LCMQ = LCM / NPCOL with LCM = ICLM( NPROW, NPCOL ),
169*
170* IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ),
171* ICROW = INDXG2P( IC, MB_C, MYROW, RSRC_C, NPROW ),
172* ICCOL = INDXG2P( JC, NB_C, MYCOL, CSRC_C, NPCOL ),
173* MpC0 = NUMROC( M+IROFFC, MB_C, MYROW, ICROW, NPROW ),
174* NqC0 = NUMROC( N+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ),
175*
176* ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions;
177* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
178* the subroutine BLACS_GRIDINFO.
179*
180* If LWORK = -1, then LWORK is global input and a workspace
181* query is assumed; the routine only calculates the minimum
182* and optimal size for all work arrays. Each of these
183* values is returned in the first entry of the corresponding
184* work array, and no error message is issued by PXERBLA.
185*
186*
187* INFO (local output) INTEGER
188* = 0: successful exit
189* < 0: If the i-th argument is an array and the j-entry had
190* an illegal value, then INFO = -(i*100+j), if the i-th
191* argument is a scalar and had an illegal value, then
192* INFO = -i.
193*
194* Alignment requirements
195* ======================
196*
197* The distributed submatrices A(IA:*, JA:*) and C(IC:IC+M-1,JC:JC+N-1)
198* must verify some alignment properties, namely the following
199* expressions should be true:
200*
201* If SIDE = 'L',
202* ( MB_A.EQ.MB_C .AND. IROFFA.EQ.IROFFC .AND. IAROW.EQ.ICROW )
203* If SIDE = 'R',
204* ( MB_A.EQ.NB_C .AND. IROFFA.EQ.ICOFFC )
205*
206* =====================================================================
207*
208* .. Parameters ..
209 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
210 $ LLD_, MB_, M_, NB_, N_, RSRC_
211 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
212 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
213 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
214 REAL ONE
215 parameter( one = 1.0e+0 )
216* ..
217* .. Local Scalars ..
218 LOGICAL LEFT, LQUERY, NOTRAN
219 CHARACTER COLBTOP, ROWBTOP
220 INTEGER IACOL, IAROW, ICCOL, ICOFFC, ICROW, ICTXT, ICC,
221 $ II, IROFFA, IROFFC, J, J1, J2, J3, JCC, JJ,
222 $ LCM, LCMQ, LWMIN, MI, MP, MPC0, MYCOL, MYROW,
223 $ NI, NPCOL, NPROW, NQ, NQC0
224 REAL AJJ
225* ..
226* .. External Subroutines ..
227 EXTERNAL blacs_abort, blacs_gridinfo, chk1mat, infog2l,
228 $ pselset, pselset2, pslarf, pb_topget,
229 $ pb_topset, pxerbla, sgebr2d, sgebs2d,
230 $ sgerv2d, sgesd2d, sscal
231* ..
232* .. External Functions ..
233 LOGICAL LSAME
234 INTEGER ILCM, INDXG2P, NUMROC
235 EXTERNAL ilcm, indxg2p, lsame, numroc
236* ..
237* .. Intrinsic Functions ..
238 INTRINSIC max, mod, real
239* ..
240* .. Executable Statements ..
241*
242* Get grid parameters
243*
244 ictxt = desca( ctxt_ )
245 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
246*
247* Test the input parameters
248*
249 info = 0
250 IF( nprow.EQ.-1 ) THEN
251 info = -(900+ctxt_)
252 ELSE
253 left = lsame( side, 'L' )
254 notran = lsame( trans, 'N' )
255*
256* NQ is the order of Q
257*
258 IF( left ) THEN
259 nq = m
260 CALL chk1mat( m, 3, k, 5, ia, ja, desca, 9, info )
261 ELSE
262 nq = n
263 CALL chk1mat( n, 4, k, 5, ia, ja, desca, 9, info )
264 END IF
265 CALL chk1mat( m, 3, n, 4, ic, jc, descc, 14, info )
266 IF( info.EQ.0 ) THEN
267 iroffa = mod( ia-1, desca( mb_ ) )
268 iroffc = mod( ic-1, descc( mb_ ) )
269 icoffc = mod( jc-1, descc( nb_ ) )
270 iarow = indxg2p( ia, desca( mb_ ), myrow, desca( rsrc_ ),
271 $ nprow )
272 icrow = indxg2p( ic, descc( mb_ ), myrow, descc( rsrc_ ),
273 $ nprow )
274 iccol = indxg2p( jc, descc( nb_ ), mycol, descc( csrc_ ),
275 $ npcol )
276 mpc0 = numroc( m+iroffc, descc( mb_ ), myrow, icrow, nprow )
277 nqc0 = numroc( n+icoffc, descc( nb_ ), mycol, iccol, npcol )
278*
279 IF( left ) THEN
280 lwmin = mpc0 + max( 1, nqc0 )
281 ELSE
282 lcm = ilcm( nprow, npcol )
283 lcmq = lcm / npcol
284 lwmin = nqc0 + max( max( 1, mpc0 ), numroc( numroc(
285 $ n+icoffc, desca( nb_ ), 0, 0, npcol ),
286 $ desca( nb_ ), 0, 0, lcmq ) )
287 END IF
288*
289 work( 1 ) = real( lwmin )
290 lquery = ( lwork.EQ.-1 )
291 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
292 info = -1
293 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) ) THEN
294 info = -2
295 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
296 info = -5
297 ELSE IF( .NOT.left .AND. desca( mb_ ).NE.descc( nb_ ) ) THEN
298 info = -(900+nb_)
299 ELSE IF( left .AND. iroffa.NE.iroffc ) THEN
300 info = -12
301 ELSE IF( left .AND. iarow.NE.icrow ) THEN
302 info = -12
303 ELSE IF( .NOT.left .AND. iroffa.NE.icoffc ) THEN
304 info = -13
305 ELSE IF( left .AND. desca( mb_ ).NE.descc( mb_ ) ) THEN
306 info = -(1400+mb_)
307 ELSE IF( ictxt.NE.descc( ctxt_ ) ) THEN
308 info = -(1400+ctxt_)
309 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
310 info = -16
311 END IF
312 END IF
313 END IF
314*
315 IF( info.NE.0 ) THEN
316 CALL pxerbla( ictxt, 'PSORM2R', -info )
317 CALL blacs_abort( ictxt, 1 )
318 RETURN
319 ELSE IF( lquery ) THEN
320 RETURN
321 END IF
322*
323* Quick return if possible
324*
325 IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 )
326 $ RETURN
327*
328 IF( desca( m_ ).EQ.1 ) THEN
329 CALL infog2l( ia, ja, desca, nprow, npcol, myrow, mycol, ii,
330 $ jj, iarow, iacol )
331 CALL infog2l( ic, jc, descc, nprow, npcol, myrow, mycol, icc,
332 $ jcc, icrow, iccol )
333 IF( left ) THEN
334 IF( myrow.EQ.iarow ) THEN
335 nq = numroc( jc+n-1, descc( nb_ ), mycol, descc( csrc_ ),
336 $ npcol )
337 IF( mycol.EQ.iacol ) THEN
338 ajj = one - tau( jj )
339 CALL sgebs2d( ictxt, 'Rowwise', ' ', 1, 1, ajj, 1 )
340 CALL sscal( nq-jcc+1, ajj,
341 $ c( icc+(jcc-1)*descc( lld_ ) ),
342 $ descc( lld_ ) )
343 ELSE
344 CALL sgebr2d( ictxt, 'Rowwise', ' ', 1, 1, ajj, 1,
345 $ iarow, iacol )
346 CALL sscal( nq-jcc+1, ajj,
347 $ c( icc+(jcc-1)*descc( lld_ ) ),
348 $ descc( lld_ ) )
349 END IF
350 END IF
351 ELSE
352 IF( mycol.EQ.iacol ) THEN
353 ajj = one - tau( jj )
354 END IF
355*
356 IF( iacol.NE.iccol ) THEN
357 IF( mycol.EQ.iacol )
358 $ CALL sgesd2d( ictxt, 1, 1, ajj, 1, myrow, iccol )
359 IF( mycol.EQ.iccol )
360 $ CALL sgerv2d( ictxt, 1, 1, ajj, 1, myrow, iacol )
361 END IF
362*
363 IF( mycol.EQ.iccol ) THEN
364 mp = numroc( ic+m-1, descc( mb_ ), myrow, descc( rsrc_ ),
365 $ nprow )
366 CALL sscal( mp-icc+1, ajj, c( icc+(jcc-1)*
367 $ descc( lld_ ) ), 1 )
368 END IF
369*
370 END IF
371*
372 ELSE
373*
374 CALL pb_topget( ictxt, 'Broadcast', 'Rowwise', rowbtop )
375 CALL pb_topget( ictxt, 'Broadcast', 'Columnwise', colbtop )
376*
377 IF( left .AND. .NOT.notran .OR. .NOT.left .AND. notran ) THEN
378 j1 = ja
379 j2 = ja+k-1
380 j3 = 1
381 ELSE
382 j1 = ja+k-1
383 j2 = ja
384 j3 = -1
385 END IF
386*
387 IF( left ) THEN
388 ni = n
389 jcc = jc
390 IF( notran ) THEN
391 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', 'D-ring' )
392 ELSE
393 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', 'I-ring' )
394 END IF
395 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', ' ' )
396 ELSE
397 mi = m
398 icc = ic
399 END IF
400*
401 DO 10 j = j1, j2, j3
402 IF( left ) THEN
403*
404* H(j) or H(j)' is applied to C(ic+j-ja:ic+m-1,jc:jc+n-1)
405*
406 mi = m - j + ja
407 icc = ic + j - ja
408 ELSE
409*
410* H(j) or H(j)' is applied to C(ic:ic+m-1,jc+j-ja:jc+n-1)
411*
412 ni = n - j + ja
413 jcc = jc + j - ja
414 END IF
415*
416* Apply H(j) or H(j)'
417*
418 CALL pselset2( ajj, a, ia+j-ja, j, desca, one )
419 CALL pslarf( side, mi, ni, a, ia+j-ja, j, desca, 1, tau, c,
420 $ icc, jcc, descc, work )
421 CALL pselset( a, ia+j-ja, j, desca, ajj )
422*
423 10 CONTINUE
424*
425 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', rowbtop )
426 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', colbtop )
427*
428 END IF
429*
430 work( 1 ) = real( lwmin )
431*
432 RETURN
433*
434* End of PSORM2R
435*
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
integer function ilcm(m, n)
Definition ilcm.f:2
integer function indxg2p(indxglob, nb, iproc, isrcproc, nprocs)
Definition indxg2p.f:2
subroutine infog2l(grindx, gcindx, desc, nprow, npcol, myrow, mycol, lrindx, lcindx, rsrc, csrc)
Definition infog2l.f:3
integer function numroc(n, nb, iproc, isrcproc, nprocs)
Definition numroc.f:2
#define max(A, B)
Definition pcgemr.c:180
subroutine pselset2(alpha, a, ia, ja, desca, beta)
Definition pselset2.f:2
subroutine pselset(a, ia, ja, desca, alpha)
Definition pselset.f:2
subroutine pslarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
Definition pslarf.f:3
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2
logical function lsame(ca, cb)
Definition tools.f:1724
Here is the call graph for this function:
Here is the caller graph for this function: