ScaLAPACK 2.1  2.1
ScaLAPACK: Scalable Linear Algebra PACKage
pcsyrk_.c
Go to the documentation of this file.
1 /* ---------------------------------------------------------------------
2 *
3 * -- PBLAS routine (version 2.0) --
4 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5 * and University of California, Berkeley.
6 * April 1, 1998
7 *
8 * ---------------------------------------------------------------------
9 */
10 /*
11 * Include files
12 */
13 #include "pblas.h"
14 #include "PBpblas.h"
15 #include "PBtools.h"
16 #include "PBblacs.h"
17 #include "PBblas.h"
18 
19 #ifdef __STDC__
20 void pcsyrk_( F_CHAR_T UPLO, F_CHAR_T TRANS, int * N, int * K,
21  float * ALPHA,
22  float * A, int * IA, int * JA, int * DESCA,
23  float * BETA,
24  float * C, int * IC, int * JC, int * DESCC )
25 #else
26 void pcsyrk_( UPLO, TRANS, N, K, ALPHA, A, IA, JA, DESCA, BETA,
27  C, IC, JC, DESCC )
28 /*
29 * .. Scalar Arguments ..
30 */
31  F_CHAR_T TRANS, UPLO;
32  int * IA, * IC, * JA, * JC, * K, * N;
33  float * ALPHA, * BETA;
34 /*
35 * .. Array Arguments ..
36 */
37  int * DESCA, * DESCC;
38  float * A, * C;
39 #endif
40 {
41 /*
42 * Purpose
43 * =======
44 *
45 * PCSYRK performs one of the symmetric rank k operations
46 *
47 * sub( C ) := alpha*sub( A )*sub( A )' + beta*sub( C ),
48 *
49 * or
50 *
51 * sub( C ) := alpha*sub( A )'*sub( A ) + beta*sub( C ),
52 *
53 * where
54 *
55 * sub( C ) denotes C(IC:IC+N-1,JC:JC+N-1), and,
56 *
57 * sub( A ) denotes A(IA:IA+N-1,JA:JA+K-1) if TRANS = 'N',
58 * A(IA:IA+K-1,JA:JA+N-1) otherwise.
59 *
60 * Alpha and beta are scalars, sub( C ) is an n by n symmetric
61 * submatrix and sub( A ) is an n by k submatrix in the first case and a
62 * k by n submatrix in the second case.
63 *
64 * Notes
65 * =====
66 *
67 * A description vector is associated with each 2D block-cyclicly dis-
68 * tributed matrix. This vector stores the information required to
69 * establish the mapping between a matrix entry and its corresponding
70 * process and memory location.
71 *
72 * In the following comments, the character _ should be read as
73 * "of the distributed matrix". Let A be a generic term for any 2D
74 * block cyclicly distributed matrix. Its description vector is DESC_A:
75 *
76 * NOTATION STORED IN EXPLANATION
77 * ---------------- --------------- ------------------------------------
78 * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
79 * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
80 * the NPROW x NPCOL BLACS process grid
81 * A is distributed over. The context
82 * itself is global, but the handle
83 * (the integer value) may vary.
84 * M_A (global) DESCA[ M_ ] The number of rows in the distribu-
85 * ted matrix A, M_A >= 0.
86 * N_A (global) DESCA[ N_ ] The number of columns in the distri-
87 * buted matrix A, N_A >= 0.
88 * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
89 * block of the matrix A, IMB_A > 0.
90 * INB_A (global) DESCA[ INB_ ] The number of columns of the upper
91 * left block of the matrix A,
92 * INB_A > 0.
93 * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
94 * bute the last M_A-IMB_A rows of A,
95 * MB_A > 0.
96 * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
97 * bute the last N_A-INB_A columns of
98 * A, NB_A > 0.
99 * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
100 * row of the matrix A is distributed,
101 * NPROW > RSRC_A >= 0.
102 * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
103 * first column of A is distributed.
104 * NPCOL > CSRC_A >= 0.
105 * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
106 * array storing the local blocks of
107 * the distributed matrix A,
108 * IF( Lc( 1, N_A ) > 0 )
109 * LLD_A >= MAX( 1, Lr( 1, M_A ) )
110 * ELSE
111 * LLD_A >= 1.
112 *
113 * Let K be the number of rows of a matrix A starting at the global in-
114 * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
115 * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
116 * receive if these K rows were distributed over NPROW processes. If K
117 * is the number of columns of a matrix A starting at the global index
118 * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
119 * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
120 * these K columns were distributed over NPCOL processes.
121 *
122 * The values of Lr() and Lc() may be determined via a call to the func-
123 * tion PB_Cnumroc:
124 * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
125 * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
126 *
127 * Arguments
128 * =========
129 *
130 * UPLO (global input) CHARACTER*1
131 * On entry, UPLO specifies whether the local pieces of
132 * the array C containing the upper or lower triangular part
133 * of the symmetric submatrix sub( C ) are to be referenced as
134 * follows:
135 *
136 * UPLO = 'U' or 'u' Only the local pieces corresponding to
137 * the upper triangular part of the
138 * symmetric submatrix sub( C ) are to be
139 * referenced,
140 *
141 * UPLO = 'L' or 'l' Only the local pieces corresponding to
142 * the lower triangular part of the
143 * symmetric submatrix sub( C ) are to be
144 * referenced.
145 *
146 * TRANS (global input) CHARACTER*1
147 * On entry, TRANS specifies the operation to be performed as
148 * follows:
149 *
150 * TRANS = 'N' or 'n'
151 * sub( C ) := alpha*sub( A )*sub( A )' + beta*sub( C ),
152 *
153 * TRANS = 'T' or 't'
154 * sub( C ) := alpha*sub( A )'*sub( A ) + beta*sub( C ).
155 *
156 * N (global input) INTEGER
157 * On entry, N specifies the order of the submatrix sub( C ).
158 * N must be at least zero.
159 *
160 * K (global input) INTEGER
161 * On entry, with TRANS = 'N' or 'n', K specifies the number of
162 * columns of the submatrix sub( A ), and with TRANS = 'T' or
163 * 't', K specifies the number of rows of the submatrix
164 * sub( A ). K must be at least zero.
165 *
166 * ALPHA (global input) COMPLEX
167 * On entry, ALPHA specifies the scalar alpha. When ALPHA is
168 * supplied as zero then the local entries of the array A
169 * corresponding to the entries of the submatrix sub( A ) need
170 * not be set on input.
171 *
172 * A (local input) COMPLEX array
173 * On entry, A is an array of dimension (LLD_A, Ka), where Ka is
174 * at least Lc( 1, JA+K-1 ) when TRANS = 'N' or 'n', and is at
175 * least Lc( 1, JA+N-1 ) otherwise. Before entry, this array
176 * contains the local entries of the matrix A.
177 * Before entry with TRANS = 'N' or 'n', this array contains the
178 * local entries corresponding to the entries of the n by k sub-
179 * matrix sub( A ), otherwise the local entries corresponding to
180 * the entries of the k by n submatrix sub( A ).
181 *
182 * IA (global input) INTEGER
183 * On entry, IA specifies A's global row index, which points to
184 * the beginning of the submatrix sub( A ).
185 *
186 * JA (global input) INTEGER
187 * On entry, JA specifies A's global column index, which points
188 * to the beginning of the submatrix sub( A ).
189 *
190 * DESCA (global and local input) INTEGER array
191 * On entry, DESCA is an integer array of dimension DLEN_. This
192 * is the array descriptor for the matrix A.
193 *
194 * BETA (global input) COMPLEX
195 * On entry, BETA specifies the scalar beta. When BETA is
196 * supplied as zero then the local entries of the array C
197 * corresponding to the entries of the submatrix sub( C ) need
198 * not be set on input.
199 *
200 * C (local input/local output) COMPLEX array
201 * On entry, C is an array of dimension (LLD_C, Kc), where Kc is
202 * at least Lc( 1, JC+N-1 ). Before entry, this array contains
203 * the local entries of the matrix C.
204 * Before entry with UPLO = 'U' or 'u', this array contains
205 * the local entries corresponding to the upper triangular part
206 * of the symmetric submatrix sub( C ), and the local entries
207 * corresponding to the strictly lower triangular of sub( C )
208 * are not referenced. On exit, the upper triangular part of
209 * sub( C ) is overwritten by the upper triangular part of the
210 * updated submatrix.
211 * Before entry with UPLO = 'L' or 'l', this array contains
212 * the local entries corresponding to the lower triangular part
213 * of the symmetric submatrix sub( C ), and the local entries
214 * corresponding to the strictly upper triangular of sub( C )
215 * are not referenced. On exit, the lower triangular part of
216 * sub( C ) is overwritten by the lower triangular part of the
217 * updated submatrix.
218 *
219 * IC (global input) INTEGER
220 * On entry, IC specifies C's global row index, which points to
221 * the beginning of the submatrix sub( C ).
222 *
223 * JC (global input) INTEGER
224 * On entry, JC specifies C's global column index, which points
225 * to the beginning of the submatrix sub( C ).
226 *
227 * DESCC (global and local input) INTEGER array
228 * On entry, DESCC is an integer array of dimension DLEN_. This
229 * is the array descriptor for the matrix C.
230 *
231 * -- Written on April 1, 1998 by
232 * Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
233 *
234 * ---------------------------------------------------------------------
235 */
236 /*
237 * .. Local Scalars ..
238 */
239  char DirA, OpC, OpR, TopC, TopR, TranOp, UploC, ctop, ctopsave,
240  rtop, rtopsave;
241  int Ai, Aj, ChooseAC, Ci, Cj, ForceTop, ctxt, info, mycol,
242  myrow, nb, notran, npcol, nprow, upper;
243  double Aest, ACest, tmp1, tmp2, tmp3, tmp4;
244  PBTYP_T * type;
245 /*
246 * .. Local Arrays ..
247 */
248  int Ad[DLEN_], Cd[DLEN_];
249 /* ..
250 * .. Executable Statements ..
251 *
252 */
253  upper = ( ( UploC = Mupcase( F2C_CHAR( UPLO )[0] ) ) == CUPPER );
254  notran = ( ( TranOp = Mupcase( F2C_CHAR( TRANS )[0] ) ) == CNOTRAN );
255  PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
256  PB_CargFtoC( *IC, *JC, DESCC, &Ci, &Cj, Cd );
257 #ifndef NO_ARGCHK
258 /*
259 * Test the input parameters
260 */
261  Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
262  if( !( info = ( ( nprow == -1 ) ? -( 901 + CTXT_ ) : 0 ) ) )
263  {
264  if( ( !upper ) && ( UploC != CLOWER ) )
265  {
266  PB_Cwarn( ctxt, __LINE__, "PCSYRK", "Illegal UPLO = %c\n", UploC );
267  info = -1;
268  }
269  else if( ( !notran ) && ( TranOp != CTRAN ) )
270  {
271  PB_Cwarn( ctxt, __LINE__, "PCSYRK", "Illegal TRANS = %c\n", TranOp );
272  info = -2;
273  }
274  if( notran )
275  PB_Cchkmat( ctxt, "PCSYRK", "A", *N, 3, *K, 4, Ai, Aj, Ad, 9,
276  &info );
277  else
278  PB_Cchkmat( ctxt, "PCSYRK", "A", *K, 4, *N, 3, Ai, Aj, Ad, 9,
279  &info );
280  PB_Cchkmat( ctxt, "PCSYRK", "C", *N, 3, *N, 3, Ci, Cj, Cd, 14,
281  &info );
282  }
283  if( info ) { PB_Cabort( ctxt, "PCSYRK", info ); return; }
284 #endif
285 /*
286 * Quick return if possible
287 */
288  if( ( *N == 0 ) ||
289  ( ( ( ( ALPHA[REAL_PART] == ZERO ) && ( ALPHA[IMAG_PART] == ZERO ) ) ||
290  ( *K == 0 ) ) &&
291  ( ( BETA[REAL_PART] == ONE ) && ( BETA[IMAG_PART] == ZERO ) ) ) )
292  return;
293 /*
294 * Get type structure
295 */
296  type = PB_Cctypeset();
297 /*
298 * And when alpha or K is zero
299 */
300  if( ( ( ALPHA[REAL_PART] == ZERO ) && ( ALPHA[IMAG_PART] == ZERO ) ) ||
301  ( *K == 0 ) )
302  {
303  if( ( BETA[REAL_PART] == ZERO ) && ( BETA[IMAG_PART] == ZERO ) )
304  {
305  PB_Cplapad( type, &UploC, NOCONJG, *N, *N, type->zero, type->zero,
306  ((char *) C), Ci, Cj, Cd );
307  }
308  else
309  {
310  PB_Cplascal( type, &UploC, NOCONJG, *N, *N, ((char *) BETA),
311  ((char *) C), Ci, Cj, Cd );
312  }
313  return;
314  }
315 /*
316 * Start the operations
317 */
318 #ifdef NO_ARGCHK
319  Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
320 #endif
321 /*
322 * Algorithm selection is based on approximation of the communication volume
323 * for distributed and aligned operands.
324 *
325 * ACest: both operands sub( A ) and sub( C ) are communicated (K >> N)
326 * Aest : only sub( A ) is communicated (N >> K)
327 */
328  if( notran )
329  {
330  tmp1 = DNROC( *N, Cd[MB_], nprow ); tmp3 = DNROC( *K, Ad[NB_], npcol );
331  ACest = (double)(*N) *
332  ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp3 ) +
333  ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO :
334  CBRATIO * tmp1 / TWO ) );
335  tmp1 = DNROC( *N, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
336  tmp4 = DNROC( *N, Ad[MB_], nprow );
337  Aest = (double)(*K) *
338  ( ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 ) +
339  ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 ) );
340  }
341  else
342  {
343  tmp2 = DNROC( *N, Cd[NB_], npcol ); tmp4 = DNROC( *K, Ad[MB_], nprow );
344  ACest = (double)(*N) *
345  ( ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp4 ) +
346  ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO :
347  CBRATIO * tmp2 / TWO ) );
348  tmp1 = DNROC( *N, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
349  tmp3 = DNROC( *N, Ad[NB_], npcol );
350  Aest = (double)(*K) *
351  ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 ) +
352  ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) );
353  }
354 /*
355 * Shift a little the cross-over point between both algorithms.
356 */
357  ChooseAC = ( ( 1.3 * ACest ) <= Aest );
358 /*
359 * BLACS topologies are enforced iff N and K are strictly greater than the
360 * logical block size returned by pilaenv_. Otherwise, it is assumed that the
361 * routine calling this routine has already selected an adequate topology.
362 */
363  nb = pilaenv_( &ctxt, C2F_CHAR( &type->type ) );
364  ForceTop = ( ( *N > nb ) && ( *K > nb ) );
365 
366  if( ChooseAC )
367  {
368  if( notran )
369  {
370  OpC = CBCAST;
371  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
372 
373  if( ForceTop )
374  {
375  OpR = CCOMBINE;
376  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
377 
378  rtopsave = rtop;
379  ctopsave = ctop;
380 
381  if( upper ) { TopR = CTOP_IRING; TopC = CTOP_DRING; }
382  else { TopR = CTOP_DRING; TopC = CTOP_IRING; }
383 
384  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, &TopC );
385  rtop = *PB_Ctop( &ctxt, &OpR, ROW, &TopR );
386 /*
387 * Remove the next line when the BLACS combine operations support ring
388 * topologies
389 */
390  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_DEFAULT );
391  }
392 
393  DirA = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD );
394  }
395  else
396  {
397  OpR = CBCAST;
398  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
399 
400  if( ForceTop )
401  {
402  OpC = CCOMBINE;
403  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
404 
405  rtopsave = rtop;
406  ctopsave = ctop;
407 
408  if( upper ) { TopR = CTOP_IRING; TopC = CTOP_DRING; }
409  else { TopR = CTOP_DRING; TopC = CTOP_IRING; }
410 
411  rtop = *PB_Ctop( &ctxt, &OpR, ROW, &TopR );
412  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, &TopC );
413 /*
414 * Remove the next line when the BLACS combine operations support ring
415 * topologies
416 */
417  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_DEFAULT );
418  }
419  DirA = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD );
420  }
421 
422  PB_CpsyrkAC( type, &DirA, NOCONJG, &UploC, ( notran ? NOTRAN : TRAN ), *N,
423  *K, ((char *)ALPHA), ((char *)A), Ai, Aj, Ad, ((char *)BETA),
424  ((char *)C), Ci, Cj, Cd );
425  }
426  else
427  {
428  if( notran )
429  {
430  OpR = CBCAST;
431  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
432 
433  if( ForceTop )
434  {
435  OpC = CBCAST;
436  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
437 
438  rtopsave = rtop;
439  ctopsave = ctop;
440 /*
441 * No clear winner for the ring topologies, so that if a ring topology is
442 * already selected, keep it.
443 */
444  if( ( rtop != CTOP_DRING ) && ( rtop != CTOP_IRING ) &&
445  ( rtop != CTOP_SRING ) )
446  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_SRING );
447  if( ( ctop != CTOP_DRING ) && ( ctop != CTOP_IRING ) &&
448  ( ctop != CTOP_SRING ) )
449  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_SRING );
450  }
451 
452  DirA = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD );
453  }
454  else
455  {
456  OpC = CBCAST;
457  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
458 
459  if( ForceTop )
460  {
461  OpR = CBCAST;
462  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_GET );
463 
464  rtopsave = rtop;
465  ctopsave = ctop;
466 /*
467 * No clear winner for the ring topologies, so that if a ring topology is
468 * already selected, keep it.
469 */
470  if( ( rtop != CTOP_DRING ) && ( rtop != CTOP_IRING ) &&
471  ( rtop != CTOP_SRING ) )
472  rtop = *PB_Ctop( &ctxt, &OpR, ROW, TOP_SRING );
473  if( ( ctop != CTOP_DRING ) && ( ctop != CTOP_IRING ) &&
474  ( ctop != CTOP_SRING ) )
475  ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_SRING );
476  }
477 
478  DirA = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD );
479  }
480 
481  PB_CpsyrkA( type, &DirA, NOCONJG, &UploC, ( notran ? NOTRAN : TRAN ), *N,
482  *K, ((char *)ALPHA), ((char *)A), Ai, Aj, Ad, ((char *)BETA),
483  ((char *)C), Ci, Cj, Cd );
484  }
485 /*
486 * Restore the BLACS topologies when necessary.
487 */
488  if( ForceTop )
489  {
490  rtopsave = *PB_Ctop( &ctxt, &OpR, ROW, &rtopsave );
491  ctopsave = *PB_Ctop( &ctxt, &OpC, COLUMN, &ctopsave );
492  }
493 /*
494 * End of PCSYRK
495 */
496 }
TOP_SRING
#define TOP_SRING
Definition: PBblacs.h:54
ROW
#define ROW
Definition: PBblacs.h:46
MB_
#define MB_
Definition: PBtools.h:43
TOP_DEFAULT
#define TOP_DEFAULT
Definition: PBblacs.h:51
PB_Cwarn
void PB_Cwarn()
NB_
#define NB_
Definition: PBtools.h:44
COLUMN
#define COLUMN
Definition: PBblacs.h:45
CSRC_
#define CSRC_
Definition: PBtools.h:46
PBblacs.h
PBtools.h
PBblas.h
CBCAST
#define CBCAST
Definition: PBblacs.h:23
pcsyrk_
void pcsyrk_(F_CHAR_T UPLO, F_CHAR_T TRANS, int *N, int *K, float *ALPHA, float *A, int *IA, int *JA, int *DESCA, float *BETA, float *C, int *IC, int *JC, int *DESCC)
Definition: pcsyrk_.c:26
NOCONJG
#define NOCONJG
Definition: PBblas.h:45
REAL_PART
#define REAL_PART
Definition: pblas.h:135
PBTYP_T::type
char type
Definition: pblas.h:327
PBpblas.h
DLEN_
#define DLEN_
Definition: PBtools.h:48
PB_CpsyrkA
void PB_CpsyrkA()
TRAN
#define TRAN
Definition: PBblas.h:46
NOTRAN
#define NOTRAN
Definition: PBblas.h:44
CTOP_IRING
#define CTOP_IRING
Definition: PBblacs.h:27
PB_CpsyrkAC
void PB_CpsyrkAC()
F_CHAR_T
char * F_CHAR_T
Definition: pblas.h:118
ZERO
#define ZERO
Definition: PBtools.h:66
CTOP_DRING
#define CTOP_DRING
Definition: PBblacs.h:28
pilaenv_
int pilaenv_()
PB_Cplascal
void PB_Cplascal()
CTOP_SRING
#define CTOP_SRING
Definition: PBblacs.h:29
PB_Cabort
void PB_Cabort()
CLOWER
#define CLOWER
Definition: PBblas.h:25
PB_Cplapad
void PB_Cplapad()
F2C_CHAR
#define F2C_CHAR(a)
Definition: pblas.h:120
TOP_GET
#define TOP_GET
Definition: PBblacs.h:50
PB_Ctop
char * PB_Ctop()
ONE
#define ONE
Definition: PBtools.h:64
RSRC_
#define RSRC_
Definition: PBtools.h:45
CNOTRAN
#define CNOTRAN
Definition: PBblas.h:18
PB_CargFtoC
void PB_CargFtoC()
PB_Cchkmat
void PB_Cchkmat()
CFORWARD
#define CFORWARD
Definition: PBblas.h:38
C2F_CHAR
#define C2F_CHAR(a)
Definition: pblas.h:121
CBRATIO
#define CBRATIO
Definition: pblas.h:37
MAX
#define MAX(a_, b_)
Definition: PBtools.h:77
Cblacs_gridinfo
void Cblacs_gridinfo()
PBTYP_T
Definition: pblas.h:325
Mupcase
#define Mupcase(C)
Definition: PBtools.h:83
pblas.h
CUPPER
#define CUPPER
Definition: PBblas.h:26
CTRAN
#define CTRAN
Definition: PBblas.h:20
CCOMBINE
#define CCOMBINE
Definition: PBblacs.h:24
TWO
#define TWO
Definition: PBtools.h:65
CBACKWARD
#define CBACKWARD
Definition: PBblas.h:39
CTXT_
#define CTXT_
Definition: PBtools.h:38
IMAG_PART
#define IMAG_PART
Definition: pblas.h:136
PB_Cctypeset
PBTYP_T * PB_Cctypeset()
Definition: PB_Cctypeset.c:19
PBTYP_T::zero
char * zero
Definition: pblas.h:331
DNROC
#define DNROC(n_, nb_, p_)
Definition: PBtools.h:111