SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
All Classes Files Functions Variables Typedefs Macros
pcgeadd_.c
Go to the documentation of this file.
1/* ---------------------------------------------------------------------
2*
3* -- PBLAS routine (version 2.0) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* April 1, 1998
7*
8* ---------------------------------------------------------------------
9*/
10/*
11* Include files
12*/
13#include "pblas.h"
14#include "PBpblas.h"
15#include "PBtools.h"
16#include "PBblacs.h"
17#include "PBblas.h"
18
19#ifdef __STDC__
20void pcgeadd_( F_CHAR_T TRANS, Int * M, Int * N,
21 float * ALPHA,
22 float * A, Int * IA, Int * JA, Int * DESCA,
23 float * BETA,
24 float * C, Int * IC, Int * JC, Int * DESCC )
25#else
26void pcgeadd_( TRANS, M, N, ALPHA, A, IA, JA, DESCA, BETA, C, IC, JC, DESCC )
27/*
28* .. Scalar Arguments ..
29*/
30 F_CHAR_T TRANS;
31 Int * IA, * IC, * JA, * JC, * M, * N;
32 float * ALPHA, * BETA;
33/*
34* .. Array Arguments ..
35*/
36 Int * DESCA, * DESCC;
37 float * A, * C;
38#endif
39{
40/*
41* Purpose
42* =======
43*
44* PCGEADD adds a matrix to another
45*
46* sub( C ) := beta*sub( C ) + alpha*op( sub( A ) )
47*
48* where
49*
50* sub( C ) denotes C(IC:IC+M-1,JC:JC+N-1), and, op( X ) is one of
51*
52* op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ).
53*
54* Thus, op( sub( A ) ) denotes A(IA:IA+M-1,JA:JA+N-1) if TRANS = 'N',
55* A(IA:IA+N-1,JA:JA+M-1)' if TRANS = 'T',
56* conjg(A(IA:IA+N-1,JA:JA+M-1)') if TRANS = 'C'.
57*
58* Alpha and beta are scalars, sub( C ) and op( sub( A ) ) are m by n
59* submatrices.
60*
61* Notes
62* =====
63*
64* A description vector is associated with each 2D block-cyclicly dis-
65* tributed matrix. This vector stores the information required to
66* establish the mapping between a matrix entry and its corresponding
67* process and memory location.
68*
69* In the following comments, the character _ should be read as
70* "of the distributed matrix". Let A be a generic term for any 2D
71* block cyclicly distributed matrix. Its description vector is DESC_A:
72*
73* NOTATION STORED IN EXPLANATION
74* ---------------- --------------- ------------------------------------
75* DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
76* CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
77* the NPROW x NPCOL BLACS process grid
78* A is distributed over. The context
79* itself is global, but the handle
80* (the integer value) may vary.
81* M_A (global) DESCA[ M_ ] The number of rows in the distribu-
82* ted matrix A, M_A >= 0.
83* N_A (global) DESCA[ N_ ] The number of columns in the distri-
84* buted matrix A, N_A >= 0.
85* IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
86* block of the matrix A, IMB_A > 0.
87* INB_A (global) DESCA[ INB_ ] The number of columns of the upper
88* left block of the matrix A,
89* INB_A > 0.
90* MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
91* bute the last M_A-IMB_A rows of A,
92* MB_A > 0.
93* NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
94* bute the last N_A-INB_A columns of
95* A, NB_A > 0.
96* RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
97* row of the matrix A is distributed,
98* NPROW > RSRC_A >= 0.
99* CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
100* first column of A is distributed.
101* NPCOL > CSRC_A >= 0.
102* LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
103* array storing the local blocks of
104* the distributed matrix A,
105* IF( Lc( 1, N_A ) > 0 )
106* LLD_A >= MAX( 1, Lr( 1, M_A ) )
107* ELSE
108* LLD_A >= 1.
109*
110* Let K be the number of rows of a matrix A starting at the global in-
111* dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
112* that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
113* receive if these K rows were distributed over NPROW processes. If K
114* is the number of columns of a matrix A starting at the global index
115* JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
116* lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
117* these K columns were distributed over NPCOL processes.
118*
119* The values of Lr() and Lc() may be determined via a call to the func-
120* tion PB_Cnumroc:
121* Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
122* Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
123*
124* Arguments
125* =========
126*
127* TRANS (global input) CHARACTER*1
128* On entry, TRANS specifies the form of op( sub( A ) ) to be
129* used in the matrix addition as follows:
130*
131* TRANS = 'N' or 'n' op( sub( A ) ) = sub( A ),
132*
133* TRANS = 'T' or 't' op( sub( A ) ) = sub( A )',
134*
135* TRANS = 'C' or 'c' op( sub( A ) ) = conjg( sub( A )' ).
136*
137* M (global input) INTEGER
138* On entry, M specifies the number of rows of the submatrix
139* sub( C ) and the number of columns of the submatrix sub( A ).
140* M must be at least zero.
141*
142* N (global input) INTEGER
143* On entry, N specifies the number of columns of the submatrix
144* sub( C ) and the number of rows of the submatrix sub( A ). N
145* must be at least zero.
146*
147* ALPHA (global input) COMPLEX
148* On entry, ALPHA specifies the scalar alpha. When ALPHA is
149* supplied as zero then the local entries of the array A
150* corresponding to the entries of the submatrix sub( A ) need
151* not be set on input.
152*
153* A (local input) COMPLEX array
154* On entry, A is an array of dimension (LLD_A, Ka), where Ka is
155* at least Lc( 1, JA+M-1 ). Before entry, this array contains
156* the local entries of the matrix A.
157*
158* IA (global input) INTEGER
159* On entry, IA specifies A's global row index, which points to
160* the beginning of the submatrix sub( A ).
161*
162* JA (global input) INTEGER
163* On entry, JA specifies A's global column index, which points
164* to the beginning of the submatrix sub( A ).
165*
166* DESCA (global and local input) INTEGER array
167* On entry, DESCA is an integer array of dimension DLEN_. This
168* is the array descriptor for the matrix A.
169*
170* BETA (global input) COMPLEX
171* On entry, BETA specifies the scalar beta. When BETA is
172* supplied as zero then the local entries of the array C
173* corresponding to the entries of the submatrix sub( C ) need
174* not be set on input.
175*
176* C (local input/local output) COMPLEX array
177* On entry, C is an array of dimension (LLD_C, Kc), where Kc is
178* at least Lc( 1, JC+N-1 ). Before entry, this array contains
179* the local entries of the matrix C.
180* On exit, the entries of this array corresponding to the local
181* entries of the submatrix sub( C ) are overwritten by the
182* local entries of the m by n updated submatrix.
183*
184* IC (global input) INTEGER
185* On entry, IC specifies C's global row index, which points to
186* the beginning of the submatrix sub( C ).
187*
188* JC (global input) INTEGER
189* On entry, JC specifies C's global column index, which points
190* to the beginning of the submatrix sub( C ).
191*
192* DESCC (global and local input) INTEGER array
193* On entry, DESCC is an integer array of dimension DLEN_. This
194* is the array descriptor for the matrix C.
195*
196* -- Written on April 1, 1998 by
197* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
198*
199* ---------------------------------------------------------------------
200*/
201/*
202* .. Local Scalars ..
203*/
204 char DirA, DirC, ctop, rtop;
205 Int Ai, Aj, Ci, Cj, TrA, ctxt, info, mycol, myrow, npcol, nprow,
206 notran;
207/*
208* .. Local Arrays ..
209*/
210 Int Ad[DLEN_], Cd[DLEN_];
211/* ..
212* .. Executable Statements ..
213*
214*/
215 notran = ( ( TrA = Mupcase( F2C_CHAR( TRANS )[0] ) ) == CNOTRAN );
216 PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
217 PB_CargFtoC( *IC, *JC, DESCC, &Ci, &Cj, Cd );
218#ifndef NO_ARGCHK
219/*
220* Test the input parameters
221*/
222 Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
223 if( !( info = ( ( nprow == -1 ) ? -( 801 + CTXT_ ) : 0 ) ) )
224 {
225 if( ( !notran ) && ( TrA != CTRAN ) && ( TrA != CCOTRAN ) )
226 {
227 PB_Cwarn( ctxt, __LINE__, "PCGEADD", "Illegal TRANS = %c\n", TrA );
228 info = -1;
229 }
230 if( notran )
231 PB_Cchkmat( ctxt, "PCGEADD", "A", *M, 2, *N, 3, Ai, Aj, Ad, 8,
232 &info );
233 else
234 PB_Cchkmat( ctxt, "PCGEADD", "A", *N, 3, *M, 2, Ai, Aj, Ad, 8,
235 &info );
236 PB_Cchkmat( ctxt, "PCGEADD", "C", *M, 2, *N, 3, Ci, Cj, Cd, 13, &info );
237 }
238 if( info ) { PB_Cabort( ctxt, "PCGEADD", info ); return; }
239#endif
240/*
241* Quick return if possible
242*/
243 if( ( *M == 0 ) || ( *N == 0 ) ||
244 ( ( ALPHA[REAL_PART] == ZERO && ALPHA[IMAG_PART] == ZERO ) &&
245 ( BETA [REAL_PART] == ONE && BETA [IMAG_PART] == ZERO ) ) )
246 return;
247/*
248* And when alpha is zero
249*/
250 if( ( ALPHA[REAL_PART] == ZERO ) && ( ALPHA[IMAG_PART] == ZERO ) )
251 {
252 if( ( BETA[REAL_PART] == ZERO ) && ( BETA[IMAG_PART] == ZERO ) )
253 {
254 PB_Cplapad( PB_Cctypeset(), ALL, NOCONJG, *M, *N, ((char *)BETA),
255 ((char *)BETA), ((char *) C), Ci, Cj, Cd );
256 }
257 else
258 {
259 PB_Cplascal( PB_Cctypeset(), ALL, NOCONJG, *M, *N, ((char *)BETA),
260 ((char * )C), Ci, Cj, Cd );
261 }
262 return;
263 }
264/*
265* Start the operations
266*/
267/*
268* This operation mainly involves point-to-point send and receive communication.
269* There is therefore no particular BLACS topology to recommend. Still, one can
270* choose the main loop direction in which the operands will be added. This
271* selection is based on the current setting for the BLACS broadcast operations.
272*/
273 if( notran )
274 {
275 rtop = *PB_Ctop( &ctxt, BCAST, ROW, TOP_GET );
276 ctop = *PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET );
277
278 if( *M <= *N )
279 {
280 DirA = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD );
281 DirC = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD );
282 }
283 else
284 {
285 DirA = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD );
286 DirC = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD );
287 }
288 PB_Cpgeadd( PB_Cctypeset(), &DirA, &DirC, NOCONJG, *M, *N,
289 ((char *) ALPHA), ((char *) A), Ai, Aj, Ad,
290 ((char *) BETA), ((char *) C), Ci, Cj, Cd );
291 }
292 else if( TrA == CTRAN )
293 {
294 PB_Cptran( PB_Cctypeset(), NOCONJG, *M, *N, ((char *) ALPHA),
295 ((char *) A), Ai, Aj, Ad, ((char *) BETA), ((char *) C),
296 Ci, Cj, Cd );
297 }
298 else
299 {
300 PB_Cptran( PB_Cctypeset(), CONJG, *M, *N, ((char *) ALPHA),
301 ((char *) A), Ai, Aj, Ad, ((char *) BETA), ((char *) C),
302 Ci, Cj, Cd );
303 }
304/*
305* End of PCGEADD
306*/
307}
#define Int
Definition Bconfig.h:22
#define REAL_PART
Definition pblas.h:139
#define F2C_CHAR(a)
Definition pblas.h:124
#define IMAG_PART
Definition pblas.h:140
char * F_CHAR_T
Definition pblas.h:122
#define TOP_GET
Definition PBblacs.h:50
#define COLUMN
Definition PBblacs.h:45
#define ROW
Definition PBblacs.h:46
void Cblacs_gridinfo()
#define BCAST
Definition PBblacs.h:48
#define CTOP_DRING
Definition PBblacs.h:28
#define CONJG
Definition PBblas.h:47
#define ALL
Definition PBblas.h:50
#define CBACKWARD
Definition PBblas.h:39
#define NOCONJG
Definition PBblas.h:45
#define CNOTRAN
Definition PBblas.h:18
#define CTRAN
Definition PBblas.h:20
#define CCOTRAN
Definition PBblas.h:22
#define CFORWARD
Definition PBblas.h:38
#define pcgeadd_
Definition PBpblas.h:153
#define CTXT_
Definition PBtools.h:38
void PB_Cabort()
#define ONE
Definition PBtools.h:64
void PB_Cptran()
void PB_Cchkmat()
void PB_Cwarn()
char * PB_Ctop()
void PB_Cplapad()
void PB_Cplascal()
void PB_Cpgeadd()
void PB_CargFtoC()
PBTYP_T * PB_Cctypeset()
#define ZERO
Definition PBtools.h:66
#define Mupcase(C)
Definition PBtools.h:83
#define DLEN_
Definition PBtools.h:48