SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pdnrm2_.c
Go to the documentation of this file.
1/* ---------------------------------------------------------------------
2*
3* -- PBLAS routine (version 2.0) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* April 1, 1998
7*
8* ---------------------------------------------------------------------
9*/
10/*
11* Include files
12*/
13#include "pblas.h"
14#include "PBpblas.h"
15#include "PBtools.h"
16#include "PBblacs.h"
17#include "PBblas.h"
18
19#ifdef __STDC__
20void pdnrm2_( Int * N, double * NORM2,
21 double * X, Int * IX, Int * JX, Int * DESCX, Int * INCX )
22#else
23void pdnrm2_( N, NORM2, X, IX, JX, DESCX, INCX )
24/*
25* .. Scalar Arguments ..
26*/
27 Int * INCX, * IX, * JX, * N;
28 double * NORM2;
29/*
30* .. Array Arguments ..
31*/
32 Int * DESCX;
33 double * X;
34#endif
35{
36/*
37* Purpose
38* =======
39*
40* PDNRM2 computes the 2-norm of a subvector sub( X ),
41*
42* where
43*
44* sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X,
45* X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X.
46*
47* Notes
48* =====
49*
50* A description vector is associated with each 2D block-cyclicly dis-
51* tributed matrix. This vector stores the information required to
52* establish the mapping between a matrix entry and its corresponding
53* process and memory location.
54*
55* In the following comments, the character _ should be read as
56* "of the distributed matrix". Let A be a generic term for any 2D
57* block cyclicly distributed matrix. Its description vector is DESC_A:
58*
59* NOTATION STORED IN EXPLANATION
60* ---------------- --------------- ------------------------------------
61* DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
62* CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
63* the NPROW x NPCOL BLACS process grid
64* A is distributed over. The context
65* itself is global, but the handle
66* (the integer value) may vary.
67* M_A (global) DESCA[ M_ ] The number of rows in the distribu-
68* ted matrix A, M_A >= 0.
69* N_A (global) DESCA[ N_ ] The number of columns in the distri-
70* buted matrix A, N_A >= 0.
71* IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
72* block of the matrix A, IMB_A > 0.
73* INB_A (global) DESCA[ INB_ ] The number of columns of the upper
74* left block of the matrix A,
75* INB_A > 0.
76* MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
77* bute the last M_A-IMB_A rows of A,
78* MB_A > 0.
79* NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
80* bute the last N_A-INB_A columns of
81* A, NB_A > 0.
82* RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
83* row of the matrix A is distributed,
84* NPROW > RSRC_A >= 0.
85* CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
86* first column of A is distributed.
87* NPCOL > CSRC_A >= 0.
88* LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
89* array storing the local blocks of
90* the distributed matrix A,
91* IF( Lc( 1, N_A ) > 0 )
92* LLD_A >= MAX( 1, Lr( 1, M_A ) )
93* ELSE
94* LLD_A >= 1.
95*
96* Let K be the number of rows of a matrix A starting at the global in-
97* dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
98* that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
99* receive if these K rows were distributed over NPROW processes. If K
100* is the number of columns of a matrix A starting at the global index
101* JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
102* lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
103* these K columns were distributed over NPCOL processes.
104*
105* The values of Lr() and Lc() may be determined via a call to the func-
106* tion PB_Cnumroc:
107* Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
108* Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
109*
110* Arguments
111* =========
112*
113* N (global input) INTEGER
114* On entry, N specifies the length of the subvector sub( X ).
115* N must be at least zero.
116*
117* NORM2 (local output) DOUBLE PRECISION
118* On exit, NORM2 specifies the 2-norm of the subvector sub( X )
119* only in its scope (See below for further details).
120*
121* X (local input) DOUBLE PRECISION array
122* On entry, X is an array of dimension (LLD_X, Kx), where LLD_X
123* is at least MAX( 1, Lr( 1, IX ) ) when INCX = M_X and
124* MAX( 1, Lr( 1, IX+N-1 ) ) otherwise, and, Kx is at least
125* Lc( 1, JX+N-1 ) when INCX = M_X and Lc( 1, JX ) otherwise.
126* Before entry, this array contains the local entries of the
127* matrix X.
128*
129* IX (global input) INTEGER
130* On entry, IX specifies X's global row index, which points to
131* the beginning of the submatrix sub( X ).
132*
133* JX (global input) INTEGER
134* On entry, JX specifies X's global column index, which points
135* to the beginning of the submatrix sub( X ).
136*
137* DESCX (global and local input) INTEGER array
138* On entry, DESCX is an integer array of dimension DLEN_. This
139* is the array descriptor for the matrix X.
140*
141* INCX (global input) INTEGER
142* On entry, INCX specifies the global increment for the
143* elements of X. Only two values of INCX are supported in
144* this version, namely 1 and M_X. INCX must not be zero.
145*
146* Further Details
147* ===============
148*
149* When the result of a vector-oriented PBLAS call is a scalar, this
150* scalar is set only within the process scope which owns the vector(s)
151* being operated on. Let sub( X ) be a generic term for the input vec-
152* tor(s). Then, the processes owning the correct the answer is determi-
153* ned as follows: if an operation involves more than one vector, the
154* processes receiving the result will be the union of the following set
155* of processes for each vector:
156*
157* If N = 1, M_X = 1 and INCX = 1, then one cannot determine if a pro-
158* cess row or process column owns the vector operand, therefore only
159* the process owning sub( X ) receives the correct result;
160*
161* If INCX = M_X, then sub( X ) is a vector distributed over a process
162* row. Each process in this row receives the result;
163*
164* If INCX = 1, then sub( X ) is a vector distributed over a process
165* column. Each process in this column receives the result;
166*
167* -- Written on April 1, 1998 by
168* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
169*
170* ---------------------------------------------------------------------
171*/
172/*
173* .. Local Scalars ..
174*/
175 char top;
176 Int Xcol, Xi, Xii, Xj, Xjj, Xld, Xnp, Xnq, Xrow, ctxt, dst, dist,
177 info, k, mycol, mydist, myrow, npcol, nprow, src;
178 double scale, ssq, temp1, temp2;
179/*
180* .. Local Arrays ..
181*/
182 Int Xd[DLEN_];
183 double * Xptr = NULL, work[4];
184/* ..
185* .. Executable Statements ..
186*
187*/
188 PB_CargFtoC( *IX, *JX, DESCX, &Xi, &Xj, Xd );
189#ifndef NO_ARGCHK
190/*
191* Test the input parameters
192*/
193 Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
194 if( !( info = ( ( nprow == -1 ) ? -( 601 + CTXT_ ) : 0 ) ) )
195 PB_Cchkvec( ctxt, "PDNRM2", "X", *N, 1, Xi, Xj, Xd, *INCX, 6, &info );
196 if( info ) { PB_Cabort( ctxt, "PDNRM2", info ); return; }
197#endif
198/*
199* Initialize NORM2
200*/
201 *NORM2 = ZERO;
202/*
203* Quick return if possible
204*/
205 if( *N == 0 ) return;
206/*
207* Retrieve process grid information
208*/
209#ifdef NO_ARGCHK
210 Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
211#endif
212/*
213* Retrieve sub( X )'s local information: Xii, Xjj, Xrow, Xcol
214*/
215 PB_Cinfog2l( Xi, Xj, Xd, nprow, npcol, myrow, mycol, &Xii, &Xjj,
216 &Xrow, &Xcol );
217/*
218* Handle degenerate case separately, sub( X )'s scope is just one process
219*/
220 if( ( *N == 1 ) && ( *INCX == 1 ) && ( Xd[M_] == 1 ) )
221 {
222/*
223* Make sure I own some data and compute NORM2
224*/
225 if( ( ( myrow == Xrow ) || ( Xrow < 0 ) ) &&
226 ( ( mycol == Xcol ) || ( Xcol < 0 ) ) )
227 *NORM2 = ABS( *Mptr(X,Xii,Xjj,Xd[LLD_],1) );
228 return;
229 }
230 else if( *INCX == Xd[M_] )
231 {
232/*
233* sub( X ) resides in (a) process row(s)
234*/
235 if( ( myrow == Xrow ) || ( Xrow < 0 ) )
236 {
237/*
238* Initialize SCALE and SSQ
239*/
240 scale = ZERO;
241 ssq = ONE;
242/*
243* Make sure I own some data and compute local sum of squares
244*/
245 Xnq = PB_Cnumroc( *N, Xj, Xd[INB_], Xd[NB_], mycol, Xd[CSRC_], npcol );
246 if( Xnq > 0 )
247 {
248 Xld = Xd[LLD_];
249 Xptr = Mptr(X,Xii,Xjj,Xld,1);
250
251 for( k = 0; k < Xnq; k++ )
252 {
253 if( *Xptr != ZERO )
254 {
255 temp1 = ABS( *Xptr );
256 if( scale < temp1 )
257 {
258 temp2 = scale / temp1;
259 ssq = ONE + ssq * ( temp2 * temp2 );
260 scale = temp1;
261 }
262 else
263 {
264 temp2 = temp1 / scale;
265 ssq = ssq + ( temp2 * temp2 );
266 }
267 }
268 Xptr += Xld;
269 }
270 }
271/*
272* If Xnq <= 0, SCALE is zero and SSQ is one (see initialization above)
273*/
274 if( ( npcol >= 2 ) && ( Xcol >= 0 ) )
275 {
276/*
277* Combine the local sum of squares using a 1-tree topology within process row
278* 0 if npcol > 1 and Xcol >= 0, i.e sub( X ) is distributed.
279*/
280 work[0] = scale;
281 work[1] = ssq;
282
283 mydist = mycol;
284 k = 1;
285l_10:
286 if( mydist & 1 )
287 {
288 dist = k * ( mydist - 1 );
289 dst = MPosMod( dist, npcol );
290 Cdgesd2d( ctxt, 2, 1, ((char*) work), 2, myrow, dst );
291 goto l_20;
292 }
293 else
294 {
295 dist = mycol + k;
296 src = MPosMod( dist, npcol );
297
298 if( mycol < src )
299 {
300 Cdgerv2d( ctxt, 2, 1, ((char*)&work[2]), 2, myrow, src );
301 if( work[0] >= work[2] )
302 {
303 if( work[0] != ZERO )
304 {
305 temp1 = work[2] / work[0];
306 work[1] = work[1] + ( temp1 * temp1 ) * work[3];
307 }
308 }
309 else
310 {
311 temp1 = work[0] / work[2];
312 work[1] = work[3] + ( temp1 * temp1 ) * work[1];
313 work[0] = work[2];
314 }
315 }
316 mydist >>= 1;
317 }
318 k <<= 1;
319
320 if( k < npcol ) goto l_10;
321l_20:
322/*
323* Process column 0 broadcasts the combined values of SCALE and SSQ within their
324* process row.
325*/
326 top = *PB_Ctop( &ctxt, BCAST, ROW, TOP_GET );
327 if( mycol == 0 )
328 {
329 Cdgebs2d( ctxt, ROW, &top, 2, 1, ((char*)work), 2 );
330 }
331 else
332 {
333 Cdgebr2d( ctxt, ROW, &top, 2, 1, ((char*)work), 2,
334 myrow, 0 );
335 }
336/*
337* Compute NORM2 redundantly NORM2 = WORK( 1 ) * SQRT( WORK( 2 ) )
338*/
339 dasqrtb_( &work[0], &work[1], NORM2 );
340 }
341 else
342 {
343/*
344* Compute NORM2 redundantly ( sub( X ) is not distributed )
345*/
346 dasqrtb_( &scale, &ssq, NORM2 );
347 }
348 }
349 return;
350 }
351 else
352 {
353/*
354* sub( X ) resides in (a) process column(s)
355*/
356 if( ( mycol == Xcol ) || ( Xcol < 0 ) )
357 {
358/*
359* Initialize SCALE and SSQ
360*/
361 scale = ZERO;
362 ssq = ONE;
363/*
364* Make sure I own some data and compute local sum of squares
365*/
366 Xnp = PB_Cnumroc( *N, Xi, Xd[IMB_], Xd[MB_], myrow, Xd[RSRC_], nprow );
367 if( Xnp > 0 )
368 {
369 Xptr = Mptr(X,Xii,Xjj,Xd[LLD_],1);
370
371 for( k = 0; k < Xnp; k++ )
372 {
373 if( *Xptr != ZERO )
374 {
375 temp1 = ABS( *Xptr );
376 if( scale < temp1 )
377 {
378 temp2 = scale / temp1;
379 ssq = ONE + ssq * ( temp2 * temp2 );
380 scale = temp1;
381 }
382 else
383 {
384 temp2 = temp1 / scale;
385 ssq = ssq + ( temp2 * temp2 );
386 }
387 }
388 Xptr++;
389 }
390 }
391/*
392* If Xnp <= 0, SCALE is zero and SSQ is one (see initialization above)
393*/
394 if( ( nprow >= 2 ) && ( Xrow >= 0 ) )
395 {
396/*
397* Combine the local sum of squares using a 1-tree topology within process
398* column 0 if nprow > 1 and Xrow >= 0, i.e sub( X ) is distributed.
399*/
400 work[0] = scale;
401 work[1] = ssq;
402
403 mydist = myrow;
404 k = 1;
405l_30:
406 if( mydist & 1 )
407 {
408 dist = k * ( mydist - 1 );
409 dst = MPosMod( dist, nprow );
410 Cdgesd2d( ctxt, 2, 1, ((char*)work), 2, dst, mycol );
411 goto l_40;
412 }
413 else
414 {
415 dist = myrow + k;
416 src = MPosMod( dist, nprow );
417
418 if( myrow < src )
419 {
420 Cdgerv2d( ctxt, 2, 1, ((char*)&work[2]), 2, src, mycol );
421 if( work[0] >= work[2] )
422 {
423 if( work[0] != ZERO )
424 {
425 temp1 = work[2] / work[0];
426 work[1] = work[1] + ( temp1 * temp1 ) * work[3];
427 }
428 }
429 else
430 {
431 temp1 = work[0] / work[2];
432 work[1] = work[3] + ( temp1 * temp1 ) * work[1];
433 work[0] = work[2];
434 }
435 }
436 mydist >>= 1;
437 }
438 k <<= 1;
439
440 if( k < nprow ) goto l_30;
441l_40:
442/*
443* Process column 0 broadcasts the combined values of SCALE and SSQ within their
444* process column
445*/
446 top = *PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET );
447 if( myrow == 0 )
448 {
449 Cdgebs2d( ctxt, COLUMN, &top, 2, 1, ((char*)work), 2 );
450 }
451 else
452 {
453 Cdgebr2d( ctxt, COLUMN, &top, 2, 1, ((char*)work), 2,
454 0, mycol );
455 }
456/*
457* Compute NORM2 redundantly NORM2 = WORK[0] * SQRT( WORK[1] )
458*/
459 dasqrtb_( &work[0], &work[1], NORM2 );
460 }
461 else
462 {
463/*
464* Compute NORM2 redundantly ( sub( X ) is not distributed )
465*/
466 dasqrtb_( &scale, &ssq, NORM2 );
467 }
468 }
469 return;
470 }
471/*
472* End of PDNRM2
473*/
474}
#define Int
Definition Bconfig.h:22
#define TOP_GET
Definition PBblacs.h:50
#define COLUMN
Definition PBblacs.h:45
void Cdgebr2d()
void Cdgerv2d()
void Cdgebs2d()
void Cdgesd2d()
#define ROW
Definition PBblacs.h:46
void Cblacs_gridinfo()
#define BCAST
Definition PBblacs.h:48
#define pdnrm2_
Definition PBpblas.h:78
#define CTXT_
Definition PBtools.h:38
#define MB_
Definition PBtools.h:43
void PB_Cabort()
#define ONE
Definition PBtools.h:64
void PB_Cchkvec()
void PB_Cinfog2l()
#define Mptr(a_, i_, j_, lda_, siz_)
Definition PBtools.h:132
#define LLD_
Definition PBtools.h:47
Int PB_Cnumroc()
char * PB_Ctop()
#define dasqrtb_
Definition PBtools.h:661
#define RSRC_
Definition PBtools.h:45
#define M_
Definition PBtools.h:39
#define INB_
Definition PBtools.h:42
#define MPosMod(I, d)
Definition PBtools.h:95
#define ABS(a_)
Definition PBtools.h:75
void PB_CargFtoC()
#define CSRC_
Definition PBtools.h:46
#define IMB_
Definition PBtools.h:41
#define ZERO
Definition PBtools.h:66
#define DLEN_
Definition PBtools.h:48
#define NB_
Definition PBtools.h:44