
PLTMG:
A Software Package
for Solving Elliptic Partial
Differential Equations

Users’ Guide 12.0

Randolph E. Bank

Department of Mathematics
University of California at San Diego
La Jolla, California 92093-0112

June, 2016

ii PLTMG USERS’ GUIDE 12.0

Copyright (c) 2016, by the author.

This work was supported by the National Science Foundation
under grants DMS-1318480, DMS-1345103, and MRI-0821816.

This software is made available for research and instructional use only. You may copy
and use this software without charge for these non-commercial purposes, provided that
the copyright notice and associated text is reproduced on all copies. For all other uses
(including distribution of modified versions), please contact the author. This software
is provided “as is”, without any expressed or implied warranty. In particular, the
author does not make any representation or warranty of any kind concerning the
fitness of this software for any particular purpose.

iv PLTMG USERS’ GUIDE 12.0

Contents

Preface ix

1 Introduction 1
1.1 Problem Specification. 1

1.1.1 Approximation Spaces. 2
1.1.2 Elliptic Boundary Value Problem. 3
1.1.3 Obstacle Problem. 3
1.1.4 Continuation Problem. 4
1.1.5 Parameter Identification Problem. 4
1.1.6 Optimal Control Problem. 5

1.2 Main Subroutines . 6
1.3 Installation. 7

2 Data Structures 9
2.1 Overview. 9
2.2 Edge Definitions . 10

2.2.1 Curved Edges – Circular Arcs 10
2.2.2 Curved Edges – Parametric 11

2.3 The Triangulation. 13
2.4 The Skeleton. 14
2.5 Finite Element Data Structures. 19
2.6 Parallel Processing Data Structure. 21
2.7 Parameter Arrays. 22
2.8 Coefficient Functions. 28
2.9 Sparse Matrix Storage. 33

3 Mesh Generation 37
3.1 Overview. 37
3.2 Creating a Triangulation from a Skeleton. 38
3.3 A Posteriori Error Estimates. 41
3.4 Adaptive Mesh Refinement and Unrefinement. 43

3.4.1 Procedure Refine 44
3.4.2 Procedure Unrefine 45
3.4.3 h Refinement . 46

v

vi Contents

3.4.4 h Unrefinement . 47
3.4.5 p Refinement . 48
3.4.6 p Unrefinement . 48

3.5 Adaptive Mesh Smoothing. 48
3.6 Uniform Refinement. 49

3.6.1 h Uniform Refinement 50
3.6.2 p Uniform Refinement 50

3.7 An Example . 51
3.8 Parallel Adaptive Methods. 51

3.8.1 Mesh Partitioning. 54
3.8.2 Reconciling the Mesh. 56

4 Equation Solution 59
4.1 Overview. 59
4.2 Elliptic Boundary Value Problems. 60
4.3 Linear Solvers. 62
4.4 Domain Decomposition Solver 65
4.5 Obstacle Problems. 66
4.6 Continuation Problems. 68
4.7 Parameter Identification Problems. 74
4.8 Optimal Control Problems. 78

5 Graphics 83
5.1 Overview. 83
5.2 Subroutine TRIPLT. 84

5.2.1 Surface Plots. 87
5.2.2 Vector Plots. 88
5.2.3 Parameters RMAG, CENX, and CENY. 88
5.2.4 Parameters ISCALE, LINES, NUMBRS, and MPIRGN. 89
5.2.5 Parameters ICRSN and ITRGT. 89
5.2.6 Some Algorithmic Details. 91

5.3 Subroutine INPLT. 91
5.3.1 Triangle Plots. 92
5.3.2 Skeleton Plots. 93

5.4 Subroutine GPHPLT. 94
5.4.1 Iteration Information. 94
5.4.2 Timing Statistics. 97
5.4.3 Continuation Path. 98
5.4.4 Parallel Statistics 98
5.4.5 Error Estimates. 98
5.4.6 Displaying Data Arrays. 99

6 Test Driver 101
6.1 Overview. 101
6.2 Terminal Mode. 102
6.3 X-Windows Mode. 104

Contents vii

6.4 Batch Mode. 107
6.5 Parallel Processing . 107
6.6 Array Dimensions and Initialization. 108
6.7 Reading and Writing Files. 109
6.8 Journal Files. 110
6.9 Shell Command. 110
6.10 Subroutine USRCMD. 110
6.11 Subroutine GDATA. 112
6.12 Machine Dependent Routines. 112

6.12.1 Arithmetic Specification. 112
6.12.2 Timing Routine. 113
6.12.3 Graphics Interface. 114
6.12.4 X-Windows Interface. 117
6.12.5 MPI Interface . 117

7 Test Problems 119
7.1 Overview. 119
7.2 Test Problem CIRCLE. 119
7.3 Test Problem SQUARE. 120
7.4 Test Problem DOMAINS. 122
7.5 Test Problem NACA. 122
7.6 Test Problem JCN. 124
7.7 Test Problem OB. 125
7.8 Test Problem MNSURF. 126
7.9 Test Problem BURGER. 126
7.10 Test Problem BATTERY. 127
7.11 Test Problem CONTROL. 127
7.12 Test Problem IDENT. 128
7.13 Test Problem BOX. 129
7.14 Test Problem MESSAGE. 129
7.15 Test Problem USMAP. 130

Bibliography 133

Index 139

viii Contents

Preface

Many people have made contributions to the development of this version of PLTMG;
I am indebted to them all for their help. The original grid refinement algorithms
used in PLTMG were derived in 1976 as joint work with Todd Dupont of the Uni-
versity of Chicago. The approximate Newton strategies incorporated in the present
version of PLTMG represent joint work with Donald J. Rose. The gradient recov-
ery and a posteriori error estimation procedures are joint work with Jinchao Xu of
Pennsylvania State University and Bin Zheng of Pacific Northwest National Labora-
tory. The algorithms used in the pseudo-arclength continuation procedures are joint
work with Tony Chan of the Hong Kong University of Science and Technology and
Hans Mittelmann of Arizona State University. The interior point algorithms used
in the optimization problems treated in this version are joint work with Philip Gill
of University of California at San Diego. The adaptive mesh smoothing algorithms
are joint work with R. Kent Smith. The hp refinement algorithms and associated
data structures are joint work with Hieu Nguyen of the Universitat Politècnica De
Catalunya and Chris Deotte of the University of California at San Diego. The
load balance algorithms for parallel computations are also joint work with Chris
Deotte. The X-Windows interface and many of the graphics enhancements were
jointly developed with Michael Holst of the University of California at San Diego.
The parallel adaptive paradigm is joint work with Michael Holst. The parallel
domain decomposition solver is joint work with Shaoying Lu of the University of
California at San Diego and Panayot Vassilevski of Lawrence Livermore National
Laboratory. The dual function used for parallel adaptive meshing is joint work
with Jeffrey Ovall of Portland State University. Many people made contributions
to the test problems, reported bugs and suggested improvements that have been
incorporated in the current version.

This version of PLTMG was supported by the National Science Foundation
through grants DMS-1318480 and DMS-1345013 (University of California at San
Diego). The UCSD Scicomp Beowulf cluster was built using funds provided by the
National Science Foundation through MRI-0821816.

University of California at San Diego Randolph E. Bank
June, 2016

ix

x PLTMG USERS’ GUIDE 12.0

Chapter 1

Introduction

1.1 Problem Specification.
Consider the elliptic boundary value problem

−∇ · a(x, y, u,∇u, λ) + f(x, y, u,∇u, λ) = 0 in Ω, (1.1)

with boundary conditions

u = g2(x, y, λ) on ∂Ω2,

a·n = g1(x, y, u, λ) on ∂Ω1, (1.2)

u, a·n continuous on ∂Ω0.

Here Ω is a bounded region in R2, n is the unit normal, a is the vector (a1, a2)t,
a1, a2, f , g1, and g2 are scalar functions. ∂Ω0 is a portion of ∂Ω where periodic
boundary conditions are applied. In some problems solved by PLTMG, the param-
eter λ is not used, while in others λ ∈ Rk, k ≥ 1, is a vector of scalar parameters
or λ ∈ H1(Ω), where H1(Ω) denotes the usual Sobolev space. Let

H1
p = {φ ∈ H1(Ω) |φ is continuous on ∂Ω0},
H1
g = {φ ∈ H1

p |φ = g2 on ∂Ω2},
H1
e = {φ ∈ H1

p |φ = 0 on ∂Ω2}.

Then the weak form of (1.1)-(1.2) is: find u ∈ H1
g such that

a(u, v) = 0 for all v ∈ H1
e, (1.3)

where

a(u, v) =

∫
Ω

a(u,∇u, λ) · ∇v + f(u,∇u, λ)v dx dy −
∫
∂Ω1

g1(u, λ)v ds. (1.4)

1

2 PLTMG USERS’ GUIDE 12.0

In some problems solved by PLTMG, a functional ρ(u, λ) plays an important
role. Functionals we consider are of the form

ρ(u, λ) =

∫
Ω

p1(x, y, u,∇u, λ) dx dy +

∫
Γ

p2(x, y, u,∇u, λ) ds, (1.5)

where p1 and p2 are scalar functions. Here Γ = ∂Ω∪Γ0, where Γ0 consists of certain
internal curves specified by the user.

This version of the PLTMG package addresses five major problem classes.
These are briefly described below.

1.1.1 Approximation Spaces.

PLTMG is based on a family of conforming C0 finite element spaces. Let T denote
a triangulation of Ω and letM be the space of C0 piecewise polynomials associated
with T . In this version of PLTMG, the degree of the polynomial can vary element
by element. The maximum degree allowed at present is p = 9, a condition imposed
by the availability of suitable quadrature formulas.1 PLTMG represents such a
piecewise polynomial using the standard Lagrange nodal basis; a function can then
be specified by giving its values at the principle lattice points of the element, as
illustrated in Figure 1.1 for the cases 1 ≤ p ≤ 3.

�
�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A
A

y y

y

�
�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A
A

y y

y

y
y y

�
�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A
A

y y

y

y y

y y
y yy

Figure 1.1. Nodal degrees of freedom for the continuous piecewise linear
element, p = 1 (left), the continuous piecewise quadratic element, p = 2 (middle),
and the continuous piecewise cubic element, p = 3 (right).

When two elements of different degrees share a common edge, the element of
lower degree becomes a transition element. If such a element is of degree p, sharing
an edge with an element of degree q > p, the element contains all polynomials
of degree p plus some additional polynomials of degree q, which allow the overall
finite element space to remain conforming. In particular, along the shared edge, the
degrees of freedom correspond to those of the higher degree element. Some examples
are given in Figure 1.2. Finally, PLTMG allows the use of isoparametric versions

1PLTMG uses quadrature formulas given in Zhang, Cui, and Liu [64].

1.1. Problem Specification. 3

�
�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A
A

y y

y

y y
y y

�
�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A
A

y y y y

y
y

y

y

yyyy
y

Figure 1.2. Nodal degrees of freedom for the a quadratic transition ele-
ment with a cubic edge (left), and a cubic transition element with one edge of degree
four and one edge of degree five (right).

of this family of Lagrange elements to address problems with curved boundaries or
interfaces.

1.1.2 Elliptic Boundary Value Problem.

For this problem, PLTMG solves a discrete analog of (1.3). The parameter λ does
not play a role in this problem. Let I : H1(Ω) → M denote continuous piecewise
polynomial interpolation operator that interpolates at the degrees of freedom of T .
Then

Mp = {φ ∈M|φ is continuous on ∂Ω0},
Mg = {φ ∈Mp |φ = I(g2) on ∂Ω2},
Me = {φ ∈Mp |φ = 0 on ∂Ω2}.

The discrete equations solved by PLTMG are formulated as follows: find uh ∈Md

such that
a(uh, v) = 0 for all v ∈Me. (1.6)

1.1.3 Obstacle Problem.

The second class of problems addressed by PLTMG are the subset of variational
inequalities known as obstacle problems. Let

K = {φ ∈ H1
g |u ≤ φ ≤ u}.

The obstacle problem is formulated as

min
u∈K

ρ(u) (1.7)

where ρ is a functional of the form (1.5). The parameter λ is not used in this
problem. Implicit in our formulation of this problem is an assumption that the

4 PLTMG USERS’ GUIDE 12.0

Frechet derivative of ρ corresponds to an elliptic boundary problem of the form
(1.3). We also assume that the bound constraints are consistent with the boundary
conditions.

The discrete form of this problem is as follows. Let

Kh = {φ ∈Mg | I(u) ≤ φ ≤ I(u)}.

We then seek uh ∈ Kh that satisfies

min
uh∈Kh

ρ(uh) (1.8)

1.1.4 Continuation Problem.

Continuation problems addressed by PLTMG are all of the form (1.3), where the
parameter λ ∈ R. Continuation problems also require a functional ρ as in (1.5).
Solutions of (1.3)–(1.5) in general define a family of curves on the (λ, ρ) plane.
Typical curves are shown in Figure 1.3.

λ

ρ

A

BB

λ

ρ

Figure 1.3. Continuation curves ρ= ρ(λ).

The singular point labeled “A” in the figure on the left is a limit (turning)
point, and those labeled “B” in the figure on the right are bifurcation points (this
figure corresponds to the special case of a linear eigenvalue problem). The purpose
of the continuation process is to compute solutions (u, λ) corresponding to points
on these curves.

PLTMG provides a suite of options for solving continuation problems. Among
them are options for following a solution curve to a target value in λ or ρ, locating
limit and bifurcation points, and switching branches at bifurcation points. Because
some problems might have more than one parameter of interest, PLTMG also has
options for switching parameters and functionals (changing the definitions of λ and
ρ) during the calculation, as a means of exploring higher dimensional spaces.

1.1.5 Parameter Identification Problem.

In this problem, a partial differential equation of the form (1.3) appears as a con-
straint in an optimization problem. Here we seek λ ∈ Rk, 1 ≤ k ≤ 10, and u ∈ Hg

1.1. Problem Specification. 5

that satisfy
min ρ(u, λ) (1.9)

subject to the constraint (1.3) and the simple bounds

λj ≤ λj ≤ λj , (1.10)

for 1 ≤ j ≤ k. In addition to appearing within the coefficients of the partial
differential equation and the boundary conditions, parameters λj can be used to
describe the shape of the boundary of Ω or some internal interface. This allows the
solution of problems where certain geometric properties of Ω are to be optimized.

We define the Lagrangian

L(u, v, λ) = ρ(u, λ) + a(u, v), (1.11)

where v ∈ He is a Lagrange multiplier. We can solve the optimization problem by
seeking stationary points of L(u, v, λ) constrained by the simple bounds (1.10).

In the discretized problem, we seek uh ∈ Mg, a discrete Lagrange multiplier
vh ∈ Me, and λh ∈ Rk that correspond to a stationary point of L(uh, vh, λh),
constrained by the simple bounds

λj ≤ λh,j ≤ λj , (1.12)

for 1 ≤ j ≤ k.

1.1.6 Optimal Control Problem.

This problem is very similar to the parameter identification problem, except now
λ ∈ H1(Ω) (or perhaps some weaker space where pointwise values of (1.14) below
are defined). Thus we seek u ∈ Hg and λ ∈ H1(Ω) that satisfy

min ρ(u, λ) (1.13)

subject to the constraint (1.3) and the simple bounds

λ(x, y) ≤ λ ≤ λ(x, y) (1.14)

for (x, y) ∈ Ω. As before, we define the Lagrangian

L(u, v, λ) = ρ(u, λ) + a(u, v), (1.15)

where v ∈ He is a Lagrange multiplier. We seek stationary points of L(u, v, λ)
constrained by the simple bounds (1.14).

In the discretized problem, we seek uh ∈ Mg, a discrete Lagrange multiplier
vh ∈ Me, and λh ∈ M that correspond to a stationary point of L(uh, vh, λh).
constrained by the simple bounds

I(λ) ≤ λh ≤ I(λ). (1.16)

Inequalities (1.16) are imposed only at the nodes of each element in the mesh.

6 PLTMG USERS’ GUIDE 12.0

1.2 Main Subroutines
The software package consists of five primary subroutines. These main routines
and their functions are summarized in Table 1.1. The package uses two basic data
structures to specify the domain Ω: the triangulation and the skeleton. Loosely
speaking, a triangulation specifies the domain Ω as the union of triangles. A skeleton
specifies the domain as the union of one or more subdomains and requires only a
description of the boundary of each subdomain. The user can specify the domain
as either a triangulation or a skeleton. Specifying a triangulation generally requires
less data only for simple domains that can be triangulated with very few triangles.
If the domain has a complicated geometry or has internal interfaces that the user
would like the triangulation to respect, then it is usually easier to specify the domain
as a skeleton. Both data structures are documented in Chapter 2.

Subroutine Main Function

TRIGEN Mesh generation and modification
PLTMG Solve partial differential equation
TRIPLT Display solution or related function
INPLT Display input data
GPHPLT Display performance statistics

Table 1.1. The main subroutines in the package.

Subroutine TRIGEN is mainly concerned with transforming the data struc-
tures defining the domain. TRIGEN also provides a posteriori error estimates for
the solution in the H1(Ω) and L2(Ω) norms. TRIGEN provides options for creating
a triangulation from a skeleton, and adaptively modifying the triangulation data
structure. Options for h, p and hp adaptive refinement and coarsening, as well as
mesh moving (r adaptivity) are provided. TRIGEN also provides options for vari-
ous tasks related to parallel processing, namely partitioning the mesh, broadcasting
a given mesh to all processors, and reconciling a fine mesh distributed among several
processors. TRIGEN is documented in Chapter 3.

Subroutine PLTMG uses finite element discretizations based on family of nodal
C0 piecewise polynomial spaces described above, and includes algorithms to address
each of the five problem classes. In the case of parallel processing, PLTMG includes
a domain decomposition solver for each problem class. PLTMG is described in
detail in Chapter 4.

Subroutine TRIPLT provides graphical displays of the solution and other grid
functions. Three-dimensional color surface/contour plots with shading and an ar-
bitrary viewing perspective are available. Subroutine INPLT provides a graphical
display of the mesh data (triangulation or skeleton) defining Ω. Subroutine GPH-
PLT provides a variety of graphical displays of convergence histories, statistical
data, and other interesting output from PLTMG. These routines are described in
detail in Chapter 5.

An elementary interactive test driver, ATEST, is described in Chapter 6. AT-

1.3. Installation. 7

EST provides options for calling each of the main routines, as well as other useful
functions such as writing and reading data files, resetting parameters, and executing
problem specific subroutines provided by the user. Several short machine depen-
dent routines are required for timing, graphics, and specifying the precision of the
floating point number system. These are also described in Chapter 6. In Chapter 7,
the example problem data sets included with the source code are briefly described.

PLTMG was originally conceived as a prototype program to study the the-
oretical and practical aspects of the multigrid iterative method, adaptive grid re-
finement and error estimation procedures, and their interaction. As such, PLTMG
was designed to (formally) handle a wide class of elliptic operators and reasonably
general domains. The boundary of the problem class has expanded as problems
were encountered that required its enlargement to be solved. The problem class
addressed by this version of PLTMG should not be interpreted as the limit of the
class of problems that could be successfully solved by the techniques embodied by
this package. Conversely, one should not assume that every problem (formally)
within this class can be solved using the existing code.

As with other versions of the package, time efficiency is a secondary considera-
tion to robustness, versatility, and ease of maintenance. While PLTMG is probably
not the fastest code that could be used for any particular problem, we believe that
it will deliver reasonable execution times in most environments.

1.3 Installation.
This version of PLTMG is provided as a single version that can be compiled in either
single or double precision, depending on the machine dependent module MTHDEF.
MTHDEF and other machine dependent routines are documented in detail in Sec-
tion 6.12. The majority of the code is machine independent and written to the
specifications of Fortran 90. In particular, it will no longer compile using Fortran
77. Several parts of the package are written to the specifications of ANSI C. The
source code is contained in several files as indicated in Table 1.2. The X-Windows
interface is based on the Motif widget set and can be used only on systems which
support X-Windows. Certain X-Windows libraries must be loaded along with the
PLTMG software. The OpenGL graphics program SG of Michael Holst has been
integrated as one of several available graphics devices. SG is available elsewhere,
and its MALOC library must be loaded along with the PLTMG software. Finally,
the parallel processing options in PLTMG are based on MPI, and the MPI library
must also be loaded in order to resolve all external names.

In MPI is not available or not desired, one can substitute the supplied stub
interface routines. The stub routines are a set of MPI interface routines with all
calls to MPI library functions and subroutines deleted. By using the stub routines
in place of the regular interface, one can create an executable with no unresolved
external references without loading the MPI library. In this case, however, all the
parallel options of PLTMG are disabled.

In a similar fashion, if SG is not available or not desired, one can use the stub
routines in place of standard interface routines. If the stub routines are used, the

8 PLTMG USERS’ GUIDE 12.0

File Contents

mg0.f sets floating point precision
pltmg.f most source code
mgmpi.f (mgmpi stubs.f) MPI interface
mgvio.f (mgvio stubs.f) SG interface
xgui.c (xgui stubs.c) X-Windows interface
mgxdr.c XDR interface

atest.f test driver program

battery.f, box.f, burger.f, circle.f, control.f
domains.f, ident.f, jcn.f, message.f test problem data sets
mnsurf.f, naca.f, ob.f, square.f, usmap.f

Table 1.2. Files in the basic distribution.

MALOC library is not needed, but the SG OpenGL and BH file graphics devices are
disabled. Finally, if the X-Windows libraries are not available, one can replace the
X-Windows interface with stub routines. In this case, the graphical user interface
and the corresponding X-Windows graphics devices are all disabled, but the X-
Windows libraries are not needed.

Chapter 2

Data Structures

2.1 Overview.
In this chapter, we define the data structures used in the PLTMG package. There
are two basic data structures that define the domain Ω: the skeleton and the tri-
angulation. Basic to both data structures is the concept of an edge. The various
subregions that define a skeleton are described by a sequence of edges that traverse
its boundary in a counter clockwise fashion. In the case of a triangulation, edges
on the boundary ∂Ω need to be explicitly defined in order to assign boundary con-
ditions. Additional internal edges can be defined if they have some attribute of
interest; e.g., they are curved. Other internal edges are defined implicitly by the
definitions of the triangles that comprise the triangulation. In the case of parallel
processing, PLTMG explicitly defines edge data structures for all edges lying on the
internal interface system generated by the partitioning of Ω among the processors.
The edge related data structures are defined in Section 2.2. The triangulation and
skeleton are defined in Sections 2.3 and 2.4, respectively.

The next few sections define several internal data structures used by PLTMG.
The user is never asked to provide data for these structures; they are all computed
internally by various routines in the package. However, their contents may still be
of interest to the user. Data structures that track degrees of freedom associated
with individual elements, as well as the solution and other finite element functions,
are described in Section 2.5. The IPATH data structure describes relationships
between the subdomains associated with different processors in a parallel adaptive
calculation. It is described in Section 2.6.

The arrays IP, RP, and SP contain many scalar parameters, switches, control
variables, flags, and pointers, some that must be specified by the user and others
that are internally computed but may be of interest to the user. These are described
in Section 2.7. Finally, the coefficient functions defining the differential operator
and functional ρ in (1.1)–(1.3), and the optional function QXY used by TRIGEN
and TRIPLT, are described in Section 2.8.

9

10 PLTMG USERS’ GUIDE 12.0

2.2 Edge Definitions
In this section, we define geometry data structures common to both the triangula-
tion and the skeleton. In both cases, the domain is described by a list of vertices vi,
1 ≤ i ≤ NVF, and edges bi, 1 ≤ i ≤ NBF. In the case of of a triangulation, the vi
enumerate all vertices of all triangles that comprise the triangulation. In the case of
a skeleton, the vi enumerate the vertices of all regions that comprise the skeleton.
In both cases, the (x, y) coordinates of the vertices are given in the arrays VX and
VY . In particular,

vI = (xI , yI) = (VX(I),VY(I)), 1 ≤ I ≤ NVF.

Edges are defined in terms of the integer array IBNDRY of size 7×NBF and
the real array SF of size 2×NBF. The latter is used only for curved edges. Curved
edges can be most easily be defined by circular arcs (as in early versions of PLTMG)
or parametrically through the function SXY provided by the user. The definitions
of IBNDRY is given in Table 2.1.

Column I of the IBNDRY array contains information about edge bI . The first
two entries a pointers to the VX and VY arrays and denote the two vertices that
form the endpoints of the edge. The third entry is used to indicate if the edge is
curved, and is described more fully below.

Entry IBNDRY(4,I) describes the type of boundary conditions to be applied,
or if the edge is internal to Ω. A fourth type of edge is a linked edge. Linked edges
occur only in pairs. If bI and bJ are a pair of linked edges, then IBNDRY(4,I) = −J
and IBNDRY(4,J) = −I. Linked edges bI and bJ must be geometrically congruent.
That is, bI must be mapped to bJ using a translation and orthogonal rotation.
Continuity of the solution uh and weak continuity of a ·n is imposed on linked edge
pairs. Thus if bI and bJ are boundary edges, this is equivalent to imposing periodic
boundary conditions. In the course of parallel processing, PLTMG creates edges of
types 3−5. Entries IBNDRY(5,I) and IBNDRY(6,I) are used internally by PLTMG
for parallel processing.

Entry IBNDRY(7,I) contains an integer label for the edge; this user defined la-
bel can be used to uniquely identify a particular edge, or to associate some property
with the edge.

2.2.1 Curved Edges – Circular Arcs

If a triangle has a curved edge, it can be specified as a circular arc or given a para-
metric definition. In the case of a circular arc, one should set IBNDRY(3,I) = 1. The
arc passes through the edge endpoints specified in IBNDRY(1,I) and IBNDRY(2,I)
and its center (xc, yc) is specified in the array SF as

(xc, yc) = (SF(1,I),SF(2,I)).

Because there are generally two such arcs for every pair of endpoints, the shorter
arc is taken to be the correct edge; therefore, one must specify arcs that subtend
(strictly) less than π of arc; π/4 is a reasonable upper bound.

2.2. Edge Definitions 11

array entry definition

IBNDRY(1,I) first endpoint number
IBNDRY(2,I) second endpoint number
IBNDRY(3,I) curved edge switch
IBNDRY(4,I) edge type
IBNDRY(5,I) reserved for parallel processing
IBNDRY(6,I) reserved for parallel processing
IBNDRY(7,I) edge label

IBNDRY definition.

IBNDRY(3,I) edge type

0 Straight edge
1 Curved edge – circular arc
−K Curved edge – parametric

Curved edge types.

IBNDRY(4,I) curved edge type

2 Dirichlet boundary
1 natural boundary
0 internal
−K linked with edge K

3, 4, 5 reserved for parallel processing

Edge type definitions.

Table 2.1. Boundary definitions and data structures.

To simplify data entry, we provide the routine CENTRE for computing the
center of a circle given three points on its boundary. CENTRE is called using the
statement

Call CENTRE(X1, Y1, X2, Y2, X3, Y3, XC, YC)

Here (X1,Y1) and (X2,Y2) are the endpoints of an arc of the circle, and (X3,Y3)
is a third point on the arc (e.g., the midpoint). CENTRE returns the center of the
circle in (XC,YC).

2.2.2 Curved Edges – Parametric

A second way to specify a curved edge is through a parametric representation. Since
there may be several parametric curves, they are indexed by the user. In particular,

12 PLTMG USERS’ GUIDE 12.0

if IBNDRY(3,I) = −K, then the parametric function (qK , rK) is used to define the
edge, where (

x(s)
y(s)

)
=

(
qK(s)
rK(s)

)
, s1 ≤ s ≤ s2.

The point s = s1 corresponds to the first endpoint and s = s2 corresponds to the
second. In this case, the values in column I of the array SF are given by

(s1, s2) = (SF(1,I),SF(2,I)).

The parameterization itself is defined by the user in routine SXY. Subroutines SXY,
has calling sequence

Call SXY(RL, S, ITAG, VALUES)

Here RL = λ is an input array of size NRL giving the current value of the pa-
rameters λ. 1 ≤ NRL ≤ 10 for parameter identification problems, while NRL = 1
for the other classes of problems. The parameter s1 ≤ S ≤ s2 is input specifying
the point where (qK(S), rK(S)) is required. ITAG = K, where K is the input index
of the functional, originally provided by the the user as BNDRY(3,I) = −K.

The output is provided in the array VALUES, a two dimensional array with
2 rows and NRL + 2 columns. To simplify this process, PLTMG supplies a labeled
common block

common /VAL4/ J0, JS, JL

containing a predefined list of integer pointers mapping function and derivative
values to particular entries in the VALUES array. The details of this mapping are
given in Table 2.2.

pointer index VALUES(1, ·) VALUES(2, ·)
J0 = 1 J0 qK rK
JS = 2 JS qK,s rK,s
JL = 3 JL + J − 1 qK,λJ rK,λJ

1 ≤ J ≤ NRL

Table 2.2. VALUES array for subroutine SXY.

It is important to emphasize that the parameterization is assumed to roughly
correspond to arc length along the curved edge. For example, when the edge is
bisected, the “midpoint” (xm, ym) is computed from(

xm
ym

)
=

(
qK((s1 + s2)/2)
rK((s1 + s2)/2)

)
.

Nodes for isoparametric basis functions are computed using a similar formula. The

2.3. The Triangulation. 13

quality of such calculations is thus dependent on these user defined parameteriza-
tions.

2.3 The Triangulation.
In this section, we define the triangulation data structure. Let T denote the tri-
angulation consisting of triangles ti, 1 ≤ i ≤ NTF, vertices vi, 1 ≤ i ≤ NVF, and
edges bi, 1 ≤ i ≤ NBF. Triangles may have curved edges, as described in Sec-
tion 2.2. Curved edges may be on the boundary or in the interior of the region Ω.
The ITNODE data structure is a 5×NTF integer array that defines triangles that
comprise T . The details of this data structure are given in Table 2.3.

array entry definition

ITNODE(1,I) first vertex number
ITNODE(2,I) second vertex number
ITNODE(3,I) third vertex number
ITNODE(4,I) reserved for parallel processing
ITNODE(5,I) element label

Table 2.3. ITNODE definition for a triangulation.

A given triangle tI ∈ T is specified by giving an accounting of its three ver-
tices and by specifying an integer label or tag. The Ith column of the ITNODE
array contains information about tI . The first three entries of ITNODE contain
the three vertex numbers of triangle tI . ITNODE(J,I) = K , for 1 ≤ J ≤ 3, means
(VX(K),VY(K)) is the Jth vertex of tI . The ordering of the vertices of a given trian-
gle is arbitrary and independent of the other triangles.2 Entry ITNODE(4,I) is used
internally by PLTMG in parallel processing, denoting the processor that “owns” tI ;
one can simply initialize ITNODE(4,I) = 0. Entry ITNODE(5,I) contains any user
provided label for tI . Such labels are provided strictly for the convenience of the
user and can be used to identify differing regions or material properties associated
with the element.

For example, consider the circle of radius one with a crack along the positive
x-axis. This domain can be triangulated using NTF = 8 triangles, NVF = 10
vertices, and NBF = 10 boundary edges, 8 of which are curved, as illustrated in
Figure 2.1. Vertices v2 and v10 have the same (x, y) coordinates, but v2 is “above”
the crack and v10 is “below.” Similarly, edge b1 is the top of the crack, while edge
b10 is the bottom. The ordering of vertices, triangles, and edges is arbitrary. In this
example, we will define the curved edges using the parameterization(

x
y

)
=

(
q1(s)
r1(s)

)
=

(
cos(s)
sin(s)

)
.

2PLTMG reorders vertices as necessary to ensure a counterclockwise orientation for elements.

14 PLTMG USERS’ GUIDE 12.0

Figure 2.1. Clockwise, from upper left: example domain; triangle numbers;
vertex numbers; edge numbers.

The data for our example is shown in Table 2.4. In this example, we have chose
to label the triangles in ITNODE(5,I) by the quadrant in the Euclidean plane in
which they lie. In our example, we impose Dirichlet boundary conditions on the
outer boundary of the circle, and also along the top of the crack, and Neumann
boundary conditions on the bottom of the crack. The outer boundary of the circle
is labeled 0, the top of the crack 2, and the bottom of the crack 1.

Several routines in the package check triangulation data structures for common
errors in the data. If found, such errors are reported by setting the parameter
IFLAG as described in Table 2.9.

2.4 The Skeleton.
The skeleton data structure is often the easiest data structure for the user to specify
by hand, especially if the domain has complicated geometry, symmetry, or internal
interfaces. In the skeleton data structure, the domain Ω is viewed as the union
of NTF simply connected subregions Ωi, 1 ≤ i ≤ NTF. The regions need not be
convex, and the case NTF = 1 is not excluded. A shared boundary between two
subregions (an internal interface) will be respected by the triangulation process in
TRIGEN ; that is, the interface will be represented as one or more triangle edges in
the triangulation.

The boundary of each Ωi should be a simple closed curve that does not in-
tersect itself. Thus, for example, if Ω has a hole, adding a single cut between the
outer boundary and the hole will not be adequate. At least two subregions will be

2.4. The Skeleton. 15

I 1 2 3 4 5 6 7 8 9 10

VX(I) 0 1 1/
√

2 0 −1/
√

2 -1 −1/
√

2 0 1/
√

2 1

VY(I) 0 0 1/
√

2 1 1/
√

2 0 −1/
√

2 -1 −1/
√

2 0

The VX and VY arrays. NVF = 10.

I 1 2 3 4 5 6 7 8 9 10

IBNDRY(1,I) 1 2 3 4 5 6 7 8 9 10
IBNDRY(2,I) 2 3 4 5 6 7 8 9 10 1
IBNDRY(3,I) 0 -1 -1 -1 -1 -1 -1 -1 -1 0
IBNDRY(4,I) 2 2 2 2 2 2 2 2 2 1
IBNDRY(5,I) 0 0 0 0 0 0 0 0 0 0
IBNDRY(6,I) 0 0 0 0 0 0 0 0 0 0
IBNDRY(7,I) 2 0 0 0 0 0 0 0 0 1

SF(1,I) – 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 –
SF(2,I) – π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π –

The IBNDRY and SF arrays. NBF = 10.

I 1 2 3 4 5 6 7 8

ITNODE(1,I) 1 1 1 1 1 1 1 1
ITNODE(2,I) 2 3 4 5 6 7 8 9
ITNODE(3,I) 3 4 5 6 7 8 9 10
ITNODE(4,I) 0 0 0 0 0 0 0 0
ITNODE(5,I) 1 1 2 2 3 3 4 4

The ITNODE array. NTF = 8.

Table 2.4. Data structures for a triangulation.

required in this case.
Having decomposed the domain into NTF subregions, we decompose the

boundaries of the subregions into NBF edges bi, 1 ≤ i ≤ NBF. Each edge has
two endpoints νji , 1 ≤ j ≤ 2, and if it is a curved edge, it will have a circle center
or some parameterization. Globally, the vertices are labeled vk, 1 ≤ k ≤ NVF, and
curved edges are indicated as described in Section 2.2. The intersection of any two
edges should be at most one common endpoint.

As an example, we consider the square region with a hole illustrated in Fig-
ure 2.2. In this example, we decompose the region into 2 subregions (NTF = 2),
using 10 vertices (NVF = 10), and 12 edges (NBF = 12) as shown.

Global numbering of the subregions, edges, and vertices is arbitrary. These
arrays for our example domain are shown in Table 2.6. Edges are specified in
IBNDRY as in the case of the triangulation. Descendants of Dirichlet, natural, and

16 PLTMG USERS’ GUIDE 12.0

array entry definition

ITNODE(1,I) first vertex number
ITNODE(2,I) first edge number
ITNODE(3,I) congruent region number
ITNODE(4,I) reserved for parallel processing
ITNODE(5,I) region label

Table 2.5. ITNODE definition for a skeleton.

Figure 2.2. Example domain decomposed into two subregions (left); vertex
numbers (middle); edge numbers (right).

linked edges are included in the output IBNDRY array when Ω is triangulated using
TRIGEN. Descendants of internal edges are retained only if they separate regions
with different labels. Descendant edges inherit the label of the original edge. In our
example, we will assign Dirichlet boundary conditions to the left and right sides and
the bottom of the domain, and natural boundary conditions elsewhere. The four
curved edges are defined by circular arcs of a circle with its center at the origin.
The IBNDRY and SF arrays then have the form given in Table 2.6.

A subregion Ωi, 1 ≤ i ≤ NTF, is defined by an ordered sequence of edges (at
least three) that form its boundary. The sequence is ordered such that the boundary
of Ωi is traversed in a counterclockwise direction (thus providing notions of “inside”
and “outside”). Each edge in the sequence shares exactly one endpoint with the
edge that precedes it and the edge that follows it in the sequence; the first and last
edges in the sequence also share one endpoint. A particular edge can appear only
once in the sequence.

The array ITNODE is used to define the subregions. Column I of ITNODE
corresponds to the region ΩI . Entry ITNODE(1,I) is a global vertex number for
one of the vertices on the boundary of ΩI . Unless ITNODE(3,I) 6= 0 (see below)
the choice of vertex is arbitrary. The second entry, ITNODE(2,I), is the global edge
number of the first edge in a counterclockwise traversal of ΩI , beginning at vertex
vK , where ITNODE(1,I) = K.

Entry ITNODE(3,I) is used to specify certain symmetries the user may wish to

2.4. The Skeleton. 17

I 1 2 3 4 5 6 7 8 9 10

VX(I) -2 -2 0 2 2 0 0 -1 0 1
VY(I) 2 -2 -2 -2 2 2 1 0 -1 0

The VX and VY arrays. NVF = 10.

I 1 2 3 4 5 6 7 8 9 10 11 12

IBNDRY(1,I) 6 1 2 3 4 5 6 7 8 9 7 9
IBNDRY(2,I) 1 2 3 4 5 6 7 8 9 10 10 3
IBNDRY(3,I) 0 0 0 0 0 0 0 1 1 1 1 0
IBNDRY(4,I) 1 2 2 2 2 1 0 1 1 1 1 0
IBNDRY(5,I) 0 0 0 0 0 0 0 0 0 0 0 0
IBNDRY(6,I) 0 0 0 0 0 0 0 0 0 0 0 0
IBNDRY(7,I) 2 1 3 3 1 2 0 4 4 4 4 0

SF(1,I) – – – – – – – 0 0 0 0 –
SF(2,I) – – – – – – – 0 0 0 0 –

The IBNDRY and SF arrays. NBF = 12.

I 1 2

ITNODE(1,I) 1 4
ITNODE(2,I) 2 5
ITNODE(3,I) 0 1
ITNODE(4,I) 0 0
ITNODE(5,I) 1 2

I 1 2

ITNODE(1,I) 1 5
ITNODE(2,I) 2 6
ITNODE(3,I) 0 −1
ITNODE(4,I) 0 0
ITNODE(5,I) 1 2

The ITNODE array for mapping by rotation (left) and by reflection (right).
NTF = 2.

Table 2.6. Skeleton data structures.

impose on the triangulation. Two subregions are congruent if one can be mapped
onto the other using an affine transformation consisting of a translation, an or-
thogonal rotation, and perhaps a simple reflection. If this mapping also induces
one-to-one correspondences between the edges and vertices used to define the re-
gions, then the user can specify that the two regions be triangulated in a similar
fashion.

ITNODE(3,I) = 0 specifies that ΩI can be triangulated independently of
other regions. ITNODE(3,I) = J , 0 < J < I, specifies that ΩI can be mapped
onto ΩJ using just a translation and rotation. ITNODE(3,I) = −J , 0 < J <
I, specifies that ΩI can be mapped onto ΩJ using a translation, rotation, and a
reflection. If ITNODE(3,I) = ±J , then ITNODE(1,I) must correspond to the vertex
on ∂ΩI which is mapped to the vertex corresponding to ITNODE(1,J) on ∂ΩJ . If

18 PLTMG USERS’ GUIDE 12.0

ITNODE(3,I) 6= 0, TRIGEN will map the triangulation generated for ΩJ onto ΩI ,
ensuring the desired symmetry properties of the overall triangulation. Note that this
is not a symmetric relation; ITNODE(3,I) = J does not mean ITNODE(3,J) = I.
In particular, if | ITNODE(3,I) |≥ I, TRIGEN will return in an error condition.

In our example, Ω2 can be mapped onto Ω1 by either rotation or reflection.
We can ensure the triangulation for Ω2 will be similar to that for Ω1, either under
rotation or reflection. The resulting triangulations may be different in the two
cases.3 ITNODE arrays for the two situations are illustrated in Table 2.6. Entry
ITNODE(4,I) is used by PLTMG in parallel processing. Entry ITNODE(5,I) is a
label for the region; all the triangles created in ΩI inherit this label.

We provide the utility subroutine SKLUTL to aid in the creation of the skele-
ton data structures. Subroutine SKLUTL is called using the statement

Call SKLUTL(ISW, VX, VY, SF, ITNODE, IBNDRY, IP,
RP, IFLAG, SXY)

This routine takes as input a skeleton data structure defined VX, VY, SF,
IBNDRY, (except when ISW = 0) ITNODE, and the routine SXY, called if curved
edges are defined by a parameterization. The integers NTF, NBF, and (except when
ISW = 0) NTF should be specified in the IP array, and λ = RL should be specified
in RP if SXY is to be called. The integer ISW specifies the task, as indicated in
Table 2.7.

ISW task

0 create ITNODE array
1 refine long circular arcs
2 determine congruent regions

Table 2.7. The values of ISW.

If ISW = 0, SKLUTL computes all entries of the ITNODE array, given the
remaining arrays in the skeleton data structure (VX, VY, SF, and IBNDRY), and
the parameters NVF, and NBF in the IP array. The value of NTF is returned in
the IP array. The regions are labeled with ITNODE(5,I) = I for 1 ≤ I ≤ NTF,
although these labels can subsequently be reset by the user. Also ITNODE(3,I) = 0
for 1 ≤ I ≤ NTF. If ISW = 1, SKLUTL accepts as input a complete skeleton
description, and divides curved edges defined as circular arcs as necessary to ensure
that all such edges subtend less than π/4 of arc. New edges and vertices are added
as necessary, and the relevant skeleton parameters updated. New values of NBF and
NVF are returned in the IP array. If ISW = 2, SKLUTL accepts as input a complete
skeleton description, and finds congruent regions. The values of ITNODE(3,I) (and
possibly ITNODE(1,I) and ITNODE(2,I)) are reset as necessary. If two regions are

3 We could ensure greater symmetry in the triangulation by decomposing Ω into 4 or 8 congruent
regions instead of 2 and then setting ITNODE(3,I) appropriately.

2.5. Finite Element Data Structures. 19

congruent but the congruence is not unique, as in our example, an arbitrary choice
is made from among the possibilities. Errors are returned in the integer IFLAG as
described in Table 2.9.

Several other routines in the package check skeleton data structures for com-
mon errors in the data. If found, such errors are reported by setting the parameter
IFLAG as described in Table 2.9.

2.5 Finite Element Data Structures.
Several data structures in PLTMG define and maintain the finite element functions
associated with a particular problem. In particular, the 8 × NTF integer array
ITDOF contains information about polynomial spaces on each element, the real
array GF contains the numerical values of the solution and other finite element
functions, and the real array E contains information about the a posteriori error
estimates in each element. These data structures are not defined or initialized by
the user, but it may be of interest for a user to understand their contents.

PLTMG uses local notation to define certain quantities related to a given
element in the mesh. See Figure 2.3. For example, each element locally has vertices
labeled νk, 1 ≤ k ≤ 3. From this viewpoint, the ITNODE array contains a mapping
for these locally defined vertices to globally defined vertices, with νK corresponding
to ITNODE(K, ·) for 1 ≤ K ≤ 3. Edges are locally labeled as in Figure 2.3, with
edge εk opposite vertex νk, 1 ≤ k ≤ 3.

�
�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A
A

ν1 ν2

ν3

ε1ε2

ε3

tI

Figure 2.3. Local notation for element tI .

In the ITDOF array, column I contains information related to element tI .
The first three entries give the global indices for the degrees of freedom associated
with the three vertices of the the element. If the element has an edge with degree
p ≥ 2 there are p − 1 degrees of freedom (bump functions) associated with that
edge. In PLTMG these degrees of freedom are given consecutive global indices,
that either increase or decrease with a counter clockwise traversal of that edge.
Entries 4–6 in column I provide the starting degree of freedom for each edge, with
a sign that indicates whether they increase or decrease. If the element has degree
p ≥ 3 there are (p − 1)(p − 2)/2 degrees of freedom (bubble functions) associated

20 PLTMG USERS’ GUIDE 12.0

array entry definition

ITDOF(1,I) degree of freedom for vertex ν1

ITDOF(2,I) degree of freedom for vertex ν2

ITDOF(3,I) degree of freedom for vertex ν3

ITDOF(4,I) ± first degree of freedom for edge ε1
ITDOF(5,I) ± first degree of freedom for edge ε2
ITDOF(6,I) ± first degree of freedom for edge ε3
ITDOF(7,I) first interior degree of freedom for element tI
ITDOF(8,I) polynomial degrees for element tI

Table 2.8. ITDOF definition.

with the element interior. These are also given consecutive global indices. The
lowest numbered corresponds to the interior node closest to vertex ν1; subsequently
they are numbered “row-by-row;” within each row, degrees of freedom are numbered
“left-to-right” with the lowest number for that row corresponding to the node closest
to edge ε3. The global index for the lowest numbered interior degree of freedom is
given in ITDOF(7,I).

Entry ITDOF(8,I) contains information about the degree of the polynomials
associated with element tI . Let the element itself have degree p0. Each edge εk can
have a different degree pk ≥ p0, 1 ≤ k ≤ 3. In PLTMG, elements and edges can
have degree at most nine.4 These degrees are encoded in ITDOF(8,I) as

ITDOF(8,I) = p0 + 16p1 + 162p2 + 163p3.

The total number of degrees of freedom associated with the finite element
space is NDF. Values for finite element functions are stored in the array GF, with
MAXD ≥ NDF rows and 1 ≤ I ≤ 13 columns, depending on the problem, with
each column associated with a specific finite element function. The definitions for
each problem are given in Table 2.9.

The first column of GF always contains the finite element solution u. If the
problem is solved via parallel computation, then the last column of GF contains the
function ω, which is a locally computed dual function that indicates the influence
of the regions outside of the given processor’s assigned domain on that domain.
For simple pde equations, the user can also specify a functional computed from the
user supplied function ρ. For continuation problems, the tangent vector u̇, as well
as u0 and u̇0 from the previous step, are stored. The vectors ψr and ψ` are the
right and left singular vectors, respectively, associated with the smallest singular
value of the Jacobian (stiffness) matrix; these are used in the determination of
limit and bifurcation points, among other things. Parameter identification and
optimal control problems require a Lagrange multiplier function v. The optimal

4This constraint is due to limitations of available quadrature rules, given by Zhang, Cui, and
Liu in [64], and not to any intrinsic constraint on the spaces themselves.

2.6. Parallel Processing Data Structure. 21

problem 1 2 3 4 5 6 7

simple pde u (ud) (ω)
obstacle problem u (ω)
continuation problem u u0 u̇ u̇0 ψr ψ` (ω)
parameter identification u v uλ1

(ω)
distributed control u v λ (ω)

Table 2.9. GF data structure definitions. Columns labeled I, 1 ≤ I ≤ 7,
refer to the function stored in GF(·, I). Functions appearing within parentheses
are computed only in certain situations. For the parameter identification problem,
columns 2 + J , 1 ≤ J ≤ NRL, contain uλJ and column 3 + NRL contains ω if
present.

control problem also requires the distributed control function λ, and the parameter
identification problem requires NRL vectors uλk for 1 ≤ k ≤ NRL.

The array E contains information about a posteriori error estimates. It has
MAXT ≥ NTF rows and two columns. The first column contains the local error
indicator ηI for element tI , and the second column contains a normalization constant
used in the decision process in hp refinement. We note that information in the E
array is typically modified by various adaptive algorithms in TRIGEN, and the
output from TRIGEN in the E array should be considered unreliable except in the
case when TRIGEN is called to only compute error estimates.

2.6 Parallel Processing Data Structure.
When PLTMG solves a problem using parallel processing, it partitions the domain
Ω into NPROC subdomains ΩI if NPROC processors are used. This creates an
internal interface system Γ; PLTMG creates internal edges as needed such that
every edge in the internal interface system is represented in the IBNDRY array. At
the conclusion of the adaptive process, the global conforming finite element space
needs to be created, and corresponding edges and degrees of freedom on different
processors need to be linked in order to carry out the domain decomposition solve
that computes the final finite element solution on the global mesh.

The integer array IPATH is a data structure jointly computed by all of the
processors; each processor provides a block of data within the IPATH array that
describes its part of the global interface system. In particular, each processor be-
gins its adaptive enrichment starting from the same interface system, consisting of
so-called root edges. Root edges my be bisected (h-refined) or have their degree
increased (p-refined) in potentially arbitrary combinations. The data in the IPATH
array provides a binary tree for each root edge, as well as pointers that indicate the
global edge numbers and degrees of freedom for that edge in that processors own
data structures. Data for different types of nodes in the tree is given in Table 2.10.

The IPATH array has six rows. For all edges in the tree, the first entry

22 PLTMG USERS’ GUIDE 12.0

array entry root root/leaf internal leaf

IPATH(1,I) neighbor neighbor neighbor neighbor
IPATH(2,I) child -edge child -edge
IPATH(3,I) – vertex 1 – vertex 1
IPATH(4,I) – vertex 2 – vertex 2
IPATH(5,I) – ± edge – ± edge
IPATH(6,I) – degree – degree

Table 2.10. IPATH definition – tree section.

(neighbor) is a pointer to the column in IPATH that contains the same edge, but
for the neighbor processor; this is the key that identifies the same physical edge on
different processors. The second entry identifies the (first) child for non-leaf edges
in the tree; these are just pointers to other columns in the IPATH array. The two
children of a bisected edge appear in consecutive columns in IPATH. Leaf entries
have a pointer (-edge) that points to the column corresponding to that edge in the
given processors IBNDRY array; the negative sign is to distinguish it from a child
pointer.

In the domain decomposition solve, interface information corresponding to all
nodes lying on the global interface system must be exchanged via MPI. This is
done using a transient interface data structure, with blocks of data provided by
each processor. Entries 3–6 in the IPATH array for leaf edges provide pointers that
indicate the location in the transient data structure for data corresponding to the
two endpoints, and if the edge degree p ≥ 2, the edge data. The fifth location is
stored as ±edge, with the sign indicating a increase or decrease in index with a
counter clockwise traversal.

The first NPROC + 2 columns of the IPATH data structure contain pointers,
one column for each processor, one column for the global mesh and one column
for the coarse part of the interface of the given processor. These pointers indicate
the blocks of the IPATH array and the shared array for the domain decomposition
solver that are used by the given processor. Note that after the basic IPATH array
is computed jointly by all of the processors, each processor appends a tree section
for the coarse part of its interface to the end of the IPATH array. This information
is different on every processor and is used by the domain decomposition solver.

2.7 Parameter Arrays.
IP, RP, and SP are integer, real, and CHARACTER*80 arrays, respectively, of
length 100 containing various user specified parameters, and internally generated
parameters, switches, flags, and pointers. A list of the currently used locations,
their names, and brief definitions appears in Tables 2.12–2.14. Parameters marked
“u” should be supplied by the user.

The parameter IFIRST is an initialization switch specifying the degree of the

2.7. Parameter Arrays. 23

IFIRST option

0 no initialization
1 initialize for piecewise linear elements
2 initialize for piecewise quadratic elements
3 initialize for piecewise cubic elements
4 initialize for piecewise quartic elements
5 initialize for piecewise quintic elements
6 initialize for piecewise polynomials of degree 6
7 initialize for piecewise polynomials of degree 7
8 initialize for piecewise polynomials of degree 8
9 initialize for piecewise polynomials of degree 9

Table 2.11. The values of IFIRST.

finite element space to be used, as indicated in Table 2.11. If IFIRST = 0, no
initialization takes place. If IFIRST = p, 1 ≤ p ≤ 9, triangulation data structures
are checked, and various arrays are initialized for piecewise polynomial elements of
degree p. Array entry IP(25) is the error flag IFLAG. A summary of the possible
values for IFLAG is given in Table 2.15.

I IP(I) u definition

1 NTF u number of triangles / regions
2 NVF u number of vertices
3 NBF u number of edges
4 NDF u number of degrees of freedom
5 IFIRST u initialization switch
6 IPROB u problem type
7 ITASK u problem task
8 ISPD u symmetric / nonsymmetric switch
9 METHOD u preconditioner options
10 MXCG u maximum conjugate gradient iterations
11 MXNWTT u maximum damped Newton iterations
12 ISING u switch for singular Neumann problem
13 NRL u number of parameters λ

17 IRTYPE u refinement / coarsening options
18 MXORD u maximum polynomial degree
19 IERRSW u error recovery switch
20 IADAPT u mesh generation option switch
21 IREFN u uniform refinement control
22 NDTRGT u target value for number of vertices

24 MFLAG parallel error flag

Table 2.12: IP array definitions. (Continued next page.)

24 PLTMG USERS’ GUIDE 12.0

I IP(I) u definition

25 IFLAG error flag

27 NEWNTF number of elements owned by processor
28 NEWNVF number of vertices owned by processor
29 NEWNBF number of edges owned by processor
30 NEWNDF number of degrees of freedom owned by processor
31 NVV number of interface vertices
32 NBB number of interface edges
33 NDD number of interface degrees of freedom
34 NVI number of coarse interface vertices
35 NBI number of coarse interface edges
36 NDI number of coarse degrees of freedom
37 NTG global number of elements
38 NVG global number of vertices
39 NBG global number of edges
40 NDG global number of degrees of freedom

41 IUSRSW u USRCMD switch
42 MODE u ATEST mode switch
43 NGRAPH u number of graphics windows

44 FDEVCE u TRIPLT graphics device
45 GDEVCE u GPHPLT graphics device
46 JDEVCE u INPLT graphics device

47 MPIRGN u region for printing and graphics
48 MPISW u MPI switch
49 NPROC number of processes
50 IRGN individual process number

51 MXCOLR u maximum number of colors
52 IFUN u alternate function switch for TRIPLT
53 INPLSW u alternate graph switch for INPLT
54 IGRSW u alternate graph switch for GPHPLT
56 NCON u number of contours
57 ICONT u continuity switch
58 ISCALE u scale option switch
59 LINES u line drawing option switch
60 NUMBRS u numbering option switch
61 NX u
62 NY u (NX,NY,NZ)
63 NZ u is the viewing perspective for TRIPLT
64 MX u
65 MY u (MX,MY,MZ)
66 MZ u is the viewing perspective for GPHPLT
68 ICRSN u graphics coarsening switch

Table 2.12: IP array definitions. (Continued next page.)

2.7. Parameter Arrays. 25

I IP(I) u definition

69 ITRGT u target size of graphics mesh

71 NVDD total number of interface vertices
72 LIPATH length of IPATH array
76 NEF number of error functions
77 NGF number of grid functions
78 NDL order of error recovery systems
79 IEVALS number of function evaluations on last call
80 ITNUM number of Newton iterations on last call

82 MAXPTH u number of columns in the array IPATH
83 MAXT u number of columns in the array ITNODE
84 MAXV u length of the arrays VX and VY
85 MAXD u length of grid function arrays
86 MAXB u number of columns in the array IBNDRY

90 NDF order of the linear system
91 NB number of blocks in the linear system
92 LENJA length of JA array
93 LENAD length of diagonal part A array
94 LENAOD length of upper / lower triangular A array
95 LENJU maximum length of JU array
96 LENUOD maximum length of upper / lower triangular U array
97 LENJU0 length of JU array
98 LENU0 length of U array
99 LENJA0 length of JA for HB decomposition
100 LENJUC length of JU for HB decomposition

Table 2.12: IP array definitions.

I RP(I) u definition

1 RLTRGT u target value for λ
2 RTRGT u target value for ρ(u, λ)
3 RMTRGT u target value for µ
4 DTOL u drop tolerance for incomplete factorization
6 SMIN u lower limit for contour colors
7 SMAX u upper limit for contour colors
8 RMAG u window magnification factor
9 CENX u (CENX,CENY) are the window center coordinates
10 CENY u
12 HMAX u approximate largest element size
13 GRADE u largest growth factor for adjacent elements

Table 2.13: RP array definitions. (Continued next page.)

26 PLTMG USERS’ GUIDE 12.0

I RP(I) u definition

14 HMIN u approximate smallest edge length

16 XMIN
17 XMAX Ω ⊂ (XMIN,XMAX)× (YMIN, YMAX)
18 YMIN
19 YMAX

21 RL current value of λh
22 R current value of ρ(uh, λh) = ρh
23 RLDOT current value of λ̇h
24 RDOT current value of ρ̇h
25 SVAL current value of smallest singular value
26 RLSTRT starting value for λh
27 RSTRT starting value for ρ(uh, λh)

31 RL0 previous value of λh
32 R0 previous value of ρ(uh, λh) = ρh
33 RL0DOT previous value of λ̇h
34 R0DOT previous value of ρ̇h
35 SVAL0 previous value of smallest singular value

37 ENORM1 estimate for ||u− uh||H1(Ω)

38 UNORM1 the norm ||uh||H1(Ω)

39 ENORM2 estimate for ||u− uh||L2(Ω)

40 UNORM2 the norm ||uh||L2(Ω)

41 N0 degrees of freedom for region ΩI
42 E0 error for region ΩI
43 NF global degrees of freedom
44 EF global error

52 STEP damping step s for Newton’s method
53 RELER0 relative size of solution error ||eh||H1(Ω)/||uh||H1(Ω)

54 RELERR relative size of Newton update ||δU ||/||U ||
55 ANORM maximum diagonal entry in Jacobian matrix
56 RELRES the relative residual ||Gk||/||G0||
57 BRATIO the relative residual ||Gk||/||Gk−1||
58 DNEW the discrete inner product −〈GuδU,G〉
59 BNORM0 scaling factor ||G0||
60 BMNRM0 scaling factor for ρ
63 RMU current value of µ
64 REG4 internal regularization parameter

65 REG5 internal regularization parameter

67 SCLEQN current value of scalar equation N − σ
68 SCALE scaling factor for scalar equation

69 THETAL (2− θ)λ̇h in scalar equation

Table 2.13: RP array definitions. (Continued next page.)

2.7. Parameter Arrays. 27

I RP(I) u definition

70 THETAR θρ̇h in scalar equation
71 SIGMA the step σ for scalar equation
72 DELTA Newton update for λh
73 DRDRL the value of ∂ρ/∂λ

74 SEQDOT the value of Ṅ

76 QUAL target element quality
77 ANGMN target minimum angle
78 DIAM approximate diameter of Ω
79 BEST value of TRIGEN quality function
80 AREA area of Ω

82 SFAVE average scale factor
83 SFVAR scale factor variance
84 SFMIN minimum scale factor
85 SFMAX maximum scale factor
86 RELERP relative size of solution error ||eh||H1(ΩI)/||uh||H1(ΩI)

87 EAVE2 arithmetic average of ||eh||2H1(t)

88 EAVEG geometric average of ||eh||2H1(t)

91 RL1 value of λ1

92 RL2 value of λ2

93 RL3 value of λ3

94 RL4 value of λ4

95 RL5 value of λ5

96 RL6 value of λ6

97 RL7 value of λ7

98 RL8 value of λ8

99 RL9 value of λ9

100 RL10 value of λ10

Table 2.13: RP array definitions.

I SP(I) u definition

1 ITITLE u title for INPLT
2 FTITLE u title for TRIPLT
3 GTITLE u title for GPHPLT
5 SHCMD u string for shell command

6 RWFILE u save file for read/write commands
7 JRFILE u read file for journal command
8 JWFILE u write file for journal command
9 BFILE u output file

Table 2.14: SP array definitions. (Continued next page.)

28 PLTMG USERS’ GUIDE 12.0

I SP(I) u definition

10 JTFILE u temporary file for journal command

11 IOMSG error message string
12 CMD current command string
13 LOGO u logo for X-Windows display
14 BGCLR u background color for X-Windows display
15 BTNBG u button background color for X-Windows display

18 PSFILE u root name for PostScript files
19 XPFILE u root name for xpm files
20 BHFILE u root name for bh files
21 SGHOST u host name for SG display

Table 2.14: SP array definitions.

PLTMG has seven labeled common blocks:

common /pltmg1/ic(3,363),jc(12)

common /pltmg2/c(2,78),wt(78),np1(13)

common /pltmg3/c(3,746),wt(746),np2(22)

common /pltmg4/fc(2541),ishift(7)

common /pltmg5/cb(65,65),cd(12,65),cs(12,45),iptr(12),jptr(12)

common /pltmg6/path(101,6)

common /pltmg7/time(3,50),hist(22,30)

Common block PLTMG1 contains basic definitions of the family of finite ele-
ments. Blocks PLTMG2 and PLTMG3 contain definitions of quadrature rules for
one dimensional integrals on intervals (Gauss Quadrature), and two dimensional
integrals on triangles, from Zhang, Cui, and Liu, [64]. Block PLTMG4 contains in-
formation used in the two level HB solver described in Section 4.3. Block PLTMG5
contains information used in the evaluation of basis functions on transition ele-
ments. Block PLTMG6 collects data on various aspects of continuation problems,
IPROB = 3 (See Section 4.6). Block PLTMG7 collects statistical data on various
aspects of the calculation.

2.8 Coefficient Functions.
Several routines in the package require knowledge of the partial differential equation
(1.1), the boundary conditions (1.2), the functional ρ in (1.3), and, on occasion, an
alternate function of the solution. This information is provided by the user through
subroutines A1XY, A2XY, FXY, GNXY, GDXY, P1XY, P2XY, and QXY .

Subroutines A1XY, A2XY, FXY, and P1XY have identical argument lists.

Call A1XY(X, Y, U, UX, UY, RL, ITAG, VALUES),
Call A2XY(X, Y, U, UX, UY, RL, ITAG, VALUES),

2.8. Coefficient Functions. 29

IFLAG general return codes

0 normal return
25 wrong input data structure

IFLAG PLTMG and TRIGEN errors

1 zero pivot in sparse factorization
2 Newton method line search failed
6 illegal problem type
7 continuation procedure failed
10 multigraph iteration failed to converge
11 Newton (Newton/DD) iteration failed to converge
24 Error on one or more MPI processes
48 MPI was off for a command needing MPI
49 NPROC > NTF in load balance
71 no interface unknowns in DD solver
72 IPATH array not created

IFLAG storage errors

82 storage exhausted in array IPATH
83 storage exhausted in arrays ITNODE and ITDOF
84 storage exhausted in arrays VX and VY
85 storage exhausted in array GF
86 storage exhausted in arrays IBNDRY and SF

IFLAG data errors for triangulation

−31 illegal ITNODE(K,*) K = 1, 2, 3
−32 overlapping triangles in ITNODE

IFLAG data errors for triangulation and skeleton

−40 illegal value for NVF, NTF, or NBF
−41 illegal IBNDRY(K,*) K = 1, 2
−42 illegal IBNDRY(3,*)
−43 illegal IBNDRY(4,*)
−44 incorrect circle center coordinates
−45 arc greater than π/2 in length
−46 error in linked edges
−47 boundary vertex without two boundary edges
−48 ITNODE and IBNDRY are not consistent

IFLAG data errors for skeleton

−51 illegal ITNODE(1,*)
−52 illegal ITNODE(2,*)
−53 skeleton tracing error
−54 region specified in clockwise order
−55 illegal ITNODE(3,*)

Table 2.15. Error flag values.

30 PLTMG USERS’ GUIDE 12.0

Call P1XY(X, Y, U, UX, UY, RL, ITAG, VALUES),
Call FXY(X, Y, U, UX, UY, RL, ITAG, VALUES).

In these subroutines, all of the arguments except VALUES are provided as
input. In particular (X,Y) ∈ Ω is the evaluation (quadrature) point, and

U = uh(X,Y),

UX =
∂uh
∂x

(X,Y),

UY =
∂uh
∂y

(X,Y),

RL = λh,

For the parameter identification problem, RL is an array for size NRL with the value
of the vector λh, and for the distributed control problem, RL = λh(X,Y). The
parameter ITAG=ITNODE(5,I) is the user specified label associated with element
τI ∈ T containing (X,Y). From this input data, the user provides values of the
given function and its derivatives in the array VALUES. This array is of size 4+NRL.
All entries are initially set to zero by the calling routine; thus the user need supply
only nonzero values.

To simplify this process, PLTMG supplies a labeled common block

common /VAL0/ K0, KU, KX, KY, KL

containing a predefined list of integer pointers mapping function and derivative
values to particular entries in the VALUES array. The details of this mapping are
given in Table 2.16 for the case of f ; the identical mapping is used for a1, a2 and
p1.

pointer index VALUES(·)
K0 = 1 K0 f
KU = 2 KU fu
KX = 3 KX fux
KY = 4 KY fuy
KL = 5 KL + J − 1 fλJ

1 ≤ J ≤ NRL

Table 2.16. VALUES array for subroutine FXY.

For example, if

f = λ
∂u

∂x
+ u2,

then the following code fragment would be included in Subroutine FXY.

2.8. Coefficient Functions. 31

VALUES(K0)= RL * UX + U**2
VALUES(KX)= RL
VALUES(KU)= 2 * U
VALUES(KL)= UX

The subroutine corresponding to p2 is P2XY and is called using

Call P2XY(X, Y, DX, DY, U, UX, UY, RL, ITAG, JTAG, VALUES).

The arguments are a superset of those of the previous subroutines, and all ar-
guments with the same name serve the same purpose. This routine is called only
with points (X,Y) lying on some edge eJ ∈ Γ. The additional arguments (DX,DY)
are the unit normal direction for the edge, and JTAG=IBNDRY(7,J) is the user
specified label for the given edge. The mapping given in Table 2.16 is used here as
well.

The subroutine corresponding to g1 is GNXY and is called using

Call GNXY(X, Y, U, RL, ITAG, VALUES).

This routine is called only for points (X,Y) ∈ ∂Ω1, and as in the previous cases, all
arguments except the array VALUES are input. In this case ITAG=IBNDRY(7,I)
is the user supplied label for the edge, and VALUES is an array of size 2 + NRL.
Here the labeled common block

common /VAL1/ K0, KU, KL

assists in mapping function and derivative values to particular entries in the VAL-
UES array. The details of the mapping are given in Table 2.17.

pointer index VALUES(·)
K0 = 1 K0 g
KU = 2 KU gu
KL = 3 KL + J − 1 gλJ

1 ≤ J ≤ NRL

Table 2.17. VALUES array for subroutine GNXY.

The subroutine corresponding to g2 is GDXY and is called using

Call GDXY(X, Y, RL, ITAG, VALUES).

This routine also supplies the upper and lower bounds for the inequality constraints
on uh for the obstacle problem, bounds on λh in the case that λ = λ(x, y), and
the initial guess u0, for the solution uh. For parameter identification problems, the

32 PLTMG USERS’ GUIDE 12.0

Lagrange multiplier can be initialized using v0, and for optimal control problems
the Lagrange multiplier can be initialized with v0 and λ(x, y) can be initialized
with λ0. When called to supply a Dirichlet boundary condition, (X,Y) ∈ ∂Ω2 and
ITAG=IBNDRY(7,I) is an edge label. When called in regard to inequality con-
straints and the initial guess, (X,Y) ∈ Ω and ITAG=ITNODE(5,I) is the element
label supplied by the user. Similar to the other routines, VALUES is an output
array of size 3 + 4NRL. It’s entries can be conveniently accessed through pointers
provided in the labeled common block

common /VAL2/ K0, KL, KLB, KUB, KIC, KIM, KIL

The details are provided in Table 2.18.

pointer index VALUES(·)
K0 = 1 K0 g
KL = 2 KL + J − 1 gλJ

KLB = 2 + NRL KLB + J − 1 u, λJ
KUB = 2 + 2NRL KUB + J − 1 u, λJ
KIC = 2 + 3NRL KIC u0

KIM = 3 + 3NRL KIM v0

KIL = 4 + 3NRL KIL + J − 1 λ0,J

1 ≤ J ≤ NRL

Table 2.18. VALUES array for subroutine GDXY.

Subroutine QXY is

Call QXY(X, Y, U, UX, UY, RL, ITAG, VALUES)

This routine provides the alternate function to display in TRIPLT and the alternate
function for adaptive algorithms in TRIGEN. The arguments are defined as in the
other coefficient functions. The output array VALUES has dimension 4; It’s entries
can be conveniently accessed through pointers provided in the labeled common block

common /VAL3/ KF, KF1, KF2, KAD

whose entries are documents in Table 2.19.
In the case of a singular Neumann problem (e.g., a1 ≡ ux, a2 ≡ uy, f ≡ 0, and

∂Ω1 = 0 in (1.1)), the solution u is determined only up to an arbitrary constant. In
this situation, the solution is not unique, and is determined only up to an additive
constant. Setting the switch ISING = 1 causes both right hand sides and solutions in
all linear systems to be orthogonalized with respect to constants, in effect computing
least squares solutions in the orthogonal complement subspace. In other situations,
one should set ISING = 0.

2.9. Sparse Matrix Storage. 33

pointer index VALUES(·)
K0 = 1 K0 alternate scalar function for TRIPLT
KF1 = 2 KF1 first component of vector function for TRIPLT
KF2 = 3 KF2 second component of vector function for TRIPLT
KAD = 4 KAD alternate function for adaptive algorithms in TRIGEN

Table 2.19. VALUES array for subroutine QXY

2.9 Sparse Matrix Storage.
Although sparse matrices are presently generated internally within PLTMG, it may
still be of interest to understand the data structures involved. This version of
PLTMG uses two variants of a basic sparse matrix data structure – a point version,
where matrix elements are simple scalar values, and a block version where matrix
elements are allowed to be blocks of arbitrary size. The block version is of interest,
since the degrees of freedom associated with a single edge or element interior form
a so-called clique within the graph of the matrix. These correspond to dense blocks
within the sparse matrix if all members of a clique are ordered consecutively, which
is the case here. Taking advantage of these dense blocks can reduce the integer
overhead and indirect addressing associated with processing those cliques.

We begin discussion with the point version of the data structure. Here matrices
are stored in the sparse matrix format described in [3] using an integer array JA
and a real array A. As an example, consider the 4× 4 matrix given by

A =


a11 a12 a14

a21 a22 a23 a24

a32 a33

a41 a42 a44

 . (2.1)

This matrix is stored in JA and A as illustrated in Table 2.20. All nonzeros are
stored in the array A. First the diagonal entries are stored, followed by the upper
triangular entries, stored row by row. If the matrix is nonsymmetric, this is fol-
lowed by the lower triangular entries, stored column by column. Symmetric and
nonsymmetric storage is governed by the parameter ISPD as indicated in Table
2.20.

ISPD storage/iteration options

0 nonsymmetric/biconjugate gradient
1 symmetric/conjugate gradient

Table 2.20. The values of ISPD.

The first NDF + 1 entries of JA are pointers. In particular, entries JA(I)
to JA(I+1) − 1 of the JA array contain column indices for nonzeros in row I of

34 PLTMG USERS’ GUIDE 12.0

the strict upper triangle. As illustrated in Table 2.21, the column indices stand
in correspondence to the nonzeros of the upper triangle stored in the array A. If
nonsymmetric storage is used, entries of the transposed lower triangle are stored in
the same order as the upper triangle.

I 1 2 3 4 5 6 7 8 9 10 11 12 13

JA(I) 6 8 10 10 10 2 4 3 4
A(I) a11 a22 a33 a44 − a12 a14 a23 a24 a21 a41 a32 a42

Table 2.21. Sparse matrix data structures. JA has 9 entries. A has 9
entries if ISPD = 1 or 13 entries if ISPD = 0.

Now suppose the elements aii in (2.1) are ki × ki square matrices. Then the
off-diagonal blocks ai,j are ki × kj rectangular blocks. Suppose that there are NB
blocks, where

NDF =

NB∑
i=1

ki

The JA array for the block case is identical to the point case, except that now
entries refer to block rows and columns rather than individual elements. This could
be much smaller that the point version of the JA array. For example, a mesh with
NVF vertices and all elements of degree p will have approximately NDF ≈ p2NVF
degrees of freedom and a point JA array with O(p4NVF) entries. On the other
hand, for this case NB ≈ 6×NVF, and the corresponding block JA array will have
about 39×NVF entries.

Additionally we need an array IBS of size NB to indicate the sizes of the
diagonal blocks

IBS(I) = kI 1 ≤ I ≤ NB.

The A array in this case is more complicated. Following the pattern of the
scalar case, we store the diagonal blocks first, followed by the upper triangular
blocks, stored (block) row-wise. If ISPD = 0, the upper triangle is followed by the
lower triangular block, stored (block) column-wise. The individual diagonal blocks
are stored in the same pattern; the diagonal stored first, followed by the upper
triangle, stored row-wise, and if ISPD = 0, this is followed by the lower triangle
stored column-wise. The upper triangular blocks are stored row-wise, and the lower
triangular blocks, if present, are stored column-wise.

To access this data, we need an additional integer array JAP of pointers,
where JAP(I) indicates the location in the A array where the block corresponding
to JA(I) begins. This array is the same size as JA (plus one for convenience).

For the case ISPD = 1, JAP(1) = 1 and

JAP(I+1) = JAP(I) + {IBS(I) × (IBS(I) + 1)}/2,

while for ISPD = 0
JAP(I+1) = JAP(I) + IBS(I)

2
,

2.9. Sparse Matrix Storage. 35

for 1 ≤ I ≤ NB. Note that the value of JAP(NB+1) is defined. For the upper
triangle, we have JAP(NB+2) = JAP(NB+1). For I = 1, 2, . . .NB and JA(I) ≤
K ≤ JA(I+1) − 1, we have

JAP(K+1) = JAP(K) + IBS(I) × IBS(JA(K)).

The array JAP can be computed once and saved, but we prefer to compute
it as needed from the IBS and JA arrays. Some of our problem classes involve
several sparse matrices, some symmetric and some nonsymmetric. For this case, one
instance of the IBS and JA arrays can be used for all sparse matrices, independent
of their symmetry, and routines that need JAP (e.g, a routine to compute a matrix-
vector multiply) can compute it based on the symmetry status of the particular
matrix involved.

Data structures JU and U are analogous to JA and A, respectively, and con-
tain the (incomplete) A ≈ LDU factorization, where D is (block) diagonal, U is
unit (block) upper triangular, and L is unit (block) lower triangular, with Lt = U
if At = A.

36 PLTMG USERS’ GUIDE 12.0

Chapter 3

Mesh Generation

3.1 Overview.
Subroutine TRIGEN creates or adaptively modifies the data structures defining the
region Ω. There are options to generate a triangulation from a skeleton, adaptively
refine or unrefine a triangulation, uniformly refine a triangulation, and adaptively
smooth the vertices of a triangulation. TRIGEN also has several options for parti-
tioning and mesh management in parallel computation environments. The param-
eter IADAPT specifies various options for TRIGEN, summarized in Table 3.1.

TRIGEN is called using the statement

Call TRIGEN(VX, VY, SF, ITNODE, IBNDRY, ITDOF, IPATH,
E, IP, RP, SP, IU, RU, SU, GF, QXY, SXY)

Except for the case IADAPT = 5, on input the arrays VX, VY, SF, ITNODE,
and IBNDRY should define a triangulation. For IADAPT = 5, the input should
be a skeleton. The arrays IU, RU, and SU are broadcast and received in MPI
communication steps, but are not directly used in TRIGEN. When TRIGEN is
used to adaptively modify an existing triangulation the procedures generally rely
on local a posteriori error estimates for the finite element approximation, although
some options are provided for adaptation based on other functions.

If IADAPT = −K for 1 ≤ k ≤ 3, the refinement and/or unrefinement or
adaptive mesh smoothing processes are carried out using interpolation errors for
the function QXY in place of the a posteriori error estimates. In particular, for a
given element t of degree p, let qp+1 denote the interpolating polynomial for QXY
of degree p+ 1, characterized by nodes at the usual Lagrange lattice points of t. In
this situation, we can use the (constant) derivatives of order p+ 1 of qp+1 in place
of the corresponding recovered derivatives for uh. Once this substitution is made,
the adaptive algorithms proceed in the usual fashion.

We do not anticipate that this option will be used much; it was originally im-
plemented to allow subroutine TRIGEN to be debugged independently of subrou-

37

38 PLTMG USERS’ GUIDE 12.0

IADAPT mesh generation option

0 error estimates only
1 refine or unrefine mesh using uh
-1 refine or unrefine mesh using QXY
2 unrefine and refine mesh using uh
-2 unrefine and refine mesh using QXY
3 smooth mesh points using uh
-3 smooth mesh points using QXY
4 uniform mesh refinement
-4 uniform degree refinement
5 skeleton → triangulation

6 load balance (MPI)
7 reconcile mesh (MPI)

Table 3.1. Some options use a posteriori error estimates for the computed
solution uh or interpolation errors for the alternative function QXY. Other options
require MPI for parallel communication.

tine PLTMG. On the other hand, there may be special cases where some functional
other than the a posterior error estimate for ||∇(u− uh)||L2(t) should be optimized.
Note that if TRIGEN is called before a solution uh is computed by PLTMG, values
of the arguments U , UX, UY , and RL provided by TRIGEN to QXY are arbitrary
and should be ignored.

3.2 Creating a Triangulation from a Skeleton.
When IADAPT = 5, on input the arrays VX, VY, SF, ITNODE, and IBNDRY
should define a skeleton as described in Section 2.4. TRIGEN triangulates the
subregions defining the skeleton in the order that they are given in ITNODE, taking
into account shared internal boundaries and the symmetry requirements.

Let t be a triangle with area a and side lengths h1, h2, and h3. The quality
of t, q(t), is measured using the formula

q(t) = 4
√

3a/(h2
1 + h2

2 + h2
3). (3.1)

The function q(t) is normalized to equal one for an equilateral triangle and to
approach zero for triangles with small angles. In attempting to compute a high
quality triangulation, TRIGEN uses

q(t) ≥ .6 (3.2)

as a test for acceptability of a triangle (sufficiently small interior angles on the
boundaries of the subregions Ωi could cause (3.2) to be violated).

3.2. Creating a Triangulation from a Skeleton. 39

The triangulation process for those regions for which ITNODE(3, I) 6= 0 is
simple and is carried out by generating the appropriate affine mapping. The trian-
gulation process for subregions with ITNODE(3, I) = 0 is somewhat complicated
but embodies three straightforward heuristics.

Given a subregion viewed as a polygon (possibly with curved edges, and in-
terior angles of size π or greater), TRIGEN first tries to reduce the order of the
polygon by one by “chopping” off a triangle using a vertex with small interior angle.
Inequality (3.2) and several less obvious conditions must be satisfied for a successful
chop. When the chopping strategy is no longer successful, TRIGEN checks to see
if the remaining polygon is convex with six or fewer sides. If it is, TRIGEN tries to
triangulate the entire remaining subregion by adding the centroid as a vertex and
connecting it to each boundary vertex. All the resulting triangles must satisfy (3.2)
and some other conditions for this strategy to be successful.

If the second strategy fails or is inapplicable, TRIGEN tries to break the
polygon into two smaller polygons by connecting two nonadjacent vertices by a
straight line. TRIGEN excludes many potential cuts as geometrically infeasible or
otherwise undesirable. From the remaining possibilities TRIGEN picks the cut that
maximizes the minimum of the four interior angles the cut creates. TRIGEN then
applies the three strategies to the two newly created polygons in recursive fashion.
After the region has been successfully triangulated, TRIGEN tries to improve the
triangulation by (locally) rearranging edges and adjusting vertex locations such that
the criterion (3.2) is optimized.

The user can control the triangulation process to some extent through the
parameters HMAX and GRADE. Element size is controlled by HMAX . Normally,
one should choose 0 < HMAX ≤ 1. TRIGEN then attempts to create triangles
with edges shorter than HMAX · diam(Ω). If HMAX ≤ 0 or HMAX > 1, TRIGEN
will reset HMAX = 1. Setting HMAX only places an upper bound on triangle sizes;
the sizes of the triangles actually generated depend strongly on the geometry of the
Ωi and may not achieve the bound.

GRADE is (approximately) the largest ratio of sizes of elements sharing a
common edge (1/GRADE is the smallest ratio). GRADE should be set on the
interval 1.5 ≤ GRADE ≤ 2.5; values outside this interval are set to the appropriate
end point. Generally speaking, smaller values of GRADE result in smoother transi-
tions from regions of large elements to those of small elements, and a higher overall
quality measured by (3.1). On the other hand, larger values of GRADE tend to
produce meshes with fewer elements, more rapid transitions in element size, and
lower overall quality. One may have to experiment to achieve the proper balance
between these conflicting objectives.

For example, consider the domain pictured in Figure 3.1, top left. The remain-
ing pictures in Figure 3.1 show triangulations generated by TRIGEN for various
values of HMAX and GRADE, illustrating their effect on the resulting triangula-
tion.

The pictures are made by INPLT (see Section 5.3), which draws the mesh with
elements colored according to the quality measure q(t) in (3.1). In the pictures, an
element is “good” if q(t) ≥

√
3/2, “fair” if .6 ≤ q(t) <

√
3/2, and “poor” if q(t) < .6.

This is an interesting region to triangulate because the two narrow subregions at

40 PLTMG USERS’ GUIDE 12.0

A skeleton with NTF = 6, NVF = 30, NBF = 35 (left). The triangulation for HMAX = 0,
GRADE = 1.5 has NTF = 509, NVF = 292 (right).

The triangulation for HMAX = 0, GRADE = 2.0 has NTF = 329, NVF = 199 (left). The
triangulation for HMAX = 0, GRADE = 2.5 has NTF = 262, NVF = 163 (right).

The triangulation for HMAX = .03, GRADE = 1.5 has NTF = 1269, NVF = 695 (left).
The triangulation for HMAX = .06, GRADE = 1.5 has NTF = 634, NVF = 361 (right).

The triangulation for HMAX = .03, GRADE = 2.5 has NTF = 849, NVF = 480 (left).
The triangulation for HMAX = .06, GRADE = 2.5 has NTF = 377, NVF = 227 (right).

Figure 3.1.

3.3. A Posteriori Error Estimates. 41

the top require small elements. TRIGEN tries to use larger elements in the larger
subregions, but is constrained by the choices of HMAX and GRADE. Decreasing
HMAX or GRADE tends to improve the overall quality of the triangulation, at the
expense of introducing more elements.

3.3 A Posteriori Error Estimates.
Of central importance to the adaptive procedures is the computation of a posteriori
local error estimates [2, 1, 61, 63]. In the case of piecewise polynomials of degree
p, our a posteriori error estimate is based on a superconvergent approximation of
the derivatives of u of order p [35, 36, 37]. In particular, given the finite element
function uh, we compute the piecewise linear vector functions Smh Qh∂

k
x∂

p−k
y uh, for

0 ≤ k ≤ p. where Qh is the L2 projection from the space of discontinuous piecewise
constant functions into the space of continuous piecewise linear polynomials, and
Sh is a smoothing operator based on the discrete Laplace operator; in PLTMG, we
take m ≤ 1. See [35, 36, 37] for details. For meshes with variable p, we recover
derivatives patchwise, processing all elements of the same degree in the same patch.

The switch IERRSW allows the user to control the continuity of the recovered
derivatives. The options are specified in 3.2. In some problems, one expects the
gradient or higher derivatives of the solution to be discontinuous, typically due to
discontinuities in the coefficient functions. If IERRSW = 1, a patchwise continuous
recovery is made. The user defines the patch boundaries by specifying different
values of ITNODE(5,*) for different patches. The parameter NDL is the combined
order of the (block diagonal) linear systems that are used in the recovery.

IERRSW error recovery option

0 globally continuous recovery
1 patchwise continuous recovery

Table 3.2. Patches are defined using element labels ITNODE(5,*).

Using these recovered derivatives, we compute a local error estimate εt for
t ∈ T . Suppose the finite element space consists of continuous piecewise polynomials
of degree p, and denote by up the usual Lagrange interpolant. In [39], it is shown
that in many cases interpolation error is both an upper and lower bound on the
finite element error,

C1||∇(u− up)||L2(Ω) ≤ ||∇(u− uh)||L2(Ω) ≤ C2||∇(u− up)||L2(Ω),

implying that error indicators based on interpolation error are both reliable and
efficient. In [26], constants involved in such estimates are numerically computed for
a variety of finite element spaces, including the Lagrange triangular elements used
in PLTMG.

Our estimate is motivated by noting that under certain circumstances, ||∇(up+1−
up)||L2(Ω) is an asymptotically exact estimate of ||∇(u − uh)||L2(Ω). This is known

42 PLTMG USERS’ GUIDE 12.0

for the cases p = 1 and p = 2 [36, 37]. Since the usual interpolation points for
up and generally not a subset of those for up+1, on each individual element t, we
replace up+1 by ûp+1 = up + ep+1, where ep+1 is a locally defined polynomial of
degree p + 1 that is zero at the interpolation points for the polynomial of degree
p and has the same (constant) derivatives of order p + 1 as up+1 (see Figure 1.1).
Such polynomials form a (local) vector space of dimension p+ 2. For example, e2 is
a locally defined quadratic polynomial with value zero at all vertices of the mesh.
On a given element t, e2 can be expressed as a linear combination of three quadratic
“bump functions” qk associated with the edge midpoints of t,

e2 =

3∑
k=1

`2kt
t
kMttk qk(x, y) (3.3)

where `k is the length of edge k, tk is the unit tangent, and

Mt = −1

2

(
∂xxu2 ∂xyu2

∂yxu2 ∂yyu2

)
.

is the Hessian matrix. All terms on the right hand side of (3.3) are known except
for the second derivatives appearing in the Hessian matrix Mt. In our local error
indicator, we simply approximate the second derivatives in the Hessian matrix Mt

using derivatives of SmQh∇uh. In particular, let

M̃t = −1

2

(
∂xS

mQh∂xuh ∂xS
mQh∂yuh

∂yS
mQh∂xuh ∂yS

mQh∂yuh

)
,

M̄t =
αt
2

(M̃t + M̃ t
t), (3.4)

εt =

3∑
k=1

`2kt
t
kM̄ttk qk(x, y).

The normalization constant αt is chosen such that the local error indicator ηt sat-
isfies

ηt ≡ ||∇εt||L2(t) = ||(I − SmQh)∇uh||L2(t).

Normally we expect that αt ≈ 1, which is likely to be the case in regions where
the Hessian matrix for the true solution is well defined. Near singularities, u is
not smooth and we anticipate difficulties in estimating the Hessian. For elements
near such singularities, αt provides a heuristic for partly compensating for poor
approximation. For the cases ep+1, p > 1, more complicated formulas of similar
nature are used. In particular, εt is expressed in terms of parameters describing
the geometry of t, and the derivatives of order p+ 1 in t, which are obtained from
∂xS

m
h Qh∂

k
x∂

p−k
y uh, and ∂yS

m
h Qh∂

k
x∂

p−k
y uh, for 0 ≤ k ≤ p, in a fashion analogous

to the case p = 1 described above. Global a posteriori estimates ||εt||L2(Ω) and
||∇εt||L2(Ω) are stored as the parameters ENORM2 and ENORM1, respectively.

In the case of parameter identification problems, the error in the Lagrange
multiplier ε̃t is computed by the a similar procedure to that described above. The

3.4. Adaptive Mesh Refinement and Unrefinement. 43

local error indicator is given by

ηt =
{
||∇εt||2L2(t) + ||∇ε̃t||2L2(t)

}1/2

.

In the case of optimal control problems, errors in both the Lagrange multiplier ε̃t
and the control ε̂t are computed, and the local error indicator is given by

ηt =
{
||∇εt||2L2(t) + ||∇ε̃t||2L2(t) + ||∇ε̂t||2L2(t)

}1/2

.

In both the cases, the definitions of ENORM1 and ENORM2 are similarly modified.
Local error estimates are stored in the array E. This array has MAXT rows

and two columns. Row I of E corresponds to element tI , with entry E(I,1) = η2
tI ,

and E(I,2) = αtI . The contents of the E array can be graphically displayed using
TRIPLT (see Section 5.2). The E array is typically updated in TRIGEN as part of
adaptive algorithms that make use of the error estimates. Thus if one is interested
in viewing uncorrupted versions of these quantities, plot them after calling TRIGEN
with IADAPT = 0.

3.4 Adaptive Mesh Refinement and Unrefinement.
Our adaptive algorithms are based on work described in Nguyen [54], Bank and
Nguyen [21, 23, 22, 24], and Bank and Deotte [12]. When IADAPT = 1, the
current mesh is adaptively refined or unrefined. When NDTRGT > NDF, the mesh
is refined, while if NDTRGT < NDF, the mesh is unrefined. In either case, the
goal is to achieve the best possible mesh using (approximately) NDTRGT degrees
of freedom. The switch IRTYPE specifies the type of adaptivity to be used – h, p,
or hp as indicated in Table 3.3.

IRTYPE adaptivity option

0 hp refinement / unrefinement
1 h refinement / unrefinement
-1 p refinement / unrefinement

Table 3.3. Adaptivity options using IRTYPE.

When IADAPT = 2, both refinement and unrefinement are employed. First,
the mesh is unrefined to obtained a mesh with approximately NDTRGT < NDF
degrees of freedom. The mesh is then refined to obtain a mesh with approximately
NDF degrees of freedom. The output triangulation thus has approximately the
same number of degrees of freedom as the input triangulation, but the topology of
the mesh and the distribution of degrees of freedom can be quite different.

44 PLTMG USERS’ GUIDE 12.0

3.4.1 Procedure Refine

Our hp refinement procedure is summarized in Figure 3.2. We initialize a heap data
structure where all elements are placed in the heap according to the size of ηt, with
the element with largest error indicator at the root.

Procedure Refine

R1 Create a heap with respect to ηt with the
largest error estimate ηtmax at the root;

R2 If NDF ≈ NDTRGT0, then go to R6.
If η2

tmax ≤ η2
ave/3, then go to R6.

R3 Execute case specific tests for h, p, and hp
refinement of element tmax.

R4 Refine element tmax, and possibly others as required.
R5 Update error indicators for affected elements.

Add new elements as needed. Remake the heap.
Go to R2.

R6 Smooth the mesh based on geometry ((3.1)–(3.2)).
Clean up data structures as needed.

Figure 3.2.

When IADAPT = ±1 and NDTRGT > NDF, the target number of degrees
of freedom for the new mesh, denoted by NDTRGT0, is given by

NDTRGT0 = min(NDTRGT,NDF × 4). (3.5)

The use of (3.5) tries to force a geometric increase in the number of degrees of
freedom in each refinement step. For the the case IADAPT = ±2, NDTRGT0 =
NDF0, where NDF0 was the value of NDF when TRIGEN was entered.

While we normally expect the refinement loop to exit when the target number
of degrees of freedom is approximately achieved in line R2 of Procedure Refine,
we can also exit if the largest error in the current mesh is sufficiently small. In
particular,

η2
ave =

1

N

∑
t∈ΩI

η2
t ≡ EAVE2, (3.6)

where ΩI is the fine subregion associated with processor I in the case of parallel
computation, and ΩI ≡ Ω otherwise; N is the number of triangles in ΩI .

For hp-refinement, the critical test is to decide between between h-refinement
and p-refinement for element tmax. The main test is to use h-refinement if

E(tmax, 2) ≡ αtmax ≥ 2× SFAVE. (3.7)

If the scaling factor αt ≈ 1, then the recovered derivatives and the error estimate
are consistent, and we assume that the solution is locally smooth, which in turn
justifies p-refinement. Large values of αt empirically correspond to locally non-
smooth behavior of the solution, and this in turn suggests h-refinement. See [24, 12]

3.4. Adaptive Mesh Refinement and Unrefinement. 45

for more detailed explanations and numerical experiments, and Bank, Parsania and
Sauter [27] for some convergence analysis.

While (3.7) is the main test for hp-refinement, we also make some case specific
tests on line R3 of Procedure Refine. In the case of h-refinement, we test for
potential round-off error problems if h-refined elements become too small in size.
In the case of p-refinement, we check to be sure the p-refined element will have
degree less than MXORD. We require that MXORD ≤ 9 due to limits on the order
of accuracy for the suite of numerical quadrature rules implemented in PLTMG.
These quadrature formulas were provided by Zhang, Cui, and Liu in [64]. Failure
of these case specific tests could reverse the decision suggested by (3.7). Finally, if
element tmax has degree k, and

RELERP ≤ 1

5× 3k−1
(3.8)

then h-refinement is selected. The thresholds (3.8) are based on the empirical
observation that it is efficient to require sufficiently many elements in the mesh (as
measured by (3.8)) before allowing increasingly higher degree elements.

At the conclusion of the main refinement loop, in R6 we smooth the mesh,
locally “flipping” edges and adjusting the location of vertices to locally optimize
the geometric quality measure q(t) given in (3.1).5

3.4.2 Procedure Unrefine

Our unrefinement procedure is complementary to the refinement procedure, as sum-
marized Figure 3.3. In many details, it implements the opposite rules of Procedure
Refine. For example, we initialize a heap data structure where all elements are
placed in the heap according to the size of ηt, but now with the element tmin with
the smallest error error indicator at the root.

If IADAPT = ±1 or IADAPT = ±2, then NDTRGT0 is given by

NDTRGT0 = max(NDTRGT,NDF/4).

This generally provides a geometric decrease in the number of degrees of freedom.
The parameter ηave in U2 is computed as in (3.7).

For hp-unrefinement, the main test is based on (3.7). If (3.7) and

RELERP ≥ 1

5

are both satisfied, then use h-unrefinement; otherwise use p-unrefinement. Our bias
here is to try to preserve the largest number of elements in the mesh. The result
of this test is possibly changed on the basis of the h and p specific tests mentioned
below. The case specific test for h-unrefinement determines the best vertex of

5In adjusting the mesh, we take into account constraints imposed by boundary geometry,
boundary conditions, and internal interfaces defined by the the user or by PLTMG in the context
of parallel computation.

46 PLTMG USERS’ GUIDE 12.0

Procedure Unrefine

U1 Create a heap with respect to ηt with the
smallest error estimate ηtmin at the root;

U2 If NDF ≈ NDTRGT0, then go to U6.
If η2

tmin ≥ η2
ave/2, then go to U6.

U3 Execute case specific tests for h or p
unrefinement of element tmin.

U4 Unrefine element tmin, and possibly others as required.
U5 Update error indicators for affected elements.

Remove elements as needed. Remake the heap.
Go to U2.

U6 Smooth the mesh based on geometry ((3.1)–(3.2)).
Clean up data structures.

Figure 3.3.

element tmin to be removed from the mesh.6 For p-unrefinement, an element must
have degree at least two.

Similar to Procedure Refine, at the conclusion of Procedure Unrefine, the final
mesh is smoothed, and some edges possibly flipped in U6 to locally optimize the
geometric quality as measured by (3.1).

3.4.3 h Refinement

Our basic h-refinement algorithm uses a relaxed version of the longest edge bisection
procedure of Rivara [49, 58] but does not generate a refined element tree. The
element tmax to be refined is bisected along it longest edge. If tmax has a neighbor
element across its longest edge, and the shared edge is longer than 0.9 times its
longest edge, then it is refined. If not, the neighbor is refined along its longest
edge, and the procedure described above is recursively applied to its longest-edge
neighbor. An example is shown is Figure 3.4. The classic (unrelaxed) longest
edge bisection process is known to have finite termination, typically in a very small
number of steps. The relaxation factor 0.9 attempts to make the process terminate
even sooner; it is small enough that the test is satisfied by most shape regular
elements, so that only one edge is bisected in most steps of R4 in Procedure Refine
(Figure 3.2).7

When our relaxed longest edge bisection process finally results in a triangu-
lation, elements are bisected, new elements created, (in reverse order to always
maintain a triangulation) and the triangulation data structures updated. New el-
ements inherit the (constant) derivative values from their parents, allowing error
estimates to be computed for the refined elements, and the heap to be updated.

6Certain vertices lying on the boundary or on internal interfaces are not eligible to be removed
from the mesh. In exceptional cases an element might be deemed ineligible for h-unrefinement.

7Since shape regularity is improved in step R6 of Procedure Refine, we relax shape regularity
requirements during the refinement process itself to improve efficiency.

3.4. Adaptive Mesh Refinement and Unrefinement. 47

�
�
�
�
�

@
@

@
@
@

@
@
@
@
@

�
�

�
�
�

t

�
�
�
�
�

@
@

@
@
@

@
@
@
@
@

�
�

�
�
�

�
��

�
�
�
�
�

@
@

@
@
@

@
@
@
@
@

�
�

�
�
�

�
�
�
�
�

Figure 3.4. Element t is refined by the longest edge bisection method.
The original mesh is on the left. The first step of bisection (middle) does not yield
a compatible triangulation. However, the second step (right) does yield a triangula-
tion.

3.4.4 h Unrefinement

In the case of h-unrefinement, the basic step consists of deleting vertices from the
mesh; this is accomplished by merging two vertices of element tmin that share a
common edge. This is illustrated in Figure 3.5.

�
�
�
�
�

@
@

@
@

@

@
@
@
@
@

�
�

�
�

�−→ ←−
t

v v′

Figure 3.5. Element t is unrefined by the merging vertices v and v′, and
collapsing the edge connecting them. The location of the merged vertex could be v,
v′, or (v + v′)/2, depending on the shape quality of other elements having v or v′

as one of their vertices.

While this merging process tends to degrade the geometric quality of sur-
rounding elements, it is typically restored in step U6 of Procedure Unrefine, when
element edges are flipped and vertices moved to locally optimize the quality measure
(3.1).

48 PLTMG USERS’ GUIDE 12.0

3.4.5 p Refinement

The p-refinement algorithm is relatively straightforward. Let element tmax have
degree p with edges of degree pi ≥ p, 1 ≤ i ≤ 3. The refined element has degree
p + 1 with edges of degree max{pi, p + 1}, 1 ≤ i ≤ 3. As a technical point, since
we require degrees of freedom associated with element interiors and edges have
consecutive global indices,8 storage arrays (e.g., GF) have degrees of freedom for
p-refined edges and interiors appended to their tails, leaving gaps where earlier edge
and interiors degrees of freedom were stored. There is a global cleanup step at the
end of the refinement process to compress the data structure and remove these gaps,
similar to that performed at the end of unrefinement algorithms.

3.4.6 p Unrefinement

p-unrefinement is similar in structure to p-refinement. An element of degree p has
it interior decreased to degree p− 1. The edge degrees of freedom pi, 1 ≤ i ≤ 3, are
reduced to pi − 1 or remain at degree pi, depending on the degree of the neighbor
element (if present) that shares the given edge. In the case of degree reduction, the
reduced degrees of freedom can occupy space previously used by the higher degree
edges or interior degrees of freedom, leaving small gaps in these data structures that
are removed at the end of the unrefinement process.

3.5 Adaptive Mesh Smoothing.
When IADAPT = ±3, subroutine TRIGEN does no refinement or unrefinement
of the mesh but rather adjusts the (x, y) coordinates of the mesh points (VX and
VY) in an attempt to optimize the mesh.

The procedure consists of a Gauss–Seidel-like iteration on the vertices in the
mesh, where each vertex is locally optimized with all other vertices held fixed [30].
Four sweeps are performed in each call. Let Ωv denote the patch of elements that
share a given vertex v; an example is shown in Figure 3.6. Typically, vertex v
is allowed to move within the region Ωv. However, not all vertices in the mesh
are allowed to move. Some boundary and interface vertices must remain fixed to
preserve the definition of the region. These vertices are called corners. Corners
include actual geometric corners of the region, vertices where boundary conditions
change type or label, vertices where interfaces intersect the boundary, and vertices
where two or more interfaces intersect. An interface here is taken as any sequence
of triangle edges that separate triangles with different user defined labels. Vertices
on the boundary or on interfaces that are not designated corners are allowed to
move only along the boundary or interface. The remaining vertices, called interior
vertices, are allowed to move freely within Ωv. As in our refinement algorithms,
some local mesh smoothing based on (3.1) is used to locally optimize the shape
regularity of the mesh.

8Having consecutive indices for interior and edge degrees of freedom makes the amount of
information stored in array ITDOF for a given element independent of its degree.

3.6. Uniform Refinement. 49

�
�
�
�
�

�
�

�
�

�

�
�
�
�
�
�
�
�
�
�

v

Figure 3.6. Subregion Ωv is associated with vertex v.

For each vertex v = (x, y) in the mesh, we solve the minimization problem

min
x,y
||∇εt||2L2(Ωv) (3.9)

of order two by a damped Newton’s method. As noted above, we assume the
derivatives of order p+1 are constant in each element t having v as a vertex, leading
to an overall piecewise constant approximation of these derivatives on Ωv. All other
dependencies on v = (x, y) are taken into account by Newton’s method. Boundary
and interface vertices have an additional constraint equation, so an appropriately
constrained version of problem (3.9) is solved for those vertices. Besides its usual
task of ensuring sufficient decrease, the damping strategy for Newton’s method is
also used to ensure that the point (x, y) remains well within Ωv, so that all triangles
are always well defined. It is interesting to note that the function ||∇εt||L2(Ωv)

contains a natural barrier function that becomes infinite as (x, y) approaches ∂Ωv.
In the case IADAPT = −3, the adaptive smoothing procedure uses the inter-

polation errors for the function QXY in place of the a posteriori error estimates, in
a fashion analogous to the cases of refinement and unrefinement with IADAPT < 0.

3.6 Uniform Refinement.
TRIGEN allows options for uniform refinement in h and p. In the standard sequen-
tial setting, the uniform refinement is standard and straightforward. In the case of
parallel computation, each processor approximately uniformly refines its own sub-
region. If the parallel computation uses NPROC processors, each processor adds
approximately 1/NPROC of the expected increase in degrees of freedom resulting
from uniform refinement in the standard sequential case. Because different subre-
gions can have widely varying numbers of elements, this can result in different levels
of uniform refinement in different regions. See Section 3.8 for discussion of the mesh
partitioning process.

50 PLTMG USERS’ GUIDE 12.0

3.6.1 h Uniform Refinement

When IADAPT = 4, subroutine TRIGEN performs uniform h-refinement of the
existing triangulation. The refinement is controlled by the parameter IREFN >
1. Each element in the triangulation is uniformly divided into IREFN2 similar
triangles. Some examples are shown in Figure 3.7. If IADAPT = 4 and MPISW =
1, the situation is different. In this case, TRIGEN tries to increase the global
dimension of the space by roughly a factor of IREFN2. The target value for each
processor is given by

NDTRGT0 = min

(
NDTRGT,NDF ×

{
1 +

IREFN2 − 1

NPROC

})
.

Each processor refines uniformly, restricting this refinement mainly to region IRGN.
Rather than the uniform refinement described above, the relaxed longest edge pro-
cedure is used. Regions with relatively few elements may require several levels of
refinement to achieve the target number of degrees of freedom; those with many
elements may need only one partial level of refinement to achieve this target. In the
case of partial levels of refinement, the elements chosen to be refined are essentially
random.

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
��

�
�
�

Figure 3.7. Uniform refinement for the cases IREFN = 2, 3, 4.

3.6.2 p Uniform Refinement

When IADAPT = −4, subroutine TRIGEN performs uniform p-refinement of the
existing triangulation. The refinement is controlled by the parameter IREFN >
0. In this case, every element interior of degree p is increased to degree min(p +
IREFN ,MXORD), and every edge of degree pi is increased to degree min(pi +
IREFN ,MXORD). If IADAPT = −4 and MPISW = 1, TRIGEN does uniform p
refinement, but restricts this refinement mainly to region IRGN. In this case, the
target number of degrees of freedom is given by

NDTRGT0 = min

(
NDTRGT,NDF ×

{
1 +

[(pave + IREFN)/pave]
2 − 1

NPROC

})
,

3.7. An Example 51

where pave estimates the average degree of elements in the mesh and is given by

pave =

√
NDF

NVF
.

Similar to the case of IADAPT = 4, degrees of some elements may be increased by
more than IREFN if few elements are present in IRGN. If there are many elements
in IRGN some elements may have their degrees increased by less than IREFN, or
even left unchanged. The elements chosen for partial levels of p refinement are
essentially random, as in the case of h uniform refinement.

3.7 An Example
Some examples of our adaptive procedures are shown in Figures 3.8–3.9. In these
examples, we employ the alternate function QXY = r1/4 sin(θ/4) defined on the
circular domain with a crack shown in Figure 2.1. The initial mesh with NVF = 10
is shown in Figure 3.8, top. The mesh was then refined with IADAPT = −1 to
produce a sequence of hp adapted meshes. In Figure 3.8, we see the resulting mesh
with NTF = 7386 elements and NDF = 18362 degrees of freedom.

In the next experiment, we begin with the same mesh with NTF = 8 elements
and uniformly refine it using IADAPT = 4 and IREFN = 8, creating a uniform
mesh of NTF = 512 elements. We the uniformly refine in p (IADAPT = −4 and
IREFN = 2) to create a uniform mesh of piecewise cubic polynomials with a total
of NDF = 2425 degrees of freedom.

We employ adaptive mesh smoothing (IADAPT = −3); in Figure 3.9 we see
the results of one step and eight steps of mesh smoothing. It is visually apparent
that the mesh smoothing tries to concentrate degrees of freedom near the singularity
at the origin. However, mesh smoothing is limited by the constraint that the mesh
topology remain invariant, and this ultimately limits its effectiveness in this setting.

Next, we call TRIGEN int IADAPT = −2 (unrefine and refine) and NVTRGT =
1800. The results are shown in Figure 3.9, where the mesh is colored by both poly-
nomial degree and by element size. We see that in the unrefinement phase, most
of the coarsening consisted mostly of p-unrefinement, reducing the polynomial de-
gree from three to two in those elements most distant from the origin, when the
error should be smallest. The refinement step was mostly h-refinement, where el-
ements near the origin were refined. This seems like a reasonable outcome given
that the unrefinement and refinement steps are conducted sequentially and indepen-
dently. However, one could argue that a more informed strategy in this situation is
to coarsen in p the elements near the origin, which have larger errors, and then h-
refine those elements using lower degree polynomials. Such a strategy requires more
specialized coarsening and refinement algorithms than currently exist in PLTMG
and is a topic for future research.

3.8 Parallel Adaptive Methods.
In this section we summarize the general strategy for adaptive mesh generation
that is implemented in PLTMG. A number of static and dynamic load balancing

52 PLTMG USERS’ GUIDE 12.0

The initial triangulation with NTF = 8, NVF = 10, and NBF = 10.

The refined triangulation with NTF = 7386, NDF = 18362. Elements are colored by
polynomial degree (left) and by element size (right).

The refined triangulation with NTF = 7386, NDF = 18362. The mesh is magnified near
the origin with RMAG = 1010, revealing the presence of low degree polynomials (left) and
very small elements (right).

Figure 3.8.

approaches for unstructured meshes have been proposed in the literature [62, 59,
43, 45, 40, 47, 41]; most of the dynamic strategies involve repeated application of
a particular static strategy. One of the difficulties in all of these approaches is the
amount of communication that must be performed both to assess the current load
imbalance severity, and to redistribute the work among the processors once the
imbalance is detected and an improved distribution is calculated.

The approach used by PLTMG is based upon the Bank-Holst paradigm [14,
15, 5, 25, 55, 50, 51], that addresses the load balancing problem in a new way,
requiring far less communication. Another important point is that our approach

3.8. Parallel Adaptive Methods. 53

A Uniformly refined mesh with NTF = 512, NVF = 297, and NBF = 80.

The uniformly refined mesh after one step of mesh smoothing (IADAPT = −3), with
piecewise cubic elements, NDF = 2425 (left). The same mesh after eight steps of mesh
smoothing (right).

The mesh resulting from one step of unrefinement and refinement (IADAPT = −2) with
NDTRGT = 1800. The resulting mesh is colored by polynomial degree (left) and element
size (right) and has NTF = 648 elements with NDF = 2424 degrees of freedom.

Figure 3.9.

allows PLTMG to run in a parallel environment without a large investment in
additional coding. This approach has three main components:

Step 1: A small (nonlinear) problem is solved on an initial coarse mesh, and a pos-
teriori error estimates are computed for the coarse grid solution. The tri-
angulation is partitioned such that each subdomain has approximately equal
error (although they can significantly differ in size, numbers of elements and
degrees of freedom).

54 PLTMG USERS’ GUIDE 12.0

Step 2: Each processor is provided the complete coarse mesh and solution, and in-
structed to solve the entire (nonlinear) problem, with the stipulation that its
adaptive refinement should be limited largely to its own partition. Load bal-
ancing is achieved by instructing each processor to create a refined mesh with
the same number of degrees of freedom.

Step 3: A final mesh is computed using the union of the refined partitions provided by
each processor. This mesh is reconciled such that the (virtual) mesh made up
of the union of the refined subregions would be conforming. A final solution is
computed, using a domain decomposition method. An initial guess is provided
by the local solutions.

The above approach has several interesting features. First, the load balancing
problem (Step 1) is reduced to the numerical solution of a small problem on a single
processor, without requiring any modifications to PLTMG. Second, the adaptive
mesh generation calculation (Step 2) takes place independently on each processor,
and can also be performed with no communication.

The only parts of the calculation requiring communication are

1. the initial fan-out of the mesh distribution to the processors, once the decom-
position is determined by the error estimator.

2. the mesh regularization, requiring communication to produce a global con-
forming mesh.

3. the final solution phase. Note that a good initial guess for Step 3 is provided
in Step 2 by taking the solution from each subregion restricted to its partition.

The options 6 ≤ IADAPT ≤ 7 provide basic parallel mesh management tools
that support this paradigm. The domain decomposition solver is implemented as an
option in subroutine PLTMG. These options require the use of MPI library routines
for communication.

3.8.1 Mesh Partitioning.

When IADAPT = 6, TRIGEN computes a posteriori error estimates and partitions
the mesh as in the Bank-Holst paradigm. If PLTMG is running on NPROC proces-
sors, then the mesh is partitioned into NPROC subregions, such that each subregion
has approximately equal error. Deotte [44] and Bank and Deotte [11] examine sev-
eral partitioning strategies, including the one used in PLTMG, and in particular
study their effect on the convergence rate of Domain Decomposition solvers using
such partitions. The underlying algorithm employed is a variant of the recursive
spectral bisection algorithm [42, 57, 60]. While this particular mesh partitioning
algorithm is among the more expensive of the choices that we could make, it is
typically used only once on a relatively small problem. Although this calculation is
important in the parallel processing environment, it is done on a single processor
and does not use the MPI library. At the conclusion of the load balancing step,
TRIGEN creates new internal edges in IBNDRY at the interface between different

3.8. Parallel Adaptive Methods. 55

subregions. Then the processor corresponding to IRGN = 1 broadcasts its mesh,
solution, and supporting data to all processors using an MPI broadcast command.

The partitioning process begins with the creation of patches of elements with
small errors called macro-elements. Macro-element patches contain a minimum of
one and a maximum of 100 elements and must form a geometrically connected set.
Let

E =
1

NPROC

∑
t

||∇εt||2L2(t).

For a patch P , let

EP =
∑
t∈P
||∇εt||2L2(t).

If the patch P contains more than one element, we require EP ≤ 10−2 × E.
Suppose the mesh is composed of N macro-elements. We define the N × N

symmetric, positive semi-definite M -matrix A by

Aij =


−` i 6= j and patches i and j share ` common edges

0 i 6= j and patches i and j share no common edge
si i = j, si = −

∑
k 6=iAik

Macro element patches are created to reduce the order of the matrix A, and thus
reduce the cost of solving the eigenvalue problems described below. The matrix
A corresponds to the discrete Laplacian for the dual graph of the macro element
mesh, in which the macro elements are considered nodes, and the off-diagonal entries
correspond to edges defined by the adjacency relation, weighted by the number of
overlapping edges in the original triangulation.

We consider the eigenvalue problem

Aψ = λψ (3.10)

Our approach is standard; by construction, the smallest eigenvalue for (3.10)
is λ1 = 0 and ψ1 = (1, 1, . . . , 1)t. Our interest is in the second eigenvector ψ2,
known as the Fiedler vector.

We use a standard binary tree with 2NPROC − 1 nodes (NPROC leaves and
NPROC − 1 internal nodes). The root is labeled i = 1 and node i has children
2i and 2i + 1, 1 ≤ i ≤ NPROC − 1. Associated with each node is a weight ωi
denoting the number of leaves contained in its subtree. In particular, ωi = 1,
i = 2NPROC − 1, . . . ,NPROC and ωi = ω2i + ω2i+1 for i = NPROC − 1, . . . , 1.

The entire mesh is assigned to root, and it is partitioned among its two children
as follows. We first approximately solve the eigenvalue problem (3.10) for the whole
mesh, and then create a permutation of the macro-elements {qi} such that

qi < qj implies ψ2,i ≤ ψ2,j .

We then find the index k which provides the best partition of the form

1

ω2

∑
qi≤k

EPqi ≈
1

ω3

∑
qi>k

EPqi .

56 PLTMG USERS’ GUIDE 12.0

The corresponding submeshes are assigned to the children nodes.
We apply this procedure recursively, at each level dividing each group of ele-

ment patches into two smaller groups by solving an eigenvalue problem of the type
(3.10) restricted to that group of patches. The final result is NPROC subregions
with approximately equal error E.

We now briefly describe some details of our procedure for computing the sec-
ond eigenvector of (3.10). Our procedure is essentially just a classical Rayleigh
quotient iteration [56], modified both to bias convergence to λ2, and to account for
the fact that the linear systems arising in the inverse iteration substep are solved
(approximately) by an iterative process. To simplify notation and avoid multiple
subscripts, we let φk ≈ ψ2, where k now denotes the iteration index.

We suppose that we have a current iterate φk which satisfies φtkφk = 1 and

ψt1φk = 0. Using φk, we compute the approximate eigenvalue λ̃2,k ≈ λ2 from the

Rayleigh quotient λ̃2,k = φtkAφk, and approximately solve the linear system

Aδ̃k = rk ≡ λ̃2,kφk −Aφk.

Note that by construction ψt1rk = φtkrk = 0. This linear system is approximately
solved using a simple Symmetric Gauss-Seidel iteration.

From δ̃k, we form the vector δk satisfying δtkδk = 1 and ψt1δk = φtkδk = 0.

Finally, we solve the 3× 3 eigenvalue problem for Â, where

Â =

φtkδtk
ξtk

A
(
φk δk ξk

)
where ξk is defined below. If v = (α, β, γ)t is an eigenvector corresponding to the
smallest nonzero eigenvalue, we form φ̃k+1 = αφk+βδk+γξk and ξ̃k+1 = βδk+γξk
with ξ1 = 0. Then φk+1 and ξk+1 are formed from φ̃k+1 and ξ̃k+1, respectively, by
normalization and orthogonalization to ψ1. Solving the 3 × 3 eigenvalue problem
rather than a 2× 2 problem was motivated by the work of Knyazev [46].

3.8.2 Reconciling the Mesh.

The option IADAPT = 7 reconciles the mesh. This is the most complex of the MPI
options in TRIGEN, and is typically called once, at the conclusion of the second step
of the Bank-Holst paradigm. It must be called before the domain decomposition
solution in subroutine PLTMG, as PLTMG makes use of the parallel interface data
structure IPATH generated by this call.

In creating the IPATH data structure, each processor first organizes its tri-
angulation and solution data structures. Generally, edges, vertices, and degrees
of freedom on the interface between region IRGN and the rest of the domain ap-
pear first in their respective arrays (IBNDRY, VX, VY, GF, etc). This data is
organized to correspond to counter clockwise traversal of the interface. Next in
all arrays comes data corresponding to the interior of subregion IRGN ; generally,
this should be the majority of the data. Finally, at the end of each array appears
data corresponding to regions other than IRGN. Each processor then assembles its

3.8. Parallel Adaptive Methods. 57

contributions to the preliminary IPATH array based on the reordered data, and
this information is then exchanged among processors using MPI (see Section 2.6).

After the boundary exchange, each processor tries to match its boundary
interface edges to those provided by neighboring regions, in order to establish the
structure of the global mesh. Typically this mesh is not conforming. When non-
matching edges are found, the region that is less refined does additional refinement
until its boundary edges form a one-to-one match with those of its neighbors. An
example is shown in Figure 3.10.

J
J
J
J
J�
�
�
�A
A
A
A�
�
�
�A
A
A
A

A
A
A
A�
�
�
�A
A
A
A�
�
�
�@
@
@
@�
�
�
�

Ωi

Ωj

J
J
J
J
J�
�
�
�A
A
A
A�
�
�
�A
A
A
A

A
A
A
A�
�
�
�A
A
A
A�
�
�
�@
@
@
@�
�
�
�

Figure 3.10. The coarse side of a non matching interface (left) is refined
to make the global mesh conforming (right).

After the mesh is made h-conforming it is made p-conforming. When a p-
nonconforming edge is found, the region containing the edge of lower degree p-refines
its edge appropriately in order to resolve the nonconformity.

Each processor then reorders its data structures and communicates its con-
tribution to the IPATH array a second time. This time the edge matching process
concludes with no nonconforming edges found. By matching boundary edges at the
interface, one also effectively matches degrees of freedom on the interface; it is this
information that is needed for the domain decomposition solver.

58 PLTMG USERS’ GUIDE 12.0

Chapter 4

Equation Solution

4.1 Overview.
Subroutine PLTMG solves the problems described in Section 1.1. The solution
process for each class of problems has certain unique aspects, but all make use of
Newton’s method. Subroutine PLTMG is entered using the statement

Call PLTMG(VX, VY, SF, ITNODE, IBNDRY, ITDOF, IPATH,
E, IP, RP, SP, GF, A1XY, A2XY, FXY, GNXY, GDXY,
P1XY, P2XY, SXY)

On input, the arrays VX, VY, SF, ITNODE, ITDOF, and IBNDRY define
a triangulation. Arrays IPATH E, and GF are discussed in Sections 2.5 and 2.6.
Fortran subroutines A1XY, A2XY, FXY, GNXY, GDXY, P1XY, and P2XY are
documented in Section 2.8. Subroutine SXY is documented in Section 2.2. Param-
eters in the IP, RP, and SP arrays read and written by PLTMG are summarized
in Tables 2.12–2.14.

The parameter IPROB indicates the problem class; the various options are
shown in Table 4.1. The case IPROB > 0 indicates a standard sequential solve,
either on a single processor, or on multiple processors as part of the second phase
of the Bank-Holst paradigm. The case IPROB < 0 indicates the global parallel
domain decomposition solve as part of the Bank-Holst paradigm. Because this is
a global solve it involves some MPI communication at each iteration step. When
IPROB < 0, the parallel domain decomposition solve is preceded by a local solve
on each processor, in order to insure the quality of the initial guess for the global
problem.

The cases IPROB = ±3 and IPROB = ±4 have various suboptions unique
to their particular problem class. The available options are specified through the
parameter ITASK . These are summarized in Table 4.2.

59

60 PLTMG USERS’ GUIDE 12.0

IPROB problem option

1 elliptic boundary value problem
2 obstacle problem
3 continuation problem
4 parameter identification problem
5 optimal control problem

-1 DD solve for elliptic boundary value problem
-2 DD solve for obstacle problem
-3 DD solve for continuation problem
-4 DD solve for parameter identification problem
-5 DD solve for optimal control problem

Table 4.1. The parameter IPROB.

ITASK IPROB option

0 1 default
9 use functional

0 2 default

0 continue to the nearest target point
1 continue to the nearest target or singular point
2 switch branches at a bifurcation point
3 3 switch λ and/or ρ; initialize with λ fixed
4 switch λ and/or ρ; initialize with ρ fixed
5 solve with σ = 0, θ = 0 (λ fixed)
6 solve with σ = 0, θ = 2 (ρ fixed)
7 solve with σ = 0, θ = 1

0 4 default
8 λ affects domain shape

0 5 default

Table 4.2. The parameter ITASK.

4.2 Elliptic Boundary Value Problems.
When IPROB = 1, PLTMG solves the discrete system (1.6). If the underlying
boundary values problem is not self-adjoint some upwinding terms based on the
Scharfetter–Gummel discretization scheme [6, 10] are added to the discretization;
in this case (1.6) should be replaced by: find uh ∈Md such that

ah(uh, v) = 0 for all v ∈Me, (4.1)

4.2. Elliptic Boundary Value Problems. 61

where ah(uh, v) reflects the additional stabilization terms. We note that the up-
winding terms are derived for the case of piecewise linear finite elements (p = 1).
While a similar upwinding scheme is also formally applied to higher degree elements,
its stability and convergence properties are not yet analyzed. In any event, (4.1)
corresponds to the system of nonlinear equations

G(U) = 0, (4.2)

where the unknown vector U corresponds to the values of the finite element solution
uh at the vertices of the triangulation. The Jacobian matrix

A(U) =
∂G(U)

∂U

is a sparse stiffness matrix corresponding to a linear elliptic boundary value problem
(linearized about U). Even in the event the the original problem is linear, PLTMG
solves all problems with IPROB = 1 as nonlinear, and formally applies Newton’s
method to (4.2). In Figure 4.1, we summarize our approximate Newton procedure
with line search.

Procedure Newton

N1 Begin with initial guess U0, and a sufficient
decrease parameter τ . Set k ← 0,
s0 ← 1, and compute G0 and ||G0||.

N2 solve (approximately) AkδUk = −G(Uk).
N3 compute Uk+1 = Uk + skδUk, Gk+1, ||Gk+1||, and

ξk+1 = ||Gk+1||/||Gk||.
N4 if 1− ξk+1 < τsk, then decrease sk and go to N3;

else set sk+1 ← sk/(sk + (1− sk)ξk+1/100)
and k ← k + 1.

N5 if converged, then exit; else go to N2.

Figure 4.1.

The scalar sk is the damping parameter. When the sufficient decrease crite-
rion is not satisfied on line N4 and sk must be reduced, the next value is found
through application of one step of a guarded secant/bisection algorithm to the one-
dimensional minimization problem

min
sk
||G(Uk + skδUk)||.

If sufficient decrease is achieved, the current sk is used to predict sk+1; this formula is
designed to force rapid increase of sk+1 → 1 when ξk+1 becomes small as superlinear
convergence occurs, and at the same time provide a reasonable first guess in the
early stages of the Newton iteration, when damping is most important. A maximum
of MXNWTT damped Newton iterations are allowed. PLTMG reports the actual
number of Newton iterations used on the most recent call in the parameter ITNUM,

62 PLTMG USERS’ GUIDE 12.0

and the number of evaluations of G as IEVALS; IEV ALS ≥ ITNUM , since more
than one function evaluation may be used in each line search.

As a simple example, we solve the Poisson equation

−∆u = 1 in Ω,
u = 0 on ∂Ω,

The domain Ω was provided as a skeleton and is shown in Figure 4.2. This problem
was solved using hp adaptive refinement using eight processors. The skeleton was
triangulated, and then a mesh with NVF = 3529 and NDF = 9566, was adaptively
created on one processor. The processor then did a load balance step (IADAPT = 6
in TRIGEN) and broadcast this mesh to all processors. The load balance is shown in
Figure 4.2. Each processor then independently continued the refinement process on
its subregion, using five hp adaptive refinement steps. The global refined mesh was
made conforming (IADAPT = 7 in TRIGEN) and the domain decomposition solver
invoked in PLTMG (IPROB = −1). The resulting global mesh had NDF = 98115
degrees of freedom; the global solution is shown in Figure 4.2. The global mesh
colored by element size and polynomial degree is shown in Figure 4.2, along with
a timing summary for the entire calculation, and a convergence history for the
Domain Decomposition solver (see Section 4.4).

4.3 Linear Solvers.
All sets of linear equations involving the matrices A(U) and A(U)t have the ap-
pearance of finite element discretizations of linear elliptic boundary value problems.
These systems can be solved using a variety of preconditioners, coupled with the
composite step conjugate gradient method (ISPD = 1) or composite step biconju-
gate gradient method (ISPD = 0). The composite step algorithms [9, 8] are similar
to the standard biconjugate gradient and conjugate gradient methods, respectively,
except that they occasionally proceed from the iterate for step k to the iterate for
step k+2. Such composite steps are taken to improve the stability of the recurrence
relations and smooth the behavior of the residual norm. Note in particular that
the composite step conjugate gradient method can be applied to symmetric but
indefinite problems. The maximum number of iterations to be used per solution
is specified by the parameter MXCG. Note that as many as MXCG iterations are
used each time a system of linear equations is solved.

The selection of preconditioner is governed by the parameter METHOD as
summarized in Table 4.3. Combinations of three different matrices are used in com-
posing these preconditioners. We remark that in all cases the matrices are ordered
using a (block) minimum degree algorithm. In particular, dense blocks correspond-
ing to element interior degrees of freedom are always ordered first, as these blocks
could be eliminated through Gaussian Elimination (static condensation) without
causing any fill-in.

ILU is an incomplete LDU factorization based on the multigraph algorithm
[32, 31]. The parameter DTOL is the drop tolerance for this approximate factoriza-
tion. Generally, smaller values of DTOL result in more accurate ILU factorizations,

4.3. Linear Solvers. 63

The skeleton with NVF = 135 (left) and the resulting triangulation with NVF = 1381
(right).

The mesh with NDF = 9566 showing the load balance (left), and the solution on the global
fine mesh NDG = 98115 (right).

The global refined mesh colored by element size (left) and by polynomial degree (right).

Some timing statistics (left) and convergence history for the DD solver (right).

Figure 4.2.

64 PLTMG USERS’ GUIDE 12.0

METHOD preconditioner

0 Block SGS smoother, HB coarse space
1 ILU

Table 4.3. The parameter METHOD.

but higher costs in space and time per iteration. The extreme case DTOL = 0 re-
sults in a sparse direct factorization.

SGS is a block symmetric Gauss-Seidel preconditioner, based on the diagonal,
upper and lower triangular blocks of the matrix A. The diagonal blocks of A are
factored using dense LDU factorizations. HB is a coarse grid correction based on
hierarchical basis. LetM denote the hp finite element space used in assembling the
matrix A. Our coarse space Mc ⊂ M is composed as the union of the following
sets of basis functions.

1. A standard continuous piecewise linear nodal basis function is associated with
each vertex in the mesh.

2. For every edge in the triangulation with p ≥ 2, we associate a continuous piece-
wise quadratic nodal basis function (quadratic bump function) corresponding
to the edge midpoint.

3. For every element in the triangulation with p ≥ 3, we associate a continuous
piecewise cubic nodal basis function (cubic bubble function) corresponding to
the element barycenter.

The maximum dimension ofMc is approximately 6×NVF, if every quadratic bump
and cubic bubble function is present. The coarse space matrix Ac is computed from
A by

Ac = StAS

for an appropriately defined rectangular change of basis matrix S. Then we compute
an approximate LDU factorization of the matrix Ac. The parameter DTOL is the
drop tolerance for this approximate factorization. This approximate factorization
serves as the coarse grid correction in a two-level preconditioner. One cycle of the
two level iteration consists of one pre-smoothing step (SGS), followed by the coarse
grid correction step, and one post-smoothing step (SGS).

As a general remark, the SGS/HB two-level solver typically requires less setup
time but more solution time compared to ILU. Overall, ILU becomes increasingly
effective when there are many high degree elements and the matrix A becomes
increasingly dense. ILU also is very effective on convection dominated highly non-
symmetric problems. The SGS/HB two-level solver is most effective when there
are many low degree elements in the mesh. Finally, note that a direct method is
available using ILU with DTOL = 0.

4.4. Domain Decomposition Solver 65

4.4 Domain Decomposition Solver
Here we describe the domain decomposition algorithm implemented in PLTMG for
Step 3 of the Bank-Holst paradigm (see Section 3.8). This algorithm is described in
detail in [18, 4, 48, 34]. It is motivated by and similar to the domain decomposition
algorithms described in [17, 16]. In the case IPROB = −1, this solver is used in
place of the simple linear solver in line N2 of Procedure Newton given in Figure
4.1.

For simplicity in our discussion here, we restrict attention to the case of just
two subdomains. In our scheme, each subregion contributes equations corresponding
all fine degrees of freedom, including its interface. Thus in general there will be
multiple unknowns and equations in the global system corresponding to the interface
degrees of freedom. This is handled by equality constraints that impose continuity
at all degrees of freedom on the interface. The result is a mortar-element like
formulation, using Dirac δ functions for the mortar element space. In any event,
with a proper ordering of unknowns, the global system of equations has the block
5× 5 form 

A11 A1γ

Aγ1 Aγγ I
Aνν Aν2 −I
A2ν A22

I −I



δU1

δUγ
δUν
δU2

Λ

 =


R1

Rγ
Rν
R2

Uν − Uγ

 . (4.3)

Here A11 and A22 correspond to the fine degrees of freedom on processors 1
and 2, respectively, that are not on the interface, while Aγγ and Aνν correspond to
interface points. The fifth block equation imposes continuity, and its corresponding
Lagrange multiplier is Λ. The identity matrix appears because the global fine mesh
is conforming. The introduction of the Lagrange multiplier and the saddle point
formulation (4.3) are only for expository purposes; indeed, Λ is never computed or
updated.

On processor 1, we develop a similar but “local” saddle point formulation.
That is, the fine mesh subregion on processor 1 is “mortared” to the remaining
course mesh on processor 1. This leads to a linear system of the form

A11 A1γ

Aγ1 Aγγ I
Āνν Āν2 −I
Ā2ν Ā22

I −I



δU1

δUγ
δŪν
δŪ2

Λ

 =


R1

Rγ
Rν
0

Uν − Uγ

 , (4.4)

where quantities with a bar (e.g., Ā22) refer to the coarse mesh. A system similar
to (4.4) can be derived for processor 2. With respect to the right hand side of
(4.4), the interior residual R1 and the interface residual Rγ are locally computed
on processor 1. We obtain the boundary residual Rν , and boundary solution Uν
from processor 2; processor 2 in turn must be sent Rγ and Uγ . The residual for
the coarse grid interior points is set to zero. This avoids the need to obtain R2 via
communication, and to implement a procedure to restrict R2 to the coarse mesh on

66 PLTMG USERS’ GUIDE 12.0

processor 1. Given our initial guess, we expect R1 ≈ 0 and R2 ≈ 0 at all iteration
steps. Rγ and Rν are not generally small, but Rγ +Rν → 0 at convergence.

As with the global formulation (4.3), equation (4.4) is introduced mainly for
exposition. The goal of the calculation on processor 1 is to compute the updates
δU1 and δUγ , which contribute to the global conforming solution. To this end, we
formally reorder (4.4) as

−I I
−I Āνν Āν2

A11 A1γ

I Aγ1 Aγγ
Ā2ν Ā22




Λ
δŪν
δU1

δUγ
δŪ2

 =


Uν − Uγ
Rν
R1

Rγ
0

 . (4.5)

Block elimination of the Lagrange multiplier Λ and δŪν in (4.5) leads to the block
3× 3 Schur complement systemA11 A1γ

Aγ1 Aγγ + Āνν Āν2

Ā2ν Ā22

δU1

δUγ
δŪ2

 =

 R1

Rγ +Rν + Āνν(Uν − Uγ)
Ā2ν(Uν − Uγ)

 . (4.6)

The system matrix in (4.6) corresponds to the final adaptive refinement step on
processor 1, with possible modifications due to global fine mesh regularization. It is
exactly the matrix used in the preliminary local solve to generate the initial guess for
the global domain decomposition iteration. In the solution of (4.6), the components
δU1 and δUγ contribute to the global solution update, while δŪ2 is discarded. We
remark that the global iteration matrix corresponding to this formulation is not
symmetric, even if all local system matrices are symmetric.

The domain decomposition algorithm is incorporated as the solver for the ap-
proximate Newton iteration described in Figure 4.1. In particular, only one domain
decomposition iteration (a so-called inner iteration) is used in each approximate
Newton step. Thus, loosely speaking, each solve of (4.6) alternates with a line
search step in which the global solution is updated. The Newton line search pro-
cedure requires global communication to form some norms and inner products, as
well as the boundary exchange described above.

4.5 Obstacle Problems.
When IPROB = 2, PLTMG solves the obstacle problem (1.8). The inequality con-
straints are treated via an interior point procedure [13]. In particular, we consider
the Lagrange function

L(uh) = ρ(uh)− µ
NDF∑
i=1

di {log(uh(pi)− u(pi)) + log(u(pi)− uh(pi))} (4.7)

where µ > 0 is a small barrier parameter; the user specifies the target value in
RMTRGT. Vertices of the triangulation are denoted by pi = (xi, yi), and di is the

4.5. Obstacle Problems. 67

diagonal entry of the mass matrix corresponding to pi. The weights di = O(h2
i)

scale the barrier terms in a fashion similar to ρ(uh), and make µ independent of the
mesh.

The overall solution strategy is to compute stationary points of the Lagrange
function (4.7) for a decreasing sequence of RMTRGT = µ > 0 values, following a
smooth trajectory moving towards the boundary of the feasible region. This has
much in common with the more general path following procedures used in the case
IPROB = 3.

The assembly and solution procedures are quite similar to the case IPROB =
1. In particular, the right hand side is modified by terms of the form

−µdi
{

(uh(pi)− u(pi))
−1 + (uh(pi)− u(pi))

−1
}
,

and the diagonal of the stiffness matrix (Hessian matrix of the functional ρ(uh)) is
modified by terms of the form

µdi
{

(uh(pi)− u(pi))
−2 + (uh(pi)− u(pi))

−2
}
.

With these modifications, the approximate Newton strategy described in Section
4.2 is used here.

When IPROB = −2, the domain decomposition algorithm outlined in Section
4.4 is used, with appropriate modifications to the stiffness matrix and right hand
sides. As in the case IPROB = −1, only one domain decomposition solve (inner
iteration) is used in each approximate Newton iteration.

As an example, we use PLTMG to solve the variational inequality

min
u∈K

∫
Ω

{|∇u|2 − 2f(x, y)u}dx dy

where the domain Ω = (0, 1)× (0, 1), and

K =

{
u ∈ H1

0(Ω) : |u| ≤ 1

4
− 1

10
sin(πx) sin(πy)

}
,

f(x, y) = −∆(sin(3πx) sin(3πy)).

In the absence of the obstacle, this is a simple elliptic equation with exact solution
u = sin(3πx) sin(3πy).

In this example, we compare h-refinement using piecewise linear elements with
hp-refinement. In both cases, we begin with linear elements on a uniform 9 × 9
mesh, as illustrated in Figure 4.3. In both cases, we went through eight adaptive
loops, followed by solving the problem with µ = 1. Then we made three additional
solutions with µ = 10−k for 1 ≤ k ≤ 3.

In the case of piecewise linear elements, the final mesh had NTF = 31285
elements and NDF = 15831 degrees of freedom. The solution, the mesh colored by
element size, and the a posterior error estimate for the final solution are shown in
Figure 4.3. In the case of hp-refinement, the final mesh had NTF = 4413 elements
and NDF = 12650 degrees of freedom. The solution, the mesh colored by element
size and element degree, and the error estimate are shown in Figure 4.3.

68 PLTMG USERS’ GUIDE 12.0

We note that in the hp-adaptive case, the mesh is coarser and more uniform.
In the h-refinement case, there was more refinement near the boundaries where
the inequality constraint was satisfied as equality, and much less refinement in the
interior of those regions. The hp mesh used mostly quadratic and cubic elements,
and was much more uniform. In the regions where the inequality constraint was
satisfied as equality, one sees the effect of imposing the inequalities just at the nodes;
one observes small oscillations in these regions due to the higher degree polynomials.

4.6 Continuation Problems.
In the case of continuation problems (IPROB = 3), the parameter ITASK speci-
fies the the continuation option. Available options are summarized in Table 4.2.
For convenience in notation, we will systematically drop the subscript h from all
variables in this section (e.g., λh will be denoted λ).

When the continuation process is used, we use a normalization equation of
the form

N(u, λ) = σ.

The scalar σ = SIGMA is the steplength. PLTMG uses then the normalization
equation described in [7, 53],

N(u, λ) = θρ̇0(ρ− ρ0) + (2− θ)λ̇0(λ− λ0). (4.8)

Here θ = THETA is a parameter selected by PLTMG; by choosing θ and σ properly,
it is possible to achieve target values in either ρ or λ. The vector (ut0, λ0) is the
current solution point and (u̇t0, λ̇0) the current unit tangent vector. The scalar ρ̇ is
defined formally using the chain rule for differentiation:

ρ̇ = ρuu̇+ ρλλ̇.

The values 0 ≤ ITASK ≤ 4 embody the basic continuation path following
options available in PLTMG. The values 5 ≤ ITASK ≤ 7 are designed for updating
the solution at a fixed point when the mesh has been changed by a call to TRIGEN.

An initial solution is provided by the user through subroutine GDXY. There-
after, the continuation proceeds from the last successfully computed point. A brief
outline of the basic continuation process (ITASK = 0 or ITASK = 1) is given in
Figure 4.4.

PLTMG always returns with (RLTRGT,RTRGT) = (RL,R) ≡ (λ, ρ). To
continue with ITASK = 0 or ITASK = 1, the user specifies a target value for
either RTRGT or RLTRGT. If RLTRGT 6= RL, then PLTMG seeks a solution
with λ = RLTRGT. Similarly, if RTRGT 6= R, then PLTMG seeks a solution with
ρ = RTRGT.

A step σ and a predicted solution are computed on line C2. The predictor
is a standard Euler type commonly used in continuation procedures. The step
size calculation is influenced not only by the user request but also by imposed
requirements that the predicted solution be sufficiently accurate. The procedures
used in this portion of the calculation are described in detail in [20]. The solution

4.6. Continuation Problems. 69

The initial uniform mesh (left), and the final mesh for the case of h-refinement, colored
by element size (right).

The piecewise linear solution (left) and corresponding error estimate (right).

The final adaptive mesh for hp-refinement, colored by element size (left) and polynomial
degree (right).

The hp-adaptive solution (left) and corresponding error estimate (right).

Figure 4.3.

70 PLTMG USERS’ GUIDE 12.0

Procedure Continue

C1 Begin with initial solution (ut0, λ0) and tangent
vector (u̇t0, λ̇0).

C2 compute the step σ for the normalization equation;
predict (ut, λ)← (ut0, λ0) + α(u̇t0, λ̇0).

C3 correct (ut, λ)← NWT (ut, λ);
compute ψ`, ψr, and ν;
compute tentative u̇ and λ̇.

C4 if a singular point was detected and ITASK = 1,
then go to C7.

C5 set (ut0, λ0)← (ut, λ) and (u̇t0, λ̇0)← (u̇t, λ̇).
C6 if (ut0, λ0) is a target point, then exit; else go to C2.
C7 compute the singular point using secant/bisection

algorithm on ν(σ) = 0; exit.

Figure 4.4.

is corrected on line C3. The correction process symbolized by the operator NWT
involves the solution of a set of nonlinear equations, and is discussed in greater
detail below.

PLTMG locates singular points by computing the smallest singular value ν
of the Jacobian matrix. A modified inverse iteration procedure computes the left
and right singular vectors ψ` and ψr corresponding to ν as part of each correction
step C3. If the matrix is symmetric (ISPD = 1), then ψ` ≡ ψr. In a somewhat
nonstandard fashion for singular values, we normalize the singular vectors to have
unit length and satisfy ∫

Ω

ψ`ψr dx > 0.

Requiring the sign of the inner product of ψ` and ψr to be positive forces the singular
value ν to change sign at a singular point (normally one requires ν ≥ 0 and then the
inner product changes sign at singular points). Unfortunately, while ν changes sign
in a continuous fashion at singular points, it can also change sign discontinuously
at regular points. For example, in the self-adjoint linear eigenvalue problem, along
the trivial branch ν will continuously pass through zero at each eigenvalue and
will discontinuously change sign at some point between each consecutive pair of
eigenvalues where the smallest singular value of the Jacobian changes from the
preceding to the following eigenvalue.

If PLTMG detects a change in sign in ν along the solution curve between
the starting point and target point, and if ITASK = 1, the computation of the
target point is abandoned in favor of computation of the possible singular point.
A secant/bisection algorithm for the equation ν(σ) = 0 is used. More details of
these procedures can be found in Bank and Chan [7] and the references therein. At
the conclusion of this iteration, some tests are made to determine if the point is a
bifurcation point, a limit point, or a regular point.

4.6. Continuation Problems. 71

The algorithms in PLTMG were designed to handle only simple limit and
bifurcation points, although on occasion we have observed them to work on some
higher degree singular points as well. When a target or singular point has been suc-
cessfully computed, PLTMG returns with (RLTRGT,RTRGT) set to the current
values of (λ, ρ).

If PLTMG is called with ITASK = 2 at a bifurcation point, parameters rele-
vant for the continuation procedure are initialized for the bifurcating branch, but
the solution itself remains unchanged. In the next call to PLTMG with ITASK = 0
or ITASK = 1, the continuation procedure will follow the bifurcating branch.

If PLTMG is called with ITASK = 3 or ITASK = 4, parameters relevant for
the continuation procedure are reinitialized using the new parameter or functional;
the solution itself remains unchanged. The two cases differ in that either λ or ρ
can be held fixed during the reinitialization; for either case it is possible to specify
either a new continuation parameter λ, a new functional ρ, or both.

The successful use of the continuation procedure requires guidance from the
user. For example, it is possible to specify target values that cannot be reached.
Also, since singular points are detected by changes in sign of ν, one can fool the
singular-point detection algorithm by specifying target values sufficiently far away
that two sign changes are passed on one step.

We now consider the cases 5 ≤ ITASK ≤ 7. We begin by noting that the
discretization process can introduce spurious solution curves or cause significant
distortions in the solution curves of the continuous problem (1.1); one must therefore
be cautious in interpreting the numerical results [52]. As the mesh is refined or the
mesh points are smoothed, the solution curves generally will move; the assumption
of PLTMG is that, as a function of the discretization, the solution curves converge
in some uniform fashion to those of the continuous problem, and that the mesh
is sufficiently fine to capture the qualitative features of the continuous problem’s
solution curves in the regions of interest [7, 19]. Typically, for each point on the
current grid, there are three natural points on a nearby new grid solution curve
that can be associated with it: the point with the same λ value (ITASK = 5), the
point with the same ρ value (ITASK = 6), and the point of intersection with the
perpendicular hyperplane passing through the current solution point (ITASK = 7).
Some typical examples are illustrated in Figure 4.5.

In some situations, all three points may not exist, or they may not be distinct.
This is illustrated in Figure 4.5, right, where ITASK = 6 and ITASK = 7 correspond
to the same fine grid point, while no (nearby) solution exists for ITASK = 5.

We now consider the linear algebraic aspects of the problem. As with other
problem types, the nonlinear systems for IPROB = 3 are solved by the approximate
Newton iteration [29, 28] described in Figure 4.1. The nonlinear system to be solved
has the form

G(u, λ) = 0,

N(u, λ) = σ.

Here the operator G represents the finite element equations of order NDF, and N
the normalizing equation used in the continuation process; σ is the steplength. At

72 PLTMG USERS’ GUIDE 12.0

.
.................................

...............................

.............................

...........................

.........................

........................

.........................

.........................

.........................

..........................

.
.................................

...............................

.............................

...........................

.........................

........................

.........................

.........................

.........................

..........................

J
J

coarse grid

fine grid

ITASK = 7

ITASK = 6

ITASK = 5

λ

ρ

coarse grid

fine grid

ITASK = 6

ITASK = 7

λ

ρ

Figure 4.5. The effect of ITASK in the case of mesh refinement.

each step of the Newton process, the linear system to be solved has the form(
Gu Gλ
Nu Nλ

)(
δu
δλ

)
= −

(
G(u, λ)

N(u, λ)− σ

)
, (4.9)

where δu is a vector of length NDF and δλ is a scalar. The solution is constructed
by solving

Guv = −G,
Guw = −Gλ −Guūλ,
ūλ ← ūλ + w,

δλ = −Nuv +N − σ
Nuūλ +Nλ

,

δu = v + δλ ūλ.

The vector ūλ, initially set to zero, is updated at every step. Thus the right-
hand side Gλ + Guūλ has the appearance of a residual, and w may be viewed as
an incremental update. At convergence, ūλλ̇ = u̇, so u̇ is known at every Newton
step. The linear systems involving Gu are solved by the one of the linear solvers
described in Section 4.3.

The block elimination process is embedded in the overall damped Newton
process [20, 28] given in Figure 4.1. Here U tk = (ut, λ) is the kth Newton iterate,
δU tk = (δut, δλ), and Gtk = (Gt, N − σ). The norm ||Gk|| is given by

||Gk||2 = ||G||2 + c|N − σ|2,

where c is a scaling parameter (SCALE in the RP array) chosen to balance the two
terms appropriately.

The case IPROB = −3 corresponds to a parallel solve of the block linear
system (4.9), embedded in the overall Newton iteration. It is defined only for the
cases ITASK = 5, 6, 7; at present there is no parallel implementation of the basic
path following options. Thus we assume that the continuation is done on a coarse
mesh on a single processor, and parallel computation is used only in the context of
computing a highly refined solution at a particular point.

4.6. Continuation Problems. 73

For continuation problems, PLTMG provides a limited amount of written
output summarizing the state of the computation. All formats are designed for
output devices having a minimum of 80 characters per line. All output is directed
to the subroutine FILUTL, which is responsible for creating the files BFILE and
JWFILE.

For each call to PLTMG a banner is printed. Each continuation step results in
a single line of output containing seven numbers. A typical example of such output
is illustrated below:

pltmg: lambda rho lambda dot rho dot eigenvalue

0 3 0.99004E+01 0.39814E+01 -0.80768E-02 0.39890E+01 -0.94673E-04

The first column contains the current value of IFLAG (in this example, IFLAG =
0). The second contains the value of ITNUM, the actual number of approximate
Newton iterations used. The next four columns contain the current values of the
parameter λ, the functional ρ, and their derivatives with respect to arclength along
the current solution manifold λ̇ and ρ̇. The column labeled “eigenvalue” gives an
approximation to the smallest singular value ν of the Jacobian matrix Gu.

As an example, we consider the nonlinear eigenvalue problem

−∆u = λ sinu in Ω ≡ (0, 1)× (0, 1),
u = 0 on ∂Ω,

with the functional given by

ρ(u, λ) =

∫
Ω

u2 dx dy.

This problem has bifurcation points at the eigenvalues of the linear eigenvalue prob-
lem, −∆u = λu, which are given by λk` = (k2 + `2)π2, k = 1, 2, . . . , ` = 1, 2,
We chose as our coarse mesh a 17 × 17 uniform mesh, and will employ piecewise
linear elements.

Our goal is to compute the first four eigenvalues and eigenfunctions. The first
and third eigenvalues have multiplicity one. The second and fourth eigenvalues
have multiplicity two. While the algorithms in PLTMG are not designed to handle
multiplicities greater than one, the code performed in a satisfactory fashion and
computed all four eigenvalues without difficulty. As a cautionary remark, one should
not assume that the situation in this respect will always be so favorable.

We initialize at λ = 0 and continue to λ = 10 with ITASK = 0 and then to
λ = 22 with ITASK = 1. At λ = 22, the sign of ν (eigenvalue) has changed, so
PLTMG computes the singular point, in this case the first eigenvalue. These basic
continuation steps were done on a uniform 17 × 17 mesh, using piecewise linear
finite elements.

pltmg: lambda rho lambda dot rho dot eigenvalue

0 1 0.00000E+00 0.00000E+00 0.10000E+01 0.00000E+00 0.78964E-01

0 1 0.10000E+02 0.00000E+00 0.10000E+01 0.00000E+00 0.38375E-01

0 1 0.22000E+02 0.00000E+00 0.10000E+01 0.00000E+00 -0.81464E-02

74 PLTMG USERS’ GUIDE 12.0

pltmg: find limit / bifurcation point

0 1 0.19899E+02 0.00000E+00 0.10000E+01 0.00000E+00 -0.86933E-04

0 1 0.19876E+02 0.00000E+00 0.10000E+01 0.00000E+00 0.71791E-06

0 1 0.19876E+02 0.00000E+00 0.10000E+01 0.00000E+00 -0.36357E-11

pltmg: probable bifurcation point

0 0 0.19876E+02 0.00000E+00 0.10000E+01 0.00000E+00 -0.36357E-11

Note that the secant/bisection algorithm converged in three steps. After deter-
mining that the singular point was a bifurcation point, PLTMG makes an additional
calculation to ensure that the tangent vector u̇h corresponds to the current branch
(in this case, the trivial branch).

We save the solution in a file in order to continue from this point to the
second eigenvalue in a convenient manner (see Section 6.7), and switch branches
(ITASK = 2). We then routinely continue on the bifurcating branch in several steps
(ρ = .01, λ = 25, 50, 100, 150, 300, 500). At λ = 500, we hp-refine the mesh with a
three calls to TRIGEN with IADAPT = 1, alternating with calls to PLTMG with
ITASK = 7. The eigenfunction and mesh are shown in Figure 4.6.

We restore the solution at the bifurcation point and continue along the trivial
branch to the second eigenvalue. We save the solution, switch branches and explore
the bifurcating branch in a fashion similar to the first eigenvalue. A similar proce-
dure is repeated for the third and fourth eigenvalues. The eigenfunctions computed
on hp-refined meshes are shown in Figure 4.6. In Figure 4.7, we show the complete
history of the calculation in terms of the continuation path.

4.7 Parameter Identification Problems.
When IPROB = 4, PLTMG solves the parameter identification problem (1.9)-
(1.12). Up to ten scalar parameters are allowed; 1 ≤ NRL ≤ 10 denotes the number
of parameters. If one or more of the parameters influences the shape of Ω through
SXY, then one should set ITASK = 8 . This signals PLTMG to invoke certain
additional procedures within the basic Newton iteration that modify the shape of
Ω.

The simple bounds on λh are treated in a fashion analogous to the case
IPROB = 2. In particular, we consider the Lagrangian

L(uh, vh, λh) = ρ(uh, λh) + a(uh, vh)

− µ


NRL∑
k=1

log(λh,k − λk)− log(λk − λh,k)

 (4.10)

where µ > 0 is the barrier parameter and vh is the Lagrange multiplier (a member
of the finite element subspace). Our procedure computes a stationary point of the
Lagrangian (4.10) using an approximate Newton method.

The linear algebra problem at each Newton iteration is of the formH At Cu
A 0 Cv
Ctu Ctv D

δuδv
δλ

 =

bubv
bλ

 . (4.11)

4.7. Parameter Identification Problems. 75

The first eigenfunction; NTF = 1490 and NDF = 3868.

The second eigenfunction; NTF = 2150 and NDF = 4820.

The third eigenfunction; NTF = 2506 and NDF = 4999.

The fourth eigenfunction; NTF = 4684 and NDF = 4999.

Figure 4.6.

76 PLTMG USERS’ GUIDE 12.0

Figure 4.7. The continuation path.

Here the matrix A is the Jacobian matrix corresponding the the bilinear form
a(uh, vh). In particular, linear systems involving A (or At) are solved using the
the linear solver specified by METHOD. The matrix H is symmetric and has the
same sparsity pattern as A; other characteristics strongly depend on the particular
problem. Cu and Cv are NDF × NRL rectangular matrices, generally composed
of NRL dense column vectors, and D is a NRL × NRL symmetric matrix. The
vectors δu and δv are the (Newton) updates for uh and the Lagrange multiplier
vh, respectively, and δλ is the update for λh. bu, bv and bλ correspond to the
appropriate Newton residuals.

To describe the solution process for 4.11, we begin with the block factorizationH At Cu
A 0 Cv
Ctu Ctv D

 =

I 0 0
0 A 0
0 0 I

H I 0
I 0 0
Ctu C̄tv D̄

I 0 C̄v
0 I C̄u
0 0 I

I 0 0
0 At 0
0 0 I


where

AC̄v = Cv,

C̄u = Cu −HC̄v,
D̄ = D − CtuC̄v − C̄tvC̄u.

Computing C̄v requires solving NRL linear systems with A. The two block diagonal
matrices each require solution of one linear system with A or At. Thus a total of
2 + NRL elliptic pde systems need to be solved in each Newton step. The block

4.7. Parameter Identification Problems. 77

lower triangular system requires solving one dense linear system with the symmetric
NRL×NRL matrix D̄.

The overall solution procedure is summarized below. Since the linear systems
involving A are generally solved only approximately by iteration, we introduce the
matrix ūλ ≈ C̄v, that is generally the approximate C̄v saved from the previous
Newton step. This allows the computation of the current C̄v to be done as an
update with a residual-like right hand side. ūλ is initially set to zero, and updated
with the solution of every linear system.

First we solve

Ab̄v = bv,

Aw = Cv −Aūλ,
ūλ ← ūλ + w,

C̄v = ūλ.

All linear systems involving A are (approximately) solved using the linear solver
specified by METHOD. Then we form

b̄u = bu −Hb̄v,
C̄u = Cu −HC̄v,

which requires sparse matrix multiplications with H. Next we compute δλ using
the Schur complement

D̄ = D − CtuC̄v − C̄tvC̄u,
D̄δλ = bλ − Ctub̄v − C̄tv b̄u.

Finally, we form δu and δv from

δu = b̄v − C̄vδλ,
Atδv = b̄u − C̄uδλ.

The latter requires the use of the linear solver for At. The basic Newton iteration
is again that given in Figure 4.1 with the interpretation U t = (uth, v

t
h, λ

t
h) and

Gt = (btu, b
t
v, b

t
λ).

When IPROB = −4, a parallel Newton algorithm is implemented, similar in
structure to the case IPROB = −1. A domain decomposition solver analogous to
that described in Section 4.4 is incorporated into the block elimination algorithm
defined above.

As an example, we consider the problem

min

∫
Ω

∇u2 + δ

3∑
i=1

λ2
i dx,

subject to the boundary value problem and inequality constraints

−∆u = 1 in Ω

u = 0 on ∂Ω

λi ≤ λi ≤ λi, for 1 ≤ i ≤ 3.

78 PLTMG USERS’ GUIDE 12.0

The domain Ω is shown in Figure 4.8. The interior box is free to move within
the domain, with its position governed by three parameters. (λ1, λ2) are the (x, y)
coordinates of the center of the box and λ3 is its angle of rotation. This is the special
case IPROB = 4 and ITASK = 8 allowing parameters to control the geometry of
the domain.

The domain was provided as a skeleton and the initial mesh generated by
TRIGEN. Both are shown in Figure 4.8. The optimization problem was then solved
on this mesh using piecewise linear elements. This first optimization step involved
substantial movement of the boundary, but the number of degrees of freedom was
relatively small. Next, using alternating refinement and optimization steps, we
created a final mesh with NDF = 22483 degrees of freedom. In each optimization
step, the interior point parameter RMTRGT was reduced by a factor of 2 starting
from its initial value of 1. While the boundary was allowed to move on all these
additional optimization steps, it moved very little. In Figure 4.8, we also show the
final solution, Lagrange multiplier, and the a posteriori error estimate computed on
the final mesh.

4.8 Optimal Control Problems.
When IPROB = 5, PLTMG solves the control problem (1.13)-(1.16). This problem
is similar to the case IPROB = 4 except that now λh is a finite element function
rather than a scalar. Here we consider the Lagrangian

L(uh, vh, λh) = ρ(uh, λh) + a(uh, vh)

− µ
NDF∑
i=1

di
{

log(λh(pi)− λ(pi)) + log(λ(pi)− λh(pi))
}

(4.12)

where µ > 0 is the barrier parameter, di is the diagonal of the mass matrix corre-
sponding to vertex pi, and vh is the Lagrange multiplier. As usual, our algorithm
seeks a stationary point of the Lagrangian (4.12) using an approximate Newton
method.

The linear algebra problem at each Newton step is of the formH At Su
A 0 Sv
Stu Stv G

δuδv
δλ

 =

bubv
bλ

 . (4.13)

Here H and A are defined as before. In typical problems G is a symmetric, positive
definite matrix, corresponding the regularization terms in (4.12). The matrix G
also has a nonnegative diagonal term arising from the inequality constraints for
λh. As before, linear systems involving A and At are easily solved using the linear
solver specified by METHOD. Additionally, since G formally has the same sparsity
as the stiffness matrix A, linear systems involving G are solved using a similar
preconditioning strategy. The matrices Su and Sv have the same symmetric sparsity
structure as G and A, but are generally not symmetric.

4.8. Optimal Control Problems. 79

The skeleton (left) and initial mesh with NTF = 132 and NDF = 82 (right).

The mesh after the first optimization step (left) and the final mesh with NTF = 2981 and
NDF = 22483 colored by polynomial degree (right).

The final mesh colored by element size (left) and the solution (right).

The Lagrange multiplier (left), and the error estimate for the final mesh (right).

Figure 4.8.

80 PLTMG USERS’ GUIDE 12.0

Our solver is based on block Gaussian elimination, similar to the case IPROB =
4. However, in the case of (4.13), it is too expensive to compute an exact Schur
complement for the 3, 3 block; instead we approximate the Schur complement by G
itself. Thus, our solution algorithm is just a preconditioner. In particular, it is one
step of a block symmetric Gauss-Seidel iteration. This is realized as follows:

Ac̃u = bv,

Atc̃v = bu −Hc̃u,
Gδλ = bλ − Stuc̃u − Stv c̃v,
Aδu = bv − Svδλ,
Atδv = bu −Hδu− Suδλ.

Linear systems involving A, At, and G are solved using the appropriate linear
solver. If G were replaced by the Schur complement and all linear systems solved
exactly, this would yield the exact solution. This approximate solver is used a the
preconditioner for the composite step conjugate gradient iteration.

When IPROB = −5, a parallel Newton algorithm is implemented, similar in
structure to the case IPROB = −1. A domain decomposition solver analogous to
that described in Section 4.4 is incorporated into the block preconditioner defined
above.

As an example, we solve the optimal control problem

min

∫
Ω

(u− u0)2 + β(∇u−∇u0)2 + γλ2 dx

subject to the constraint equation

−∆u = λ in Ω ≡ (0, 1)× (0, 1),
u = 0 on ∂Ω,

and the inequalities
1 ≤ λ ≤ 10.

The target function u0 was

u0 = sin(3πx) sin(3πy),

β = 10−2, and the regularization parameter γ = 10−4.
This problem was solved in parallel using 16 processors, starting from an initial

uniform 17 × 17 mesh and piecewise linear elements. This mesh was adaptively
refined to NTF = 13241 elements and NDF = 6700, and partitioned, as illustrated
in Figure 4.9. Each processor went through five iterations of adaptive refinement,
with MXORD = 1, so that only piecewise linear polynomials were used. This
produced a global mesh with NDG = 330269 and block 3×3 linear systems of order
990807. The interior point parameter µ = µ0 = 10−2 on the 17 × 17 mesh, and
thereafter was reduced by a factor of 2 in each refinement step, for a final size of
µ ≈ 1.4× 10−4.

4.8. Optimal Control Problems. 81

The final global mesh, colored by element size, is shown in Figure 4.9. In
Figure 4.9, the solution (state variable), the Lagrange multiplier, the control λ, and
the error estimate are also shown. Note that PLTMG chooses only one approxima-
tion space that is used for all three functions. Also all three functions contribute
to the error estimate used in the adaptive procedure. The fact that the control λ is
essentially a piecewise constant, while the other two functions are relatively smooth
is likely responsible for the observed refinement pattern.

82 PLTMG USERS’ GUIDE 12.0

The initial 17× 17 mesh (left) and the load balance with NTF = 13241 (right).

The global refined mesh with NDG = 330269 colored by size (left) and the convergence
history of the Domain Decomposition solver (right).

The solution u (left) and the Lagrange multiplier v (right).

The control λ (left) and the error estimate on the final mesh (right).

Figure 4.9.

Chapter 5

Graphics

5.1 Overview.
The graphics package associated with PLTMG is composed of subroutines TRIPLT,
INPLT, and GPHPLT. These routines are written in self-contained, portable For-
tran, addressing the graphics output device through subroutines PLINE, PFILL,
PFRAME, and PLTUTL. The specifications for these routines are given in Sec-
tion 6.12.

Typical graphics output consists of three windows or frames. There is a large
square window on the left, and two smaller square windows on the right. The
main image typically appears in the large frame, and other useful information (for
example, a legend matching colors to function values) appears in the smaller frames.
The graphics interface provides z-buffer information, for use in three dimensional
imaging systems such as OpenGL. All the graphics routines are written such that
the image appearing in the main window can be animated using such graphics
systems when appropriate.

Subroutine TRIPLT graphs the solution and various associated functions (e.g.,
u̇, ψr, εt). TRIPLT also has options for plotting vector functions (e.g., ∇uh).
Subroutine INPLT can display either a triangulation or a skeleton, with elements or
regions colored according to various attributes such as the quality of the elements in
a triangulation. Subroutine GPHPLT displays various graphs and charts containing
timings, convergence histories, and other items of interest.

The parameter MXCOLR is a device dependent constant, stating the max-
imum number of colors available for use by the graphics package. We assume
that 2 ≤ MXCOLR. While it is possible to make some interesting plots and
contour maps with TRIPLT using only monochrome devices (MXCOLR = 2),
TRIPLT makes extensive use of available color facilities in producing (shaded)
three-dimensional surface plots and vector plots. GPHPLT and INPLT also use
color, but in less critical ways.

Subroutines TRIPLT, INPLT and GPHPLT offer some capabilities for parallel
processing. In the parallel processing environment, only the master process (corre-

83

84 PLTMG USERS’ GUIDE 12.0

sponding to IRGN = 1) makes calls to the graphics interface routines (PLTUTL,
PFRAME, LINE, and PFILL. However, in the case of TRIPLT or INPLT, one
may wish to plot the solution, error, or some other function in situations where the
data is distributed among the processors. If MPI is turned on (MPISW = 1), and
MPIRGN = 0, then TRIPLT and INPLT collect data from all other processors,
and draw a composite picture consisting of the union of the refined regions for each
processor. If the problem is sufficiently large that it is impossible or inefficient to
collect all the data on a single processor, each processor can coarsen its data before
sending it to the master process. This coarsening process is controlled by the pa-
rameters ICRSN and ITRGT. If MPI is turned off (MPISW = −1), then TRIPLT
and INPLT draw the function on processor one (refined in region one and coarse
elsewhere). If one wishes to see the complete image as its exists on some other
processor, say processor I, set MPISW = 1, MPIRGN = I, and call TRIPLT or
INPLT. For some options, GPHPLT collects data from all processors when MPI is
turned on, for example in presenting timing and load balancing data.

For most of the examples of graphics output, we solved Laplace’s equation
in a circle of radius one with a crack along the positive x axis. This domain was
used to illustrate the triangulation data structure in Section 2.3. Nonhomogeneous
Dirichlet boundary conditions were imposed on the circular boundary such that the
true solution is u = r1/4 sin(θ/4), the leading term in the singularity due to the
crack tip. Some example output in Section 5.4 came from other problems, in cases
where it could not be provided by our simple example.

5.2 Subroutine TRIPLT.
TRIPLT is called using the statement

Call TRIPLT(VX, VY, SF, ITNODE, IBNDRY, ITDOF, E,
IP, RP, SP, GF, QXY, SXY)

The arrays VX, VY, SF, ITNODE, IBNDRY, and ITDOF should define a
triangulation. GF and E contain functions for potential display. TRIPLT uses
several variables from the IP, RP, and SP arrays, as shown in Tables 2.6–2.8. The
string variable FTITLE is the character string displayed as a label above the graph.
Additionally, TRIPLT can use the Fortran subroutine QXY. Subroutine QXY is
documented in Section 2.8. The error flag IFLAG is set as in Table 2.9.

The parameter IFUN specifies the function to be plotted. The available op-
tions are summarized in Table 5.1. Some of these functions are not defined for
all problem types. Although there are many possibilities for IFUN, they may be
classified as surface plots and vector plots.

For surface plots, all functions are continuous with the (possible) exceptions of
the error and scaling factors, which are piecewise constant on triangles, and QXY,
which can be multivalued along element boundaries due to discontinuities in ∇uh.
If desired, a discontinuous function can be mapped to a continuous function using
a local averaging technique. This is invoked by setting the switch ICONT = 1.

5.2. Subroutine TRIPLT. 85

Figure 5.1. The solution IFUN = 0 and the error IFUN = 5.

Figure 5.2. The case IFUN = 0, (NX,NY,NZ) = (1,−1,−1), and
IFUN = 5, (NX,NY,NZ) = (1, 1, 1).

Figure 5.3. The case IFUN = 0, (NX,NY,NZ) = (1,−1,−1), RMAG =
2, CENX = .5, CENY = .3, and the case IFUN=5, (NX,NY,NZ) = (0, 0, 1),
RMAG = 2, CENX = .5, CENY = .3.

Figure 5.4. The case LINES = 1 and the case LINES = 3. The corre-
sponding picture for LINES = 0 is in Figure 5.1.

86 PLTMG USERS’ GUIDE 12.0

Figure 5.5. The case IFUN = 2, ICONT = 1. (NX,NY,NZ) = (0, 0, 1)
and (NX,NY,NZ) = (1, 1, 1).

Figure 5.6. The case IFUN = 1, ICONT = 1. (NX,NY,NZ) = (1, 1, 1).
In the picture on the right RMAG = 2, CENX = .5, and CENY = .3.

Figure 5.7. Triangles colored by label (INPLSW = 0) and by quality
(INPLSW = 2).

Figure 5.8. Triangles colored by size (INPLSW = 6) and by polynomial
degree (INPLSW = 5).

5.2. Subroutine TRIPLT. 87

IFUN displayed function

0 the solution uh
1 the scalar function | ∇uh |
2 the vector function ∇uh
3 the alternate function QXY
4 the alternate vector function QXY
5 the error estimate ||εt||H1(t)

6 the tangent function u̇
7 the right singular vector ψr
8 the left singular vector ψ`
9 the Lagrange multiplier um
10 the control variable λh
11 the dual function ω
12 the scaling factor αt

Table 5.1. The values of IFUN.

5.2.1 Surface Plots.

In the case of surface plots, NCON specifies the number of contours (colors) to be
used. If NCON > MXCOLR− 2, some colors are used for more than one contour.
The parameters SMIN and SMAX can be used to specify the limits of the color
scale. If SMIN < SMAX , then these values are used as limits, with parts of the
function lying outside (SMIN ,SMAX) colored white. Otherwise, the largest and
smallest values of the displayed function are used as limits.

Each picture consists of three frames; a large plot on the left and a two-part
legend on the right. The upper right contains a scale relating colors to function val-
ues; three scales are available using the switch ISCALE as described in Section 5.2.4.
For the case IFUN = 5, ICONT = 0, a histogram showing the distribution of errors
||εt||H1(t) is also provided in this legend. Five line-drawing options using LINES and
eleven labeling options using NUMBRS are also available. RMAG, CENX, and
CENY provide a zoom-in capability as described in Section 5.2.3.

The main image can be animated using three dimensional imaging systems
such as OpenGL. The viewing perspective can be statically set as well, using the
triple d = (NX ,NY ,NZ). The three-dimensional surface is projected into the
plane orthogonal to d, and the function is drawn as it would appear to an observer
viewing the surface from a line of sight parallel to d. The vectors (NX ,NY ,NZ)
and −(NX ,NY ,NZ) cause the same projection to be computed; however, different
pictures are generally produced for the two cases. In the former case one observes
the projection on the “front” of the plane, and in the latter case one observes the
projection on the “back” of the plane. If MXCOLR is sufficiently large, the surface
will be shaded relative to a light source directly behind the viewer, imparting some
additional three-dimensional character to the picture.

The lower right-hand legend provides guidance in understanding three-dimensional

88 PLTMG USERS’ GUIDE 12.0

surface plots. In this case the legend contains a “flat” version of the main picture, al-
lowing another avenue for orienting oneself with respect to the viewing perspective.
Some examples of surface plots are given in Figures 5.1–5.4.

5.2.2 Vector Plots.

Color plays an important role in the vector plots. Different colors correspond to dif-
ferent directions in the vector field. This is illustrated in the color wheel portion of
the upper right-hand legend. The number of directions is specified by the parameter
NCON . Different intensities of the same color correspond to the magnitude of the
vector; darker shades correspond to smaller magnitudes, and lighter shades corre-
spond to higher magnitudes. The correspondence between color intensity and vector
magnitude is illustrated for an example color in the upper right-hand legend. The
parameters SMIN and SMAX are used to specify the limits of the color intensity
scale for the magnitude of the vector. As with surface plots, if SMIN < SMAX,
then these values are used as limits; otherwise the largest and smallest magnitudes
of the vector function are used.

Three scales for the vector magnitude are available using the option switch
ISCALE. Five line-drawing options using LINES and eleven labeling options using
NUMBRS are also available, and RMAG, CENX, and CENY provide zoom-in
capabilities. The triple (NX,NY,NZ) specifies a direction as in the case of surface
plots. In this case the surface plotted is the linear interpolant of the magnitude of the
vector function.9 In this case the elements remain colored as in a two dimensional
vector plot. Some examples of vector plots are given in Figures 5.5 and 5.6.

5.2.3 Parameters RMAG, CENX, and CENY.

The parameters RMAG, CENX, and CENY provide a zoom-in option. RMAG
is the magnification factor relative to the picture coordinates. For example, if
RMAG = 1 the whole picture will be drawn; if RMAG = 2, the picture is scaled by
a factor of 2 in both directions and thus no longer fits on the output device. One
must now choose a window and view only a portion of the picture. The fractions
0 ≤ CENX ≤ 1 and 0 ≤ CENY ≤ 1 are used for this purpose. In particular
(CENX ,CENY) specifies the point that will appear at the center of the magnified
window. If RMAG = 1, the values of CENX and CENY are ignored. Some
examples are shown in Figure 5.3 and Figure 5.6 (right).

As an aid to understanding, the lower right legend contains a copy of the
complete picture (corresponding to RMAG = 1). Whenever RMAG > 1, a small
box is drawn in this legend depicting the portion of the picture appearing in the
main graph. The box is supplemented by a crosshair locator, since the box becomes
too small to be visible for large magnification factors.

9 For the actual magnitude, the surface of each triangular element is not necessarily a plane,
making the hidden surface problem more difficult.

5.2. Subroutine TRIPLT. 89

5.2.4 Parameters ISCALE, LINES, NUMBRS, and MPIRGN.

The parameter ISCALE provides three scaling options, summarized in Table 5.2.
For linear scaling, drawn contours are equally spaced with respect to the largest and
smallest values of the given function z(x, y). If ISCALE = 1, then the contours are
equally spaced with respect to the largest and smallest values of log z. If ISCALE =
2, then the contours are equally spaced with respect to largest and smallest values
of the function sinh−1z. The logarithmic scaling clearly requires z to be positive.
The sinh−1 scaling is always defined, having a (signed) logarithmic behavior for
large | z | and a linear behavior for small | z |. If ISCALE = 1 and z ≤ 0 at some
node, then TRIPLT defaults to the sinh−1 scaling. In Figure 5.1, the solution uh
was drawn using the linear scale (ISCALE = 0), while the error estimate was drawn
using the logarithmic scale (ISCALE = 1).

Five line drawing options are available, specified through the parameter LINES,
as summarized in Table 5.2. If LINES = 0, TRIPLT will draw edges of all triangles
in the mesh. If LINES = 1, only boundary edges and edges separating trian-
gles from different regions are drawn. The case LINES = 2 is similar to the case
LINES = 1, except that here boundary edges and edges separating triangles from
different processors are drawn. When LINES = 3 for surface plots, TRIPLT draws
boundary triangle edges and contour lines separating contours of different colors.
This option produces a traditional contour map on monochrome devices and thus
is useful when MXCOLR = 2. Some examples for LINES = 1 and LINES = 3 are
shown in Figure 5.4. The option LINES=3 is not implemented for vector plots. The
option LINES=-1 displays the underling (typically refined) graphics triangulation
that was actually used by TRIPLT in making the image; this is mainly of interest
for debugging.

Eleven labeling options are available in TRIPLT; these are specified through
the parameter NUMBRS, as summarized in Table 5.2. When NUMBRS 6= 0, three-
dimensional plotting is disabled; the result will be a “flat” (but labeled) surface.
Some examples are shown in Figures 2.1 and 2.2.

In making images using MPI, the usual situation is that each processor con-
tributes its part of the image, corresponding to its refined subdomain. However, in
certain situations (such as debugging), one may wish to see the complete image as
it exists on an individual processor. The parameter MPIRGN allows this. When
MPIGRN = 0, its default value, then all processors contribute to a given image in
the usual way. When MPIGRN = I for 1 ≤ I ≤ NPROC , then the complete image
from processor I is drawn.

5.2.5 Parameters ICRSN and ITRGT.

When NDF becomes very large, the amount of data used to make an image may
become too large for animated display systems like OpenGL or for Postscript files of
reasonable size.10 In this situation, one may wish to compress the data and make a
lower resolution image. The parameter ICRSN indicates whether or not to coarsen

10Raster graphics images like those produced by X-Windows displays and XPM files are largely
independent of the size of the underlying data set.

90 PLTMG USERS’ GUIDE 12.0

ISCALE scale

0 linear
1 logarithmic

2 sinh−1

LINES line drawing option

0 all triangle edges
1 boundary/interface edges
2 load balance boundary edges
3 contours
-1 underlying graphics triangulation

NUMBRS labeling option

0 no labels
1 triangles/subregions
2 vertices
3 edges
4 curved edges
5 edge type
6 edge labels
7 processor
8 vertex type
9 degrees of freedom
10 element degree

MPIRGN image option

0 all processors contribute
I > 0 draw image from processor I

ICRSN coarsening option

0 no coarsening
1 coarsen global subspace

ICONT smoothing option

0 no smoothing
1 smooth piecewise constant function

Table 5.2. The values of ISCALE, LINES, NUMBRS, MPIRGN, ICRSN,
and ICONT.

the global subspace, as indicated in Table 5.2. If ICRSN = 1, then the parameter
ITRGT specifies the target number of degrees of freedom for the coarsened subspace.
The coarsening option is very much like the mesh coarsening option in TRIGEN ;
many of the same subroutines are used, and the overall coarsening strategy is the
same. However, the coarsening criteria is different. When MPI is on (MPISW = 1),

5.3. Subroutine INPLT. 91

each processor independently coarsens the subspace for its subregion to a target of
ITRGT/NPROC degrees of freedom. Thus, when the subspaces are later combined,
the global subspace appearing in the image will have at most ITRGT degrees of
freedom.

When the mesh is coarsened, all numbering options are disabled; NUMBRS =
0 is always used. The setting LINES = 0 is reset to LINES = 1, and ICONT = 1
is always used.

5.2.6 Some Algorithmic Details.

The main algorithms of interest in TRIPLT are those for hidden line and surface
removal. In the general case of a surface plot, one must make comparisons between
various triangles to determine whether a given triangle blocks another with respect
to the viewer. Since the triangular mesh is generally unstructured, our goal is to
organize the data to minimize the number of comparisons between triangles.

Generally, for surface plots in which (NX ,NY ,NZ) 6= (0, 0, 1), a partial order
is constructed in which elements farthest from the viewer are ordered first, and those
closest to the viewer are ordered last. The elements are then drawn and colored in
order, with the elements closer to the viewer (possibly) overwriting some elements
that are farther away. The notion of distance from the viewer is defined with respect
to the x and y coordinates only, so that the same ordering is computed independent
of the function being graphed. A typical element is compared only to elements with
which it shares a common edge; it is ordered before any edge neighbors closer to the
viewer and after any neighbors farther away. Since any element has at most three
neighbors, this greatly limits the number of comparisons necessary and completely
solves the ordering problem for a convex domain with no holes.

Unfortunately, many domains are not convex and have holes, so that elements
with boundary edges must be treated as special cases. Thus we make a list of
triangles with boundary edges, sort them with respect to the direction (in the
(x, y) plane) perpendicular to the (NX ,NY) components of the viewing direction.
Boundary edges are also sorted by whether they face “backward” or “forward”
with respect to (NX ,NY). With these preliminary calculations done, all pairs of
relevant triangles that might conflict are tested and appropriate ordering constraints
imposed. For a mesh with NTF triangles, the number of boundary triangles is
O(
√
NTF), so that in the worst case (every boundary element compared with every

other boundary element), this will still be only O(NTF) work. Since only O(NTF)
work is required for the interior elements, the overall work is still O(NTF).

5.3 Subroutine INPLT.
Subroutine INPLT is a graphics routine for displaying the input data defining a
triangulation or a skeleton. INPLT is called using the statement

Call INPLT(VX, VY, SF, ITNODE, IBNDRY, ITDOF,
IP, RP, SP, SXY)

92 PLTMG USERS’ GUIDE 12.0

The arrays VX, VY, IBNDRY, ITNODE, and SF define either a triangulation
or a skeleton (INPLT uses the value of ITNODE(3,1), which is zero for a skeleton
and positive for a triangulation, to distinguish these cases). The string variable
ITITLE is displayed as a banner above the graph. Variables in the IP, RP, and
SP arrays used by INPLT are shown in Tables 2.6–2.8. INPLT was used to make
Figures 3.1 ??, and ??, among others in this manual.

INPLSW triangulation skeleton

0 user label user label
1 load balance uniform color
2 element quality subregion
3 largest angle
4 smallest angle
5 mesh grading
6 polynomial degree
7 element diameter
8 polynomial degree

Table 5.3. The values of INPLSW.

5.3.1 Triangle Plots.

For triangle plots, the elements in the triangulation are colored to depict some
feature of the mesh. The available options are controlled by the switch INPLSW
as summarized in Table 5.3.

If INPLSW = 0, the elements in the mesh are colored according to the user
supplied labels in ITNODE(5,I); all elements with the same label will have the same
color. If INPLSW = 1, the elements in the mesh are colored according to the load
balance (ITNODE(4,I)).

For 2 ≤ INPLSW ≤ 5, INPLT colors the elements of the triangulation ac-
cording to their quality, measured by q(t) in (3.1), their largest angle, their smallest
angle, and the local mesh grading, respectively. For each of these measures, five
numbers are printed in the upper right legend. The row labeled “average” refers to
the average of that quantity over all elements in the mesh; “worst” reports the small-
est value of q(t), largest angle, smallest angle, or the steepest local grade over all of
the elements. The rows labeled “good,” “fair,” and “poor” report the percentage
of elements in each category and depict the corresponding colors.

For q(t), good means q(t) ≥
√

3/2, fair means .6 ≤ q(t) <
√

3/2, and poor
means q(t) < .6. For large angles, good means A(t) ≤ π/2, fair means π/2 < A(t) ≤
2π/3, and poor means A(t) > 2π/3 (A(t) is the largest angle). For small angles,
good means arccos(4/5) ≤ a(t), fair means arccos(13/14) ≤ a(t) < arccos(4/5) and
poor means a(t) < arccos(13/14) (a(t) is the smallest angle). Triangles that are
good in terms of q(t) are (necessarily) also good in terms of large and small angles.

5.3. Subroutine INPLT. 93

Those that are fair in terms of q(t) must be good or fair in terms of large and small
angles (but not conversely). The local mesh grading gv at any vertex v in the mesh
is the ratio of the largest to smallest lengths among all the element edges having v
as an endpoint. The mesh grade for an element g(t) is the maximum of gv among its
three vertices. For mesh grading, good means g(t) < 2, fair means 2 ≤ g(t) ≤ 3 and
poor means g(t) > 3. In Bank and Yserentant [38], control of mesh grading is seen
to be a crucial point in creating nonuniform meshes where the L2(Ω) projection of
a function u ∈ H1(Ω) is stable in the H1(Ω) norm.

When INPLSW = 6, INPLT produces an image in which each element is
colored according to its polynomial degree. A histogram showing the distribution
of element degrees appears in the legend. When INPLSW = 7, INPLT produces
an image in which each element is colored according to its size. A histogram show-
ing the distribution of element sizes appears in the legend. Although any scaling
option available through ISCALE can be used, generally the logarithmic scaling
(ISCALE = 1) produces the most useful image. Some example images made using
INPLT are shown in Figures 5.7 and 5.8.

The meanings and use of RMAG, CENX , CENY , and MXCOLR are identical
to TRIPLT. Labeling options using NUMBRS are summarized in Table 5.2. INPLT
was used with various NUMBRS options to produce Figure 2.1 although the legends
on the right-hand sides of the pictures were deleted. For the main graph, three line-
drawing options are available using LINES, as summarized in Table 5.2.

The meaning and use of parameter MPIRGN is the same in subroutine INPLT
as in TRIPLT. Subroutine INPLT also allows mesh coarsening, but the criterion
is different. In INPLT, each element is a single color and the images are two di-
mensional, and the coarsening criterion reflects these differences. As with TRIPLT,
NUMBRS = 0 is always specified for a coarsened mesh and LINES = 0 is reset to
LINES = 1.

5.3.2 Skeleton Plots.

As with triangle plots, the subregions of the skeleton are colored according to the
option specified by INPLSW as summarized in Table 5.3. If INPLSW = 0, the
subregions are colored according to the user supplied labels in ITNODE(5,I), similar
to the case of a triangulation. If INPLSW = 1, each subregion is given the same
color, while if INPLSW = 2, each subregion is given a different color.

Subroutine INPLT draws a skeleton by first creating a crude triangulation
based on the skeleton, and then drawing the triangulation. Here shape regularity
and overall quality of the triangulation is not an issue; rather, keeping the number of
elements small and computing the triangulation quickly are important. The option
LINES = −1 displays the underlying triangulation used in the skeleton plot. It was
included mainly for debugging purposes.

The parameters RMAG, CENX , CENY , and MXCOLR are the same as for
triangle plots. Labeling options using NUMBRS are summarized in Table 5.2.
There are no coarsening or parallel computation options available for skeleton plots.
INPLT was used with various NUMBRS options to produce Figure 2.2.

94 PLTMG USERS’ GUIDE 12.0

5.4 Subroutine GPHPLT.
Subroutine GPHPLT displays an assortment of data related to the performance
of various algorithms and subroutines in PLTMG and TRIGEN using a graphical
format.

GPHPLT is called using the statement

Call GPHPLT(IP, RP, SP)

GPHPLT makes use of the arrays TIME and HIST, that reside in a common
block initialized by PLTMG and TRIGEN when IFIRST 6= 0. The string variable
GTITLE is displayed as a banner above the graph. Other variables in the IP, RP,
and SP arrays used by GPHPLT are shown in Tables 2.6–2.8.

IGRSW displayed graph

0 Newton iteration convergence history
1 CSCG/CSBCG iteration convergence history
-1 matrix statistics
2 individual subroutine timing statistics
-2 time pie chart
3 the continuation path
-3 load balance
4 error estimates for H1 norm
-4 error estimates for L2 norm
5 the IP array
-5 the SP array
6 the RP array

Table 5.4. The values of IGRSW.

IGRSW is an integer switch for selecting the displayed graph; the available
possibilities are summarized in Table 5.4.

5.4.1 Iteration Information.

For the cases IGRSW = −1, 0, 1, information about various iterations and precon-
ditioners is displayed. In all three cases, the same three graphs are drawn. The large
main window contains the information indicated in Table 5.4 for the corresponding
value of IGRSW. The other two graphs appear in the two smaller frames on the
right. Examples are shown in Figures 5.9– 5.10.

In the case IGRSW = 0, in the main window GPHPLT graphs the functions

Rk = log10

{
||Gk||
||G0||

}
and Ek = log10

{
||δUk||
||Uk||

}
.

Gk is the residual for the Newton iteration, while δSk is the incremental change in

5.4. Subroutine GPHPLT. 95

Figure 5.9. The cases IGRSW = 0 and IGRSW = 1.

Figure 5.10. The cases IGRSW = −1 and IGRSW = 4 with
(MX,MY,MZ) = (1,−1, 1).

Figure 5.11. The cases IGRSW = 2 and IGRSW = −2.

Figure 5.12. The cases IGRSW = 3 and IGRSW = −3.

96 PLTMG USERS’ GUIDE 12.0

Figure 5.13. The cases IGRSW = 5 and IGRSW = 6.

Figure 5.14. The case IGRSW = −5.

the solution Sk. The precise meaning of Gk and Sk varies according to the system
of nonlinear equations solved for each problem class addressed by PLTMG. Both
convergence histories are plotted in a bar graph of Rk and Ek versus iteration index
k.

The convergence history for the most recently solved set of equations is dis-
played. When this corresponds to a regular (serial) solution (IPROB > 0), the
relative residuals are red bars, while the solution increments are blue. At most, in-
formation about the last twenty Newton iterations is displayed. When IPROB < 0,
the Newton iteration employs the parallel domain decomposition solver in place of
the simple preconditioned linear solver. In this case, the residuals are magenta bars,
and the solution increments are cyan.

Nominally, the rate of convergence for Newton’s method should asymptoti-
cally be quadratic; however, the convergence becomes linear when systems of linear
equations involving the Jacobian matrix are only approximately solved.

In the case IGRSW = 1, in the main window GPHPLT graphs the function

S(k) = log10

{
||rk||
||r0||

}
.

Here rk is the residual of a set of linear equations to be solved and k is the iteration
number. The displayed histories are for linear systems solved in the most recent
Newton iteration. Up to four such systems are solved in each Newton step, depend-
ing on the value of IPROB. In all cases, only information about the last twenty
iterations is saved and displayed.

5.4. Subroutine GPHPLT. 97

Either the composite step conjugate gradient method or composite step bi-
conjugate gradient method is used [9, 8], preconditioned by the solver specified by
METHOD. Each individual step is marked with a small icon; a color pair (green,
red), (blue, yellow), (cyan, magenta), (white, black) is assigned to each history. In
each case, for simple steps the icon is colored with the first color (e.g., green), while
for composite steps the icon is colored with the second color (e.g., red).

In the case IGRSW = −1, in the main window statistics related to the the
sparse matrix and its factorizations is displayed. Potential information about five
matrices is given

1. The stiffness matrix, colored yellow.

2. The ILU factorization, colored green.

3. The HB factorization, colored cyan.

4. The block diagonal factorization, colored blue.

5. The complete LU factorization, colored magenta.

The first four correspond to matrices and factorizations that have been computed;
ILU and HB and block diagonal factorization data appear only if they have been
selected by the parameter METHOD. The complete LU factorization data is in-
cluded for reference, and indicates data relevant to sparse Gaussian Elimination
with the minimum degree ordering.

At the top, two columns of figures appear. The first is the average number of
nonzeros per row in the matrix. The second is the same, but given as a percentage
relative to sparse Gaussian Elimination. Below is a bar graph reflecting the actual
storage used. This is different from the numerical data, in that if the matrices are
symmetric, only the diagonal and upper triangle are stored. The storage bar for
Gaussian Elimination (LU) is hypothetical only. In each colored bar, a vertical
black line might appear; this indicates the size of the JA or JU arrays relative to
the corresponding A or U arrays.

5.4.2 Timing Statistics.

If IGRSW = 2, GPHPLT prints a summary of timing statistics for PLTMG and
TRIGEN. An example is given in Figure 5.11. Statistics are given both for the
total accumulated time since initialization (IFIRST = 1) and for the time spent
during the last call to PLTMG or TRIGEN. The timings are itemized with respect
to subroutines that carry out major computational tasks in the package. These
subroutines are listed in Table 5.5. Depending on the problem, some of these
routines may not be called.

A bar graph is drawn illustrating the percentage of time spent in each routine.
Each bar in the graph is partitioned into a part corresponding to the last call to
PLTMG (red) and a part corresponding to all preceding calls (blue). The timing
pie graph described below appears in the upper right frame.

98 PLTMG USERS’ GUIDE 12.0

If IGRSW = −2, GPHPLT displays a pie graph summarizing the same infor-
mation. Each routine in Table 5.5 is assigned to one of six categories: linear system
assembly (red), multigraph solver (green), mesh generation (magenta), a posteriori
error estimation (cyan), parallel processing routines (yellow), and other PLTMG
routines (blue). A pie graph showing the fraction of total time spent in each of
the six categories is drawn in the main frame. Details of individual contributions
from the subroutines listed in Table 5.5 are summarized in the upper right frame.
Sample output is shown in Figure 5.11.

When MPISW = 1, the times displayed for IGRSW = ±2 are time averaged
across all processors. In this case, in the lower right frame, a graph displaying the
deviation from the average time for each processor is drawn.

5.4.3 Continuation Path.

When IGRSW = 3, GPHPLT displays the continuation path generated by the
continuation procedure IPROB = 3. Target points are marked by small boxes,
generally using different colors for different values of ITASK. A legend appears in
the upper right frame summarizing the possibilities. Up to one hundred target
points generated by calls to PLTMG are saved and displayed. Successive points
are interpolated using parabolic arcs matching the values of (λ, ρ) and the tangent
vectors (λ̇, ρ̇). In the lower right frame appears a convergence history for the most
recent singular vector computation. Sample output is shown in Figure 5.12.

5.4.4 Parallel Statistics

When IGRSW = −3, GPHPLT plots the functions

Tk = log2

{
NPROC ·NTF (Ωk)∑

kNTF (Ωk)

}
and Ek = log2

{
NPROC||εt||H1(Ωk)∑

k ||εt||H1(Ωk)

}
where 1 ≤ k ≤ NPROC. Both curves appear in the large frame. When MPISW =
1 the information from all processors is obtained by an exchange of data using
the MPI library. This is the most useful situation. When MPISW = −1, the
same graph is made using local data on the given processor; this case is typically
not interesting. In the upper right frame is a similar graph for the distribution of
error and elements following the initial load balancing step (IADAPT = 7). In the
lower right frame appear convergence histories for eigenvalue computations in the
load balancing phase. Convergence histories are shown for the four most recent
problems. Sample output is shown in Figure 5.12.

5.4.5 Error Estimates.

In the case IGRSW = 4, GPHPLT graphs the function

F1(NDF,TIME) = log10

{ ||εt||H1(Ω)

||uh||H1(Ω)

}
,

5.4. Subroutine GPHPLT. 99

and in the case IGRSW = −4, GPHPLT graphs the function

F0(NDF,TIME) = log10

{ ||εt||L2(Ω)

||uh||L2(Ω)

}
.

Here εt is the computed approximation of the error u − uh. While it is hoped
that these approximations accurately reflect the true state of affairs, the estimates
are based on a posteriori calculations involving only the computed solution. Some
judgment of the validity of such computations may be required. An example is
shown in Figure 5.10.

Error estimates are plotted as a function of both NDF and TIME. In partic-
ular, Fj is graphed versus log10NDF and log10TIME in a three-dimensional graph.
All data points (up to the 20 most recent) for which error estimates are available
are marked with rectangular cylinders of different colors. A legend appears in the
upper right frame summarizing the possibilities. In the case IGRSW = 4, the plot
of F0 appears in the lower right frame; if IGRSW = −4, the plot of F1 in the lower
right frame.

The triple d = (MX ,MY ,MZ) specifies the viewing perspective for these
graphs in a fashion similar to (NX,NY,NZ) for surface plots. The choice (1,−1, 1)
is a reasonable default. The choice (0,−1, 0) yields a traditional two-dimensional
graph of log10 Fj versus log10 NDF. The choice (1, 0, 0) yields a two-dimensional
graph of log10 Fj versus log10TIME. The main image can be animated using three
dimensional imaging systems such as OpenGL.

5.4.6 Displaying Data Arrays.

The options | IGRSW |≥ 5, GPHPLT displays the IP, RP, or SP arrays. Unlike
other graphics options, here the entire graphics window is treated as a single frame.
In the case of the IP and RP arrays, all 100 entries, their names, and their current
values are displayed. Entries that can be interactively reset in the ATEST driver
are colored red, unused entries appear in black, and all other entries are colored
blue. This situation is similar for the SP array, except only the first 50 entries
are displayed (the remainder are all presently unused). Examples are shown in
Figures 5.13–5.14.

100 PLTMG USERS’ GUIDE 12.0

subroutine main function

TGEN create triangulation from skeleton
REFINE adaptively refine the triangulation
UNREFN adaptively unrefine the triangulation
HUNFRM uniformly h-refine the triangulation
PUNFRM uniformly p-refine the triangulation
MVEMSH adaptively smooth the mesh points
ERREST compute error estimates for uh
CBUMP recover derivatives for error estimation
CDLFN compute dual function
EXPTH MPI exchange IPATH data
EXFLAG MPI exchange error flag data
BCAST broadcast mesh to all processors
LDBAL compute a load balance
LDEV solve eigenvalue subproblem in load balance
CUTR reorganize data structures for reconciling mesh
PASTE reconcile mesh along interface of IRGN
PASTE1 reconcile mesh along interface not part of IRGN
TRIGEN all other time spent in TRIGEN

SETGRB compute block JA array
SETGR2 compute DD interface JA array
JA2JA min degree / reordering
SFBILU block ILU factorization
SFHB HB matrix factorization
MG solve equations using CSCG/CSBCG iteration
BLK3 solve equations for IPROB = ±3
BLK4 solve equations for IPROB = ±4
BLK5 solve equations for IPROB = ±5
LINSYS assemble linear system
RGNSYS assemble linear system for DD
CEV compute the singular value µ and vectors ψr and ψ`
SWBRCH switch branches at a bifurcation point
PREDCT compute the steplength σ for continuation
TPICK line search for Newton iteration
TPICKD line search for Newton/DD iteration
PLTMG all other time spent in PLTMG

Table 5.5. Subroutines timed by GPHPLT.

Chapter 6

Test Driver

6.1 Overview.
Program ATEST is the test driver used in the development and testing of the
PLTMG package. ATEST is a flexible program in that it accepts simple command
strings directing it to call subroutines or perform other tasks. It is not limited to
a fixed sequence of tasks on a particular run; any routine can be called as often as
desired, with certain parameters reset for each call at the discretion of the user.

The program ATEST can operate in four modes, governed by the switch
MODE. If MODE = −1, ATEST runs as an interactive program, accepting com-
mands from the user via a terminal window. If MODE = 0, ATEST runs in-
teractively, accepting commands from the user via an X-Windows interface. This
interface is based on the Motif widget set and can be used only in environments
supporting X-Windows. If MODE = 1, ATEST runs as a batch program, reading
commands from a journal file and sending all output to appropriate output files.
Finally, if MODE = −2, ATEST runs as a slave mode under MPI; this mode cannot
be directly set by the user, but is set by ATEST if it determines that it is a slave
node in a parallel computation. In this situation, the user specifies MODE only for
the master node, which can be any of the three other options.

A common command syntax is used for all modes. This is described first
for the case MODE = −1 in Section 6.2. The extensions used in the X-Windows
interface are described in Section 6.3.

Several files are written by ATEST. The file BFILE contains a complete record
of all commands and printed output produced during the session. The file JWFILE
contains a record of all commands read and processed during the session, formatted
as a journal file. See Section 6.8 for a discussion of journal files. ATEST also
creates a temporary file JTFILE used in connection with the journal command.
While most commands invoke one of the major routines in the package, there are
a few utility routines (e.g. for reading and writing files) which are documented in
Sections 6.7–6.10.

101

102 PLTMG USERS’ GUIDE 12.0

6.2 Terminal Mode.
In terminal mode, commands are entered from a terminal window in character
strings of 80 characters, counting blanks. The syntax of a command can take
several forms, but the root command is always a single letter. The commands that
are currently recognized by ATEST are summarized in Table 6.1.

Command Action

s call PLTMG
t call TRIGEN
f call TRIPLT
g call GPHPLT
i call INPLT
r read data set from a file
w write data set to a file
u call USRCMD
j read journal file
k execute shell command
p MPI toggle
q quit

Table 6.1. Available commands for ATEST.

The terminal window prompt is the string command:. At this prompt, one
can enter a command string (e.g., s), reset parameters as described below, or enter
a blank line to see a list of the available commands. In this latter case the terminal
window will appear as follows.

command:

pltmg s trigen t triplt f gphplt g inplt i read r

write w usrcmd u journl j shell k mpi p quit q

command:

A syntax error in a given command string causes the entire string to be ignored.
ATEST will display the string command error and present the command prompt
for a new input string.

The most simple commands are just single lower case letters as shown in
Table 6.1. However, associated with most commands are various parameters which
can be reset before calling the given routine. To see a listing of the parameters
associated with a given command and their current values, without executing the
command itself, enter the command in upper case at the command prompt. For
example, the command F will display the parameters which can be interactively
reset in connection with TRIPLT.

command:F

6.2. Terminal Mode. 103

ifun f 0 iscale s 0 lines l 0 numbrs n 0

fdevce d 0 nx nx 0 ny ny 0 nz nz 1

ncon c 11 icont ic 0 icrsn cr 0 itrgt it 10000

mxcolr mc 256 smin sn 0.0 smax sx 0.0 rmag m 1.0

cenx cx 0.5 ceny cy 0.5 mpirgn mr 0

ftitle t "alpha = 0.25"

command:

There are fourteen integer parameters, five real parameters, and one string
parameter affecting subroutine TRIPLT that can be interactively reset by the user.
To the right of each parameter is a one- or two-letter alias (to avoid typing long
names), followed by the current value.

To reset some parameters associated with a command c (c = s, f, g, etc.),
without invoking the command itself, one can type a string of the form

command:C name1=value1, name2=value2, ... , namek=valuek

Note that the root command appears in upper case. The namek refer to variable
names or their aliases, and valuek refer to integer, real, or string values. Several
parameters can be reset, with different entries separated by commas. Values for
integer parameters should be integers, while values for real parameters can be spec-
ified using integer, fixed point, or exponential notation. There are three types of
string parameters: short, long and file. Short strings are typically single words and
can not contain any blank characters. Files are typically file names, and they also
can not contain any blank characters. All other strings are long, and can contain
any printable ASCII characters other than double quotes. Values of long string pa-
rameters should appear within double quotes. Short and file string parameters are
not enclosed with double quotes. Blank spaces are ignored everywhere but within
the value field of a long string parameter. A syntax error in the input line (e.g.,
a misspelled variable name) causes the entire command to be ignored and no vari-
ables to be reset. ATEST will respond command error and then ask for the next
command. For example, here we reset ISCALE = 1, NCON = 20, CENX = .3,
RMAG = 10, and FTITLE = A new title for Circle. Subroutine TRIPLT is not
called, but the parameters are updated and redisplayed as

command:F s=1, ncon=20, cenx=.3, rmag=1.e1, t="A new title for Circle"

ifun f 0 iscale s 1 lines l 0 numbrs n 0

fdevce d 0 nx nx 0 ny ny 0 nz nz 1

ncon c 20 icont ic 0 icrsn cr 0 itrgt it 10000

mxcolr mc 256 smin sn 0.0 smax sx 0.0 rmag m 10.0

cenx cx 0.3 ceny cy 0.5 mpirgn mr 0

ftitle t "A new title for Circle"

command:

One can reset some parameters for a given command c, and then invoke the
command itself, using a string of the form

command:c name1=value1, name2=value2, ... , namek=valuek

104 PLTMG USERS’ GUIDE 12.0

Note that the only difference is that the root command now appears in lower case
rather than upper case. Thus

command:f s=1, ncon=20, cenx=.3, rmag=1.e1, t="A new title for Circle"

resets the indicated parameters as in the previous example. However, instead of
displaying the updated values, subroutine TRIPLT is called.

Finally, the graphics and MPI commands (f , i, g, and p) have a short form al-
lowing one crucial parameter (IFUN, INPLSW, IGRSW, and MPISW, respectively)
to be reset without typing even the alias. For example,

command:f5

is the short form for

command:f ifun=5

The short and long forms of these commands cannot be mixed. Thus

command:f5, ncon=10

is not valid.

6.3 X-Windows Mode.
When MODE = 0, the driver ATEST creates an X-Windows interface for the
PLTMG package. The functional capabilities are the same as for the terminal
window mode, but the possibilities for data entry are more varied. An example of
the X-Windows interface appears in Figure 6.1.

The main display contains two elements. The upper portion of the display
contains command buttons. The bottom portion of the display is the history window.
The interface supports up to ten graphics displays. The command buttons stand in
one to one correspondence with the basic ATEST command set shown in Table 6.1.
In particular, clicking the left mouse button (button one) with the pointer over a
command button is equivalent to the typed lower-case version of that command.
For example, clicking mouse button one on the TRIPLT command button causes
subroutine TRIPLT to be called as in the command f . On the other hand, clicking
on the right mouse button (button three) with the pointer over a command button
is equivalent to the upper case version of the command. Clicking mouse button
three on the TRIPLT command button causes the parameters for the TRIPLT
command to be displayed in a popup reset window, as in the typed command F .
This is shown is figure 6.2.

The parameters associated with a given command are displayed in the reset
window in a format similar to terminal mode. However, each parameter value is
displayed in one line text-editing window, and can be reset by typing in the new
value. For some parameter names (e.g., IFUN in Figure 6.2), the name appears

6.3. X-Windows Mode. 105

Figure 6.1. The X-Windows interface.

Figure 6.2. An example reset window.

in a raised button. Clicking on the name causes a display of radio buttons, listing
available options for the given parameter, to pop up. Clicking on the appropriate
option causes the parameter to be reset to the corresponding value. The radio
button popup associated with the parameter IFUN appears in Figure 6.3.

For file selection commands (READ, WRITE, and JOURNL), the generic
reset window is replaced by the Motif file-selection widget. The file-selection popup
for the JOURNAL command is shown in Figure 6.4.

The history window displays the contents of the output file, BFILE, as it is

106 PLTMG USERS’ GUIDE 12.0

Figure 6.3. An example radio buttons popup.

Figure 6.4. An example file selection popup.

created. If the file becomes sufficiently large, only the tail of the file is displayed.
The X-Windows driver supports ten graphics displays (numbered 0-9). The

parameter NGRAPH, 1 ≤ NGRAPH ≤ 10, states the number of windows to create
initially. Graphics displays can be dismissed and recreated as necessary. These
windows use only X-Windows primitives, and display static images which cannot
be manipulated (e.g. rotated) with the mouse. Graphics popups can be resized in
the usual way, but maintain a 3/2 aspect ratio. Also, any existing image is erased
upon resize, and must be redrawn.

6.4. Batch Mode. 107

When executing a journal file in X-Windows mode, if a graphics command is
executed, depending on the graphics device selected, ATEST can pause after the
picture is drawn, and create a small popup continue button. In this case, ATEST
waits until the user dismisses the continue popup before continuing to execute the
journal file. This allows time for the user to view the picture before processing the
next command in the journal file.

The X-Windows display can be interactively resized in the usual way. How-
ever, ATEST will adjust the user-specified resizing such that an overall aspect ratio
of 3/2 is maintained. ATEST also imposes a minimum size requirement on the
main window.

The string parameters BGCLR and BTNBG allow the user to specify the
background and button background colors for the main display. Motif automatically
defines the remaining colors used in the display. These parameters can be given any
of the named colors supported by X-Windows. The string parameter LOGO is
provided to X-Windows for use as titlebars and other identifiers.

Finally, we remark that the X-Windows interface does not follow the pattern
of many X-Windows programs, in that the PLTMG package was not integrated
into the X-Windows system with the X-Windows interface serving as the main
routine. Indeed, the X-Windows interface is realized as a collection of C language
subroutines called by a Fortran driver. These routines use the same database of
Fortran character strings as the terminal window interface to define their displays,
and return command strings of the same type described in the terminal windows
interface. Both the X-Windows interface and the terminal window interface are
quite generic, in that neither contains direct links to any of the main routines in
the package. Thus changes in the behavior of routines comprising the package have
no impact on the interface routines and at most modest impact on the database of
character strings that define the displays.

6.4 Batch Mode.
When MODE = 1, the ATEST driver runs as a batch program. All commands are
read from the journal file specified in JRFILE. Graphics output should be directed
to files (BH, Postscript, and XPM) rather than to interactive displays.

6.5 Parallel Processing
When run as a parallel program using NPROC processors, ATEST uses a master-
slave model. One process, the master process, runs in terminal, X-Windows, or
batch mode, and the remaining NPROC − 1 slave processes all run with MODE =
−2. Slave nodes receive command strings from the master node via MPI communi-
cation. At any given time, the parallel computation is in one of two possible states
that specify how slave nodes should process commands. Somewhat arbitrarily, the
two states are denoted “off” and “on”. When MPI is on, all processors execute all
commands from the user, whether entered interactively or through a journal file.
When MPI is off, only the master process executes most commands. Slave nodes

108 PLTMG USERS’ GUIDE 12.0

remain active and still receive and evaluate the command strings they receive. Some
commands (namely p and q) continue to be executed and some parameter updates
continue on all processors in the off state. However, in the off state, slave nodes are
mainly waiting for MPI to be turned on again.

The p command is used to switch between the on and off states of MPI. When
MPISW = 1, MPI is on, and when MPISW = −1, MPI is off. The p command is
unusual in that it can behave as a toggle; executing p with no argument switches
the MPI state. The p command can also be employed in the usual way to explicitly
set the MPI state using the parameter MPISW (e.g., p1 turns on MPI, while p− 1
turns off MPI). The MPI command button in X-Windows mode is a bit unusual;
when MPI is on, the MPI command button changes color (to the background color
of the main display). When MPI is off the MPI command button returns to its
usual color.

A common and effective way to use MPI is to create a journal file that contains
a script for the entire computation (including p commands) The j command issued
in the MPI on state directs all processors to run the journal file. The master process
will then execute the entire script, while the slave nodes execute the parts of the
journal file that correspond to the on state.

An issue with respect to file names arises in the context of parallel processing.
Some files, for example a journal file, are intended to be read by all processors. In
other situations, for example writing data files, each processor is intended to process
its own version of the file. Then name conflicts can potentially become catastrophic
if all nodes read and write files on the same file system. To resolve this conflict in a
simple way that allows the user to easily specify on a case-by-case basis if the file is
a single file or a file with distinct copies on each node, ATEST scans all file names,
looking for the characteristic string MPIXXX. If found, this string is replaced by
MPI001, MPI002, etc, where the integer part denotes the processor. Thus, for ex-
ample if one sets

JRFILE = MYFILE.JNL

all nodes process the same file with the name MYFILE.JNL. If one sets

RWFILE = MYFILE MPIXXX.RW

node one would process the file MYFILE MPI001.RW, node two would process
the file MYFILE MPI002.RW, and so on.

6.6 Array Dimensions and Initialization.
ATEST has six labeled common blocks:

common /atest1/ip(100),rp(100),sp(100)

common /atest2/iu(100),ru(100),su(100)

common /atest3/mode,jnlsw,jnlr,jnlw,ibatch

common /atest4/jcmd,cmdtyp,list

6.7. Reading and Writing Files. 109

common /atest5/idevce

common /atest6/nproc,myid,mpisw,mpiint,mpiflt

The IP, RP, and SP arrays are described in Section 2.7. The arrays IU , RU ,
and SU are not directly used by ATEST or any of the other routines. They are
provided to the user for storing integer, real, and string parameters associated with
a particular problem. The advantages in using these arrays are that they are saved
and read in the w and r commands; the common block ATEST2 can be included
in subroutines A1XY, A2XY, etc., where the parameters may be needed; and they
can form part of the interface for resetting problem parameters using USRCMD.
ATEST3 contains internal control parameters used by ATEST; each has a corre-
sponding location in the IP array. ATEST4 contains string and integer variables
that are used for internal communication among the user interface routines. The
block ATEST5 contains an integer specifying the current graphics output device,
while ATEST6 contains parameters relevant to MPI.

The input data arrays ITNODE(5,MAXT), ITDOF(8,MAXT), E(MAXT,2),
IBNDRY(7,MAXB), SF(2,MAXB), VX(MAXV), VY(MAXV), GF(MAXD,7), and
IPATH(6,MAXPTH) are declared at the beginning of ATEST. The sizes of the
arrays, MAXT, MAXV, MAXD, MAXB, and MAXPTH, are specified at the be-
ginning of ATEST using parameter statements; changing sizes to suit a particular
computing environment or problem is thus a simple matter.

To use ATEST, the user must provide Fortran subroutines A1XY, A2XY,
FXY, GNXY, GDXY, P1XY, P2XY, SXY, and QXY. Subroutine USRCMD should
be provided, if only as a dummy routine. The user must also supply subroutine
GDATA, in which the input arrays VX, VY, SF, ITNODE, and IBNDRY are spec-
ified, along with some parameters in IP, RP, SP, and possibly IU, RU, and SU.
Other entries of the IP, RP, and SP arrays not required to be provided by the user
through GDATA are given default values at the beginning of ATEST, but can be
reset by the user as desired.

6.7 Reading and Writing Files.
The w and r commands are used to save and restore data sets. The arrays IP,
RP, SP, IU, RU, SU, VX, VY, SF, IBNDRY, ITNODE, ITDOF, IPATH, E, and
common blocks PLTMG6 and PLTMG7 are written to (w command) or read from
(r command) the file RWFILE. Data files are formatted as machine independent
binary files using the XDR protocol. The w and r commands can be used with both
the triangulation and skeleton data structures.

One can use the w and r commands to save and restore the solution at various
points along a continuation path. One can also save solutions in the current run for
post processing (graphics, etc.), which can then occur in a later run.

The parameter MPIRGN is also useful in this setting. When MPISW = 1
and MPIRGN=0, then a r or w command will cause all processors to read or write
the specified file. However, if one would like to read or write a file on just one
processor (e.g., for debugging), one can set MPISW = 1 and MPIRGN=I , for
1 ≤ I ≤ NPROC , and the file will be read or written only by processor I.

110 PLTMG USERS’ GUIDE 12.0

6.8 Journal Files.
The j command causes ATEST to read its command strings from the file JRFILE,
rather than accepting them interactively from the user. It is the only option avail-
able in batch mode. A journal file is an ASCII file containing a sequence of command
strings as described in Section 6.2. The symbol # appearing as the first character
in a line causes that line to be interpreted as a comment. When the end of the
file is reached ATEST returns to terminal or X-Windows mode and again accepts
commands interactively. If a q command is encountered in a journal file, ATEST
will exit.

6.9 Shell Command.
The k command causes the string stored in the variable SHCMD to be executed by
the user’s shell. It is included mainly as a convenience, in particular as a means to
include system file manipulation commands within journal files.

6.10 Subroutine USRCMD.
The u command is used to call the user supplied routine USRCMD.

Call USRCMD(VX, VY, SF, ITNODE, IBNDRY, IP, RP, SP,
IU, RU, SU)

This routine is written by the user to perform any tasks not covered by other
commands. In our experience, the most frequent use of USRCMD has been to reset
parameters unique to a particular problem.

USRCMD is affected by the variable IUSRSW. If IUSRSW = 0, the return
from USRCMD causes ATEST to present the command prompt. If IUSRSW 6= 0,
the return from USRCMD results in a branch to the user supplied routine GDATA
before presenting the command prompt. This switch is useful if modified parameters
affect the geometry of the region, boundary conditions, etc., requiring modifications
of the input arrays.

Since the most frequent use of USRCMD is to modify problem dependent pa-
rameters, we now describe how to build an interface within USRCMD allowing one
to reset parameters in a fashion similar to the other commands. This is done via
subroutine USRSET, which is called as follows:

Call USRSET(FILE, LEN, IU, RU, SU)

IU, RU, and SU are integer, real, and CHARACTER*80 arrays, respectively, of
size 100 containing the parameters to be reset. It is often convenient to use the
IU, RU, and SU arrays provided by ATEST in common block ATEST2 for this
purpose. FILE is a CHARACTER*80 array of length LEN, described below. In
terminal mode, the command u creates a display listing the user parameters and
their current values, similar to the upper case form of other commands. Commands

6.10. Subroutine USRCMD. 111

of the form

command:u name1=value1, name2=value2, ... , namek=valuek

reset the indicated parameters and then display the updated values. In X-Windows
mode, pressing the USRCMD command button with mouse button one pops up a
reset window, similar to pressing mouse button three for the other commands.

The array FILE contains a list of commands that define the variables to be
reset, and characterize the reset display. The commands in FILE have a syntax
similar to the basic scripting language we have defined for ATEST itself. However,
in this case there are just two basic commands: n (name variable) and s (string for
radio button). These are summarized in Table 6.2.

Parameters associated with n command

Name Alias Type Value

vname n short maximum of 6 characters
alias a short maximum of 2 characters
vtype t short i (int), r (real), s (short), l (long), f (file)
index i int pointer to IU, RU, SU

Parameters associated with s command

Name Alias Type Value

vname n short variable name
value v - depends on vname
label l long label associated with value in radio buttons

Table 6.2. Command syntax for USRSET.

Note that integer variables are stored in the IU array, real variables in the
RU array, and short, long and file strings are all stored as entries in the SU array.
In order to correctly define the reset window, all four variables associated with the
n command should be defined in each n command. Similarly, the three variables
associated with the s command should all be defined in each s command. Other-
wise, the syntax for each command follows the usual rules of the scripting language.
Below is an example code fragment that could define a simple FILE array.

FILE(1) = ’N I=1, N=NTRI, A=NT, T=I’
FILE(2) = ’N I=2, N=IBC , A=BC, T=I’
FILE(3) = ’S N=IBC, V=1, L=”NEUMANN BC”’
FILE(4) = ’S N=IBC, V=2, L=”DIRICHLET BC”’
LEN = 4

The first two lines are n commands that define two integer variables. The
first line defines a variable with name NTRI, alias NT, that is stored as IU(1). The

112 PLTMG USERS’ GUIDE 12.0

second defines a variable IBC, alias BC, that is stored as IU(2). The variable IBC
can take on two values, 1 and 2, that are associated with Neumann and Dirichlet
boundary conditions, respectively. The third and fourth lines above are s commands
that define the structure of a radio box associated with the IBC name in the X-
Windows popup. Note that since the LABEL is a long string, its value must be
enclosed in double quotes.

6.11 Subroutine GDATA.
The user provides subroutine GDATA, which defines the region through an initial
triangulation or a skeleton. A call to GDATA is among the first executable state-
ments in ATEST.

Call GDATA(VX, VY, SF, ITNODE, IBNDRY, IP, RP, SP,
IU, RU, SU, SXY)

Through this call the user is minimally expected to supply values for NTF,
NVF, and NBF in the IP array, as well as the relevant values for the input arrays
VX, VY, SF, ITNODE, and IBNDRY. Entries in RP, SP, IU and RU, as well as
parameters in IP other than those mentioned above, may be optionally specified in
GDATA.

6.12 Machine Dependent Routines.
During the initial installation of the package, the user must provide several machine
dependent routines associated with timing and graphics. Default versions of these
routines are provided with the package, which should work without modification in
many environments, and in any event can serve as a model for a new implementation.

Fortran module MTHDEF, is used throughout the package to specify the pre-
cision of the floating point arithmetic to be used. The timing routine TIMER is
used by PLTMG and TRIGEN. The graphics routines TRIPLT, GPHPLT, and IN-
PLT address the graphics output device through the routines PLTUTL, PFRAME,
PLINE, and PFILL. These routines are documented in detail below.

6.12.1 Arithmetic Specification.

This version of PLTMG uses module MTHDEF to specify the precision of arith-
metic to be used. In particular, PLTMG is no longer supplied in single and double
precision versions, since either version can easily be created just by resetting some
parameters in MTHDEF

Below appears the default version of MTHDEF.

module mthdef

c

integer(kind=4), parameter :: isngl=4

integer(kind=4), parameter :: rsngl=4

integer(kind=4), parameter :: rdble=8

6.12. Machine Dependent Routines. 113

integer(kind=4), parameter :: iknd=isngl

integer(kind=4), parameter :: rknd=rdble

c

end module

The parameters RSNGL, and RDBLE define single and double precision arith-
metic, respectively. ISNGL defines integers. These three definitions should work
with no change on most systems. The parameter RKND can be set to RSNGL for
a single precision version of the code, or to RDBLE for a double precision version.
IKND should be set it ISNGL.

6.12.2 Timing Routine.

Subroutine TIMER has the calling sequence

Subroutine TIMER(ISW)

Here ISW is an integer. The array TIME stored in common block PLTMG7
records the time spent in major subroutines called by PLTMG and TRIGEN.
TIMER should call an appropriate system routine to determine the current time
each time it is entered, and then take various actions depending on the value of
ISW. The cases ISW = −2 and ISW = −1 request initialization of the TIME ar-
ray, while 1 ≤ ISW ≤ 50 request an individual entry in the TIME array be updated.
The current time is saved as it is needed for the next call to TIMER. Subroutine
TIMER is machine independent except for the call to the system clock. An example
of TIMER, calling the function CPU TIME, is given below. It is quite likely that
this routine will function properly on most modern systems with no change.

subroutine timer(isw)

c

use mthdef

implicit real(kind=rknd) (a-h,o-z)

implicit integer(kind=iknd) (i-n)

integer(kind=iknd), save :: len=50

real(kind=rknd), save :: tx=0.0e0_rknd

common /pltmg7/time(3,50),hist(22,30)

c

c call the clock and return the time in seconds

c (time differences are used to compute the elapsed time)

c

ty=tx

call cpu_time(tx)

c

c update time array (1.0e-10_rknd is below resolution of timer)

c

if(isw>0) then

dt=max(tx-ty,1.0e-10_rknd)

time(1,isw)=time(1,isw)+dt

time(2,isw)=time(2,isw)+dt

else if(isw==-1) then

do i=1,len

time(1,i)=0.0e0_rknd

114 PLTMG USERS’ GUIDE 12.0

enddo

else if(isw==-2) then

do i=1,len

time(1,i)=0.0e0_rknd

time(2,i)=0.0e0_rknd

time(3,i)=0.0e0_rknd

enddo

endif

return

end

6.12.3 Graphics Interface.

The four device dependent routines in the graphics package are

Subroutine PLTUTL(NCOLOR, RED, GREEN, BLUE)
Subroutine PFRAME(IFRAME)
Subroutine PLINE(X, Y, Z, N, ICOLOR)
Subroutine PFILL(X, Y, Z, N, ICOLOR)

Subroutine PLTUTL takes various actions depending on the value of the inte-
ger NCOLOR. NCOLOR > 0 specifies initialization; NCOLOR denotes the number
of colors to be used and satisfies 2 ≤ NCOLOR ≤ MXCOLR. RED, GREEN ,
and BLUE are vectors of length NCOLOR. The entries RED(i), GREEN(i), and
BLUE(i), 1 ≤ i ≤ NCOLOR, are floating point numbers on the interval [0, 1],
corresponding to rgb values for the ith color. Color number 1 is always white
(RED(1) = GREEN(1) = BLUE(1) = 1.0), and color number 2 is always black
(RED(2) = GREEN(2) = BLUE(2) = 0.0). The rgb values of the remaining entries
depend on the picture to be drawn and the value of MXCOLR. PLTUTL should
create a color map with the required colors, as these will be referenced in future
calls to PLINE and PFILL. If PLTUTL is called with NCOLOR < 0, the drawing
is complete and any necessary post processing should be carried out (e.g., close the
plot file).

The drawing space used by the graphics routines is always assumed to be either
the unit square (0, 1)× (0, 1) or the rectangle (0, 1.5)× (0, 1). For devices that have
a so-called Z-buffer, the drawing space is either the unit cube (0, 1)× (0, 1)× (0, 1)
or the brick (0, 1.5) × (0, 1) × (0, 1). The graphics display itself is always viewed
as rectangular with aspect ratio 3/2, which is either a single rectangular frame or
three square frames. These frames are numbered 1 to 4 as illustrated in Figure
6.5. The graphics routines write their output to various lists. A list consists of
a frame, and certain attributes (rotating/non-rotating, lighted/non-lighted). Some
attributes may not have realizations for certain graphics devices. The nine available
lists are summarized in Table 6.3.

When graphics is initiated for a certain list, say list k, subroutine PFRAME(k)
is called to indicate that subsequent calls of PLINE and PFILL contain data to be
written to list k. PFRAME(−k) indicates that the output to the given list should
be terminated. By convention, graphics routines are allowed only one open list at a

6.12. Machine Dependent Routines. 115

time. Therefore, when PFRAME is invoked with a positive argument, the given list
should be opened and the mapping from the unit cube or brick to the actual device
coordinates for the given list should be computed. If rotation or lighting attributes
are available, these should be set as specified in Table 6.3. When PFRAME is
invoked with a negative argument, the given list should be closed.

1 4

3

2

Figure 6.5. Frame definitions.

list frame rotating lighted

1 1 no no
2 2 no no
3 3 no no
4 4 no no
5 4 yes no
6 4 yes no
7 4 yes yes
8 4 yes yes
9 4 no yes

Table 6.3. list specifications for pframe.

Subroutine PLINE has arguments X, Y, Z, N, and ICOLOR. X, Y, and Z are
vectors of length N ≥ 2. The points (X(i),Y(i),Z(i)) lie in the unit cube or the
brick (0, 1.5)× (0, 1)× (0, 1). The Z coordinate is useful only for devices that have
a Z-buffer, and can be ignored in other cases. ICOLOR is an integer between 1 and
NCOLOR, where NCOLOR was the argument that initialized PLTUTL, indicating
the color to be used. PLINE should draw the given polyline (X(i),Y(i),Z(i)) to
(X(i+1),Y(i+1),Z(i+1)), 1 ≤ i ≤ N − 1, with the specified color in the proper
frame.

Subroutine PFILL has arguments X, Y, Z, N, and ICOLOR. X, Y, and Z
are vectors of length N ≥ 3. The points (X(i),Y(i),Z(i)) lie in the unit cube or
the brick (0, 1.5) × (0, 1) × (0, 1), and define an N -sided (planar) polygonal re-
gion with sides (X(i),Y(i),Z(i)) to (X(i+1),Y(i+1),Z(i+1)) for 1 ≤ i ≤ N − 1,
and (X(N),Y(N),Z(N)) to (X(1),Y(1),Z(1)). ICOLOR is an integer between 1 and
NCOLOR, where NCOLOR was the argument that initialized PLTUTL, indicating

116 PLTMG USERS’ GUIDE 12.0

the color to be used. PFILL should color the specified polygon with the specified
color in the proper frame.

IDEVCE output driver

0–3 SG sockets 0–3
4 BH file
5 Postscript file
6 XPM file

7–10 X-Windows displays 0-3

Table 6.4. Default graphics devices.

The default installation of the package includes several standard output graph-
ics devices. These are described in Table 6.4. SG is an OpenGL program written
by Mike Holst that is available separately. It can receive input from a specified
INET socket. ATEST allows up to four SG displays to be accessed. Because it is
socket based, SG and ATEST can be running on different computers; the param-
eter SGHOST is the name of the host computer running SG. Since it is based on
OpenGL the graphics displays are animated, and images can be manipulated with
the mouse.

BH is the protocol developed for communication between ATEST and SG. BH
files are essentially file versions of SG images. The parameter BHFILE gives the file
name. The parameter BHFILE is scanned for the string FIGXXX. If found, this
string is replaced by FIG001, FIG002, etc, with the counter incremented for each
image. This allows the single parameter BHFILE to specify a family of separate
BH files. The parameter BHFILE is also scanned for the string MPIXXX. If found,
this string is replaced by MPI001, MPI002, etc, where the integer part denotes the
processor. This avoids potential name conflicts when running ATEST as a parallel
program. The BH file itself is a device independent binary file written using XDR.
These files can be saved and later displayed using the SG program.

If the SG interface is not available or not desired, an alternate interface com-
posed of stub routines is provided with the default installation of the program. The
alternate interface has the same routines as the regular SG interface, but with all
calls to routines and functions in the MALOC library deleted. Using the stub rou-
tines, an executable can be created without loading the MALOC library to resolve
external references. However, if the stub routines are used, the SG and BH graphics
options are disabled.

Postscript and XPM are both ASCII files. The parameters PSFILE and XP-
FILE specify the file names. These names are scanned for the strings FIGXXX and
MPIXXX, that are replaced if found as described above in the case of BHFILE.
Devices 7–10 refer to X-Windows graphics displays. Up to four such displays may
be used (although the ATEST driver itself allows up to ten). These graphics win-
dows display static pixmaps (raster images similar to XPM files) that cannot be
animated or manipulated, other than resizing the window. X-Windows graphics

6.12. Machine Dependent Routines. 117

displays are only available when MODE = 0.

6.12.4 X-Windows Interface.

The X-Windows interface uses several X-Windows libraries, as well as the Motif
widget set, and thus can be used only in environments that support the X-Windows
system. It is based on the release X11R6. Our intent was to make the interface as
generic and simple as possible. Since the PLTMG package is constantly evolving,
the interface is structured to run arbitrary Fortran programs, so that in the future,
large changes in the package need not cause correspondingly large changes in the
interface. The X-Windows interface is written in C.

If the X-Windows libraries that support the X-Windows interface are not
available, one can use substitute stub routines in place of the regular interface.
These alternative stub routines are supplied with the default installation of the
package, and are similar to those in the regular X-Windows interface, except that
all calls to routines and functions in the X-Windows libraries have been deleted.
Using the stub routines, an executable can be created without the need to load
X-Windows libraries to resolve external references. However, in this case the X-
Windows interface (MODE = 0) is completely disabled. This includes X-Windows
graphics options (7 ≤ IDEVCE ≤ 10).

6.12.5 MPI Interface

The communication used in parallel processing is provided by calls to the MPI
library. This library is not provided as part of the PLTMG package. The calls to
the MPI library are all made from Fortran, and we have concentrated all calls into
just a few subroutines. Thus the vast majority of the code comprising the main
PLTMG routines is self-contained. If the MPI library is not available, one can use
substitute stub routines supplied with the default installation in place of the regular
interface. The stub routines are similar to the those in the regular interface, except
that all calls to routines and functions in the MPI library have been deleted. Using
the stub routines, an executable can be created without the need to load the MPI
library to resolve external references. In this case, all the parallel computing options
provided by PLTMG, TRIGEN, and the graphics routines are disabled.

118 PLTMG USERS’ GUIDE 12.0

Chapter 7

Test Problems

7.1 Overview.
In this chapter, we briefly document the test problem data sets included with the
PLTMG source code. These problems encompass a variety of applications and
exercise most features of the package. Each data set minimally consists of functions
A1XY, A2XY, FXY, GNXY, GDXY, P1XY, P2XY, and QXY and subroutines
USRCMD and GDATA. Problem specific routines are also included.

7.2 Test Problem CIRCLE.
In this problem, we solve the equation

−∇ · (a∇u) = 0,

where Ω is the unit circle with a crack along the positive x axis. Homogeneous
Dirichlet boundary conditions are imposed on the top of the crack, and homogeneous
Neumann boundary conditions are imposed below the crack. The coefficient a ≡ ak
is piecewise constant in the eight sectors

Ωk = {(r, θ)| 0 ≤ r ≤ 1, (k − 1)π/4 ≤ θ ≤ kπ/4}.

The domain Ω is defined by a triangulation consisting of eight similar triangles,
shown in Figure 7.1, that correspond to the eight sectors of constant a. On the
boundary of the circle, nonhomogeneous boundary conditions are imposed such
that the true solution in sector Ωk is given by

u = rα(βk sinαθ + γk cosαθ). (7.1)

The exponent α is chosen to correspond to the leading singularity arising from
the geometry, change of boundary conditions, and coefficient jumps at the origin.
The coefficients βk and γk are chosen to insure continuity of the solution u and
the normal component of the flux a∇u · n across the interfaces, and to satisfy the

119

120 PLTMG USERS’ GUIDE 12.0

boundary conditions along the crack. For example, in the case ak = 1 for all k,
α = 1/4 and

u = rα sinαθ.

The USRCMD for this test problem has ten parameters that can be set. IBC
determines the boundary conditions. If IBC = 2, the boundary conditions on the
outer boundary of the circle are nonhomogeneous Dirichlet chosen such that (7.1)
is the exact solution; if IBC = 1, nonhomogeneous Neumann boundary conditions
are imposed on the circular part of the boundary in a similar fashion. One can also
alter the geometry of the domain using the parameter NTRI, where 1 ≤ NTRI ≤ 8.
If NTRI = 8 the entire circle is used as the domain; if NTRI < 8, only the first
NTRI sectors are used. Some examples are shown in Figure 7.1. Eight parameters,

Figure 7.1. On the far right is the square domain for problems SQUARE,
OB and CONTROL. The remaining domains are for test problem CIRCLE with
NTRI = 8, NTRI = 7 and NTRI = 3.

A1, A2,. . . ,A8 define the coefficients ak. Given the ak and NTRI, the values of
α, βk and γk are computed in GDATA by solving appropriate nonlinear equations.
Since the exact solution is known, we can compute the exact error. For this test
problem, the function QXY is defined to be the exact error for graphics options
and the true solution (7.1) otherwise.

7.3 Test Problem SQUARE.
In this test problem, a complicated equation is solved on a simple domain. The
domain is always the unit square shown in Figure 7.1; boundary conditions on each
side of the square can be independently specified as Dirichlet or natural, or pairs of
opposite sides can be specified as periodic. The region is specified as a triangulation.

7.3. Test Problem SQUARE. 121

The coefficient functions are defined by

a1 = A1X
∂u

∂x
+ A1Y

∂u

∂y
+ A1U u,

a2 = A2X
∂u

∂x
+ A2Y

∂u

∂y
+ A2U u,

f = −BUX
∂u

∂x
− BUY

∂u

∂y
− CU0 − CU1 u− CU2 u2 − CAHN (u− u3)

− CIR

(
∂u

∂x
(y − .5)− ∂u

∂y
(x− .5)

)
− CEXP eu − CSIN sinu,−F0(y − x)

g1 = −DU0 −DU1 u,

g2 = −EU0,

and the functional ρ is defined by

p1 = u2,

p2 = 0.

All of these nineteen parameters can be set using USRCMD, and any can
be used as the continuation parameter λ by specifying the parameter ICONT in
USRCMD as in Table 7.1. With this variety of nonlinearities, one can exercise most
continuation features of PLTMG. If ICONT = 0, then none of the parameters is

ICONT λ ICONT λ

0 none 10 CU1
1 A1X 11 CU2
2 A1Y 12 CAHN
3 A1U 13 CEXP
4 A2X 14 CIR
5 A2Y 15 CSIN
6 A2U 16 DU0
7 BUX 17 DU1
8 BUY 18 EU0
9 CU0 19 F0

Table 7.1. Possible settings for ICONT.

regarded as λ, and one should set IPROB = 1 to signify that the problem does not
involve continuation.

One can also set the integer parameters LEFT, RIGHT, TOP, and BOTTOM
in USRCMD. These refer to the four sides of the square in an obvious fashion and
can be individually set to 2 for Dirichlet boundary conditions or to 1 for natural
boundary conditions for the given side of the square. A pair of opposite edges can
be set to 0 (e.g., TOP = BOTTOM = 0), and IBNDRY will then be set for periodic
boundary conditions.

122 PLTMG USERS’ GUIDE 12.0

7.4 Test Problem DOMAINS.
In this test problem, a simple equation is solved on a variety of complicated domains.
This test problem was designed mainly to exercise TRIGEN.

The problem to be solved is the linear partial differential equation

a1 = A1X
∂u

∂x
+ A1Y

∂u

∂y
+ A1U u,

a2 = A2X
∂u

∂x
+ A2Y

∂u

∂y
+ A2U u,

f = −BUX
∂u

∂x
− BUY

∂u

∂y
− CU1 u− CU0

with a combination of homogeneous Dirichlet, homogeneous Neumann, and peri-
odic boundary conditions. The parameters A1X, A1Y, A1U, A2X, A2Y, A2U,
BUX, BUY, CU0, and CU1 can all be set in USRCMD. The parameter DOMAIN,
satisfying 1 ≤ DOMAIN ≤ 21, specifies the domain to be used. The various possi-
bilities are shown in Figure 7.2. All domains are defined by skeletons, so TRIGEN
must be called to generate a triangulation.

7.5 Test Problem NACA.
Test problem NACA solves the equation of potential flow in one of several domains.
The equation is of the form

−∇ · ρ(∇u)∇u = 0,

where
ρ(∇u) = (1− u2

x − u2
y)

1
γ−1

and γ = 1.4. The local Mach number is computed in QXY and is given by

q =

√
2c

γ − 1
,

c =
1

1− u2
x − u2

y

− 1.

There are four domain options, chosen using the parameter DOMAIN in USR-
CMD. These domains are shown in Figure 7.3. All regions are defined as skeletons,
so TRIGEN must be used to generate a triangulation.

Neumann boundary conditions are imposed everywhere so each domain has
ISING = 1. There are several parameters in USRCMD that affect these problems.
The parameter MINF, specifying the Mach number at infinity M∞, sets the bound-
ary conditions on the outer boundary and is also the continuation parameter λ for
these problems. The parameter ANGLE specifies the angle of attack (in degrees).
The parameter SIZE sets the radius of the outer boundary. When the local Mach
number is less than one the flow is subsonic; PLTMG will work well in regions where
the flow is entirely subsonic. As the M∞ is increased, the solution will begin to

7.5. Test Problem NACA. 123

Figure 7.2. The domains for DOMAIN = i, 1 ≤ i ≤ 23.

124 PLTMG USERS’ GUIDE 12.0

Figure 7.3. The domains for DOMAIN = i, 1 ≤ i ≤ 4, with SIZE = 1.

develop regions of supersonic flow near the airfoils; PLTMG will continue to work as
these regions are forming, but eventually will fail, as the underlying discretization
used by PLTMG is not really appropriate for hyperbolic problems.

7.6 Test Problem JCN.
Test problem JCN solves the convection diffusion equation

−∇ · (∇u+ βu) = 0,

where β is piecewise constant. The region is shown in Figure 7.4. The domain is
specified by skeleton, so TRIGEN must be used to generate a triangulation.

Figure 7.4. The domain for test problem JCN (left), a triangulation pro-
duced by TRIGEN (middle), and the corresponding triangulation after a call to
USRCMD with OBTUSE = 1 (right).

This problem is an idealized model of the current continuity equation from the
semiconductor device model that we have used to study the stability of discretiza-
tions used in device simulation. The problem has seven regions; β = 0 in regions
one and seven. In the other five regions it has a magnitude of approximately 104

and is directed radially in each of the five subregions. The solution develops steep
gradients at the junction between region seven and the five adjoining subregions.

Constant nonhomogeneous Dirichlet boundary conditions are specified along
the bottom of the domain and on the left-hand portion of the top of the domain.
Homogeneous Neumann boundary conditions are imposed elsewhere. The parame-
ters TOP and BOTTOM in USRCMD can be used to reset the Dirichlet boundary

7.7. Test Problem OB. 125

conditions on the top and bottom of the domain. The parameter DU can be used
to adjust the size of β in regions 2–5; in particular, the magnitude of β in these five
regions is proportional to DU.

Our original purpose in constructing this example was to test the sensitivity of
various upwinding techniques [6] to poor element geometries. Since the goal of TRI-
GEN is to produce elements with good geometries, the USRCMD for this problem
includes a procedure for systematically degrading the quality of the triangulation by
introducing new elements with obtuse angles. If OBTUSE = 1 in USRCMD, then
each triangle in the current mesh is divided into three new triangles by connecting
its barycenter to its vertices. An example is shown in Figure 7.4. Repeated appli-
cation of this procedure will produce triangulations with interior angles arbitrarily
close to π.

7.7 Test Problem OB.
Test problem OB solves the a simple obstacle problem, with coefficient functions
defined by

p1 = AX

(
∂u

∂x

)2

+ AY

(
∂u

∂y

)2

+ CU u2 − 2su,

s =
(
AX(IXπ)2 + AY (IYπ)2 − CU

)
sin(IXπx) sin(IYπy),

u = BDLW + CFLW sin(IXLπx) sin(IYLπy),

u = BDUP + CFUP sin(IXUπx) sin(IYUπy),

g1 = 0.

The domain Ω is the unit square with homogeneous Dirichlet boundary condi-
tions. The input data structure is a triangulation consisting of eight right trian-
gles, shown in Figure 7.1. The parameters AX, AY, CU, BDLW, BDUP, CFLW,
CFUP and the integers IX, IY, IXL, IYL, IXU, IYU can all be set by the user
in USRCMD. The exact solution to this problem in the absence of the obstacle
is u = sin(IXπx) sin(IYπy). This problem is mainly designed to test the cases
IPROB = ±2 in PLTMG.

126 PLTMG USERS’ GUIDE 12.0

7.8 Test Problem MNSURF.
Test problem MNSURF solves the a simple minimal surface problem with an ob-
stacle. The coefficient functions are given by

p1 =

√
1 +

(
∂u

∂x

)2

+

(
∂u

∂y

)2

u =

 1 in Ω1

−1 in Ω2

` in ΩI

u = 1.5

g1 = 0,

g2 = 0.

The domain Ω is the unit square with a mixture of homogeneous Dirichlet and
Neumann boundary conditions. The domain is given as a skeleton, and is shown
in Figure 7.5. The region Ω1 is the inner square with side 1/2, and Ω2 is the outer
region. The region ΩI is the small band separating Ω1 and Ω2, consisting of four
narrow trapezoids. In each of the four trapezoids, u is a linear polynomial in x
or y that interpolates between −1 and 1, insuring continuity of u. The parameter
THETA, which can be set in USRCMD, controls the width of the band. The upper
bound u is chosen such that it does not affect the solution. As with test problem
OB, this problem is mainly designed to test the cases IPROB = ±2 in PLTMG.

Figure 7.5. The domains for test problems MNSURF, BATTERY,
IDENT, and BURGER (left to right).

7.9 Test Problem BURGER.
Test problem BURGER solves the nonlinear convection dominated flow

−ε∆u+ uy + uux = 0.

This is really a time dependent Burger’s equation in one space dimension. In this
setting, the y space variable plays the role of time, and we have added a small diffu-
sion term. This problem is solved as a two dimensional steady state problem. Some

7.10. Test Problem BATTERY. 127

analysis of this approach to solving time dependent partial differential equations is
given in [33].

The small parameter ε > 0 and can be set in USRCMD. The domain Ω is
the quarter circle shown in Figure 7.5, and is specified as a skeleton. Natural
(homogeneous Neumann) boundary conditions are applied along the circular arc,
while Dirichlet boundary conditions are specified on the left side (x = 0) and the
bottom (y = 0) as

g2 =

 1 0 ≤ x ≤ 1/4
3/2− 2x 1/4 ≤ x ≤ 3/4

0 3/4 ≤ x ≤ 2
.

This combination of boundary conditions gives rise to a solution similar to the
so-called “λ shock” of Burger’s equation.

7.10 Test Problem BATTERY.
In this test problem we solve the linear elliptic problem

−a1uxx − a2uyy − f = 0

where the piecewise constant values of the coefficients are given in Table 7.2. The

Region a1 a2 f side c α

1 25 25 0 left 0 0
2 7 0.8 1 top 1 3
3 5.0 10−4 1 right 2 2
4 0.2 0.2 0 bottom 3 1
5 0.05 0.05 0

Table 7.2. Coefficient definitions.

domain Ω is shown in Figure 7.5 and is specified as a skeleton. The five subregions
are given labels in ITNODE(5,*), allowing us to conveniently define the coefficient
functions. The boundary conditions are natural boundary conditions of the form

g1 = c− αu.

Here c and α are piecewise constant functions defined using IBNDRY(6,*), as indi-
cated in Table 7.2. The data for this problem was supplied by Leszek Demkowicz.

7.11 Test Problem CONTROL.
This problem tests the cases IPROB = ±5. The differential equation (constraint)
is

−∆u = λ(C0 + C1u+ C2u2 + C3u3) + F0 + F1u+ F2u2 + F3u3

128 PLTMG USERS’ GUIDE 12.0

in Ω, with Dirichlet boundary conditions

u = DBC

on ∂Ω. The objective function ρ is given by

ρ(u, λ) =

∫
Ω

(u− u0)2 + β|∇(u− u0)|2 + γλ2 dx.

Ω is the unit square, defined as a triangulation similar to test problem SQUARE;
see Figure 7.1. The function u0 and the bounds on λ are given by

u0 = sin(IXπx) sin(IYπy),

BDLW ≤ λ ≤ BDUP.

The constants BETA = β. GAMMA = γ, BDLW, BDUP, DBC, C0, C1, C2, C3,
F0, F1, F2, and F3, and the integers IX and fIY can all be reset in USRCMD.

7.12 Test Problem IDENT.
This problem tests the cases IPROB = ±4. The differential equation is

−(1 + A2)∆u+ C2 u2 + C1 u− C0 = 0.

The domain Ω is specified as a skeleton, and is shown in Figure 7.5. The boundary
conditions are a combination of homogeneous Neumann and Dirichlet, except for the
vertical edge on the right where the (possibly) nonhomogeneous Dirichlet boundary
condition

u = D

is imposed. The five parameters A, C0, C1, C2, and D can be set in USRCMD, and
any combination of them can be used as scalar parameters λi in the optimization
problem. This is done setting the switches IRL (also set in USRCMD) indicated
in Table 7.3. For example, setting IRL1 = 1 makes A an optimization parameter,
while setting IRL1 = 0 keeps A at its current fixed value.

switch λj

IRL1 A
IRL2 C0
IRL3 C1
IRL4 C2
IRL5 D

Table 7.3. IRL switches.

The objective function ρ is given by

ρ(u, λ) =

∫
Ω

e−20(x2+y2)(u− 1)2 dx,

which tries to make the solution u = 1 near the origin, located at the center of Ω.

7.13. Test Problem BOX. 129

7.13 Test Problem BOX.
Test problem BOX tests the moving boundary optimization option in PLTMG
(IPROB = 4 and ITASK = 8). The domain is a 1 × 1 square with a square hole,
illustrated in Figure 7.6. The hole is free to move around within the square, with
its position governed by three parameters: (xc, yc) denoting the coordinates of the
center of the square, and θ denoting its angle of rotation. Any combination of
these three parameters may be chosen as optimization parameters, as summarized
in Table 7.4.

switch λj

IRL1 xc
IRL2 yc
IRL3 θ

Table 7.4. IRL switches.

The objective function is given by

ρ(u, λ) = min

∫
Ω

∇u2 + δ

NRL∑
i=1

λ2
i dx.

The boundary value problem and inequality constraints are given by

−∆u = 1 in Ω

u = 0 on ∂Ω

λi ≤ λi ≤ λi, for 1 ≤ i ≤ NRL.

7.14 Test Problem MESSAGE.
In this test problem, a simple equation is solved on a domain consisting of a message
with up to ten lines. This test problem was designed mainly for fun, and to make
software demonstrations more interesting.

The problem to be solved is the linear partial differential equation

a1 = A1X
∂u

∂x
+ A1Y

∂u

∂y
+ A1U u,

a2 = A2X
∂u

∂x
+ A2Y

∂u

∂y
+ A2U u,

f = −BUX
∂u

∂x
− BUY

∂u

∂y
− CU1 u− CU0

with homogeneous Dirichlet boundary conditions. The parameters A1X, A1Y, A1U,
A2X, A2Y, A2U, BUX, BUY, CU0, and CU1 can all be set in USRCMD. String

130 PLTMG USERS’ GUIDE 12.0

parameters LINE0, LINE1, ... , LINE9 can be set in USRCMD to a user specified
message. Upper case and lower case letters, numbers, and several symbols found on
a standard keyboard are available. Two possible domains are shown in Figure 7.6.
All domains are defined by skeletons, so TRIGEN must be called to generate a
triangulation.

Figure 7.6. The domain for test problem BOX, and two sample domains
for test problem MESSAGE.

7.15 Test Problem USMAP.
In this test problem, a simple equation is solved on one of 51 domains; 50 are
outlines of individual states in the United States, and the last is an outline of the
continental U. S. As with test problem MESSAGE, this test problem was designed
mainly for fun.

The problem to be solved is the linear partial differential equation

a1 = A1X
∂u

∂x
+ A1Y

∂u

∂y
+ A1U u,

a2 = A2X
∂u

∂x
+ A2Y

∂u

∂y
+ A2U u,

f = −BUX
∂u

∂x
− BUY

∂u

∂y
− CU1 u− CU0

with homogeneous Dirichlet boundary conditions. The parameters A1X, A1Y, A1U,
A2X, A2Y, A2U, BUX, BUY, CU0, and CU1 can all be set in USRCMD.

All domains are specified as skeletons, derived from PostScript and PDF files
from the National Digital Map Library at the University of Virginia. The parameter
ISTATE, 1 ≤ ISTATE ≤ 51, specifies the domain. The parameter ICTY takes on
values 0 and 1; if ICTY = 1, county lines (state lines in the case of the U. S. map)
are included as part of the skeleton. If ICTY = 0, the skeleton consists of just the
outline of the state or country. Several domains (e. g. Michigan, Hawaii) are not
connected. Many have small islands11 that can be excluded from the skeleton by
setting the parameter ISLE = 0. If ISLE = 1, all small islands are included as part
of the skeleton. Several domains are shown in Figure 7.7. Since all domains are
defined by skeletons, TRIGEN must be called to generate a triangulation.

11The definition of small is problem dependent and depends on the judgment of the author.

7.15. Test Problem USMAP. 131

Figure 7.7. Sample domains for test problem USMAP. ICNTY = 1 and
ISLE = 0 for all domains.

132 PLTMG USERS’ GUIDE 12.0

Bibliography

[1] I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite
element computations, SIAM J. Numer. Anal., 15 (1978), pp. 736–754.

[2] Ivo Babuška and Theofanis Strouboulis, The finite element method and
its reliability, Numerical Mathematics and Scientific Computation, The Claren-
don Press Oxford University Press, New York, 2001.

[3] Randolph E. Bank, Multigraph users’ guide - version 1.0, tech. report, De-
partment of Mathematics, University of California at San Diego, 2001.

[4] , A domain decomposition solver for a parallel adaptive meshing paradigm,
in Domain Decomposition Methods in Science and Engineering XVI, Olof B.
Widlund and David E. Keyes, eds., vol. 55 of Lecture Notes in Computational
Science and Engineering, Springer-Verlag, 2006, pp. 3–14.

[5] , Some variants of the Bank-Holst parallel adaptive meshing paradigm,
Computing and Visualization in Science, 9 (2006), pp. 133–144.

[6] R. E. Bank, J. F. Bürgler, W. Fichtner, and R. K. Smith, Some
upwinding techniques for finite element approximations of convection-diffusion
equations, Numer. Math., 58 (1990), pp. 185–202.

[7] Randolph E. Bank and Tony F. Chan, PLTMGC: A multi-grid continu-
ation program for parameterized nonlinear elliptic systems, SIAM J. Sci. and
Stat. Computing, 7 (1986), pp. 540–559.

[8] , An analysis of the composite step biconjugate gradient method, Numer.
Math., 66 (1993), pp. 295–319.

[9] , The composite step biconjugate gradient algorithm for nonsymmetric
linear systems, Numerical Algorithms, 7 (1994), pp. 1–16.

[10] Randolph E. Bank, William M. Coughran, and Lawrence C.
Cowsar, Analysis of the finite volume Scharfetter-Gummel method for steady
convection diffusion equations, Computing and Visualization in Science, 1
(1998), pp. 123–136.

133

134 Bibliography

[11] Randolph E. Bank and Chris Deotte, The influence of partitioning on
domain decomposition convergence rates, Computing and Visualization in Sci-
ence, (accepted).

[12] , Adventures in adaptivity, Computing and Visualization in Science, (sub-
mitted).

[13] Randolph E. Bank, Philip E. Gill, and Roummel F. Marcia, In-
terior methods for a class of elliptic variational inequalities, in Large-scale
PDE-constrained Optimization, Lorenz T. Biegler, Omar Ghattas, Matthias
Heinkenschloss, and Bart van Bloemen Waanders, eds., vol. 30 of Lecture Notes
in Computational Science and Engineering, Berlin, Heidelberg and New York,
2003, Springer-Verlag, pp. 218–235.

[14] Randolph E. Bank and Michael J. Holst, A new paradigm for parallel
adaptive meshing algorithms, SIAM J. on Scientific Computing, 22 (2000),
pp. 1411–1443.

[15] , A new paradigm for parallel adaptive meshing algorithms, SIAM Review,
45 (2003), pp. 292–323.

[16] Randolph E. Bank and Peter K. Jimack, A new parallel domain decom-
position method for the adaptive finite element solution of elliptic partial dif-
ferential equations, Concurrency and Computation: Practice and Experience,
13 (2001), pp. 327–350.

[17] Randolph E. Bank, Peter K. Jimack, Sarfraz A. Nadeem, and
Sergei V. Nepomnyaschikh, A weakly overlapping domain decomposition
preconditioner for the finite element solution of elliptic partial differential equa-
tions, SIAM J. on Scientific Computing, 23 (2002), pp. 1817–1841.

[18] Randolph E. Bank and Shaoying Lu, A domain decomposition solver for
a parallel adaptive meshing paradigm, SIAM J. on Scientific Computing, 45
(2003), pp. 292–323.

[19] Randolph E. Bank and Hans D. Mittelmann, Continuation and multi-
grid for nonlinear elliptic systems, in Multigrid Methods II: Proceedings,
Cologne 1985, vol. 1228 of Lecture Notes in Mathematics, Springer-Verlag,
Heidelberg, 1986, pp. 24–38.

[20] , Stepsize selection in continuation procedures and damped Newton’s
method, J. Comput. Appl. Math., 26 (1989), pp. 67–78.

[21] Randolph E. Bank and Hieu Nguyen, Domain decomposition and hp-
adaptive finite elements, in Domain Decomposition Methods in Science and
Engineering XIX, Yunqing Huang, Ralf Kornhuber, Olof Widlund, and Jinchao
Xu, eds., vol. 78 of Lecture Notes in Computational Science and Engineering,
Springer-Verlag, 2011, pp. 3–13.

Bibliography 135

[22] , hp adaptive finite elements based on derivative recovery and supercon-
vergence, Computing and Visualization in Science, 14 (2012), pp. 287–299.
Original Article.

[23] , Mesh regularization in the Bank-Holst parallel hp adaptive meshing, in
Domain Decomposition Methods in Science and Engineering XX, Randolph
Bank, Michael Holst, Olof Widlund, and Jinchao Xu, eds., vol. 91 of Lec-
ture Notes in Computational Science and Engineering, Springer-Verlag, 2013,
pp. 103–110.

[24] , A parallel hp-adaptive finite element method, in Scientific Computing
and Applications VIII, Jichun Li, ed., vol. 586 of Contemporary Mathematics,
American Mathematical Society, 2013, pp. 23–33.

[25] Randolph E. Bank and Jeffery S. Ovall, Dual functions for a parallel
adaptive method, SIAM J. on Scientific Computing, 29 (2007), pp. 1511–1524.

[26] , Some remarks on interpolation and best approximation, Numerische
Mathematik, (submitted).

[27] Randolph E. Bank, Aseih Parsania, and Stefan Sauter, Saturation es-
timates for hp-finite element mathods, Computing and Visualization in Science,
16 (2013), pp. 195–218.

[28] Randolph E. Bank and Donald J. Rose, Global approximate Newton
methods, Numer. Math., 37 (1981), pp. 279–295.

[29] , A multi-level Newton method for nonlinear finite element equations,
Math. Comp., 39 (1982), pp. 453–465.

[30] Randolph E. Bank and R. Kent Smith, Mesh smoothing using a posteriori
error estimates, SIAM J. Numer. Anal., 34 (1997), pp. 979–997.

[31] Randolph E. Bank and R. Kent Smith, Multigraph algorithms based on
sparse Gaussian elimination, in Thirteenth International Symposium on Do-
main Decomposition Methods for Partial Differential Equations, Domain De-
composition Press, Bergen, 2001, pp. 15–26.

[32] , An algebraic multilevel multigraph algorithm, SIAM J. on Scientific Com-
puting, 25 (2002), pp. 1572–1592.

[33] Randolph E. Bank, Panayot Vassilevski, and Ludmil Zikatanov, Ar-
bitrary dimension convection-diffusion scheme for sapce-time discretizations,
Journal of Computational and Applied Mathematics, (accepted).

[34] Randolph E. Bank and Panayot S. Vassilevski, Convergence analysis
of a domain decomposition paradigm, Computing and Visualization in Science,
11 (2008), pp. 333–350.

136 Bibliography

[35] Randolph E. Bank and Jinchao Xu, Asymptotically exact a posteriori er-
ror estimators, part I: Grids with superconvergence, SIAM J. Numerical Anal-
ysis, 41 (2003), pp. 2294–2312.

[36] , Asymptotically exact a posteriori error estimators, part II: General un-
structured grids, SIAM J. Numerical Analysis, 41 (2003), pp. 2313–2332.

[37] Randolph E. Bank, Jinchao Xu, and Bin Zheng, Superconvergent deriva-
tive recovery for Lagrange triangular elements of degree p on unstructured grids,
SIAM J. Numerical Analysis, 45 (2007), pp. 2032–2046.

[38] Randolph E. Bank and Harry Yserentant, On the H1-stability of the
L2-projection onto finite element spaces, Numerische Mathematik, 126 (2014),
pp. 361–381.

[39] , A note on interpolation, best approximation, and the saturation property,
Numerische Mathematik, (to appear).

[40] Mark W. Beall and Mark S. Shephard, A general topology-based mesh
data structure, Internat. J. Numer. Methods Engrg., 40 (1997), pp. 1573–1596.

[41] X. Cai and K. Samuelsson, Parallel multilevel methods with adaptivity on
unstructured grids, 1999. Preprint.

[42] T. F. Chan, P. Ciarlet, and W. K. Szeto, On the optimality of the median
cut spectral bisection method, SIAM J. Sci. Comput., 18 (1997), pp. 943–948.

[43] H. L. deCougny, K. D. Devine, J. E. Flaherty, R. M. Loy, C. Oztu-
ran, and M. S. Shephard, Load balancing for the parallel adaptive solution
of partial differential equations, Appl. Num. Math., 16 (1994), pp. 157–182.

[44] C. Deotte, Domain Partitioning Methods for Elpiptic Partial Differential
Equations, PhD thesis, University of California at San Diego, 2014.

[45] J. E. Flaherty, R. M. Loy, C. Ozturan, M. S. Shephard, B. K. Szy-
manski, J. D. Teresco, and L. H. Ziantz, Parallel structures and dynamic
load balancing for adaptive finite element computation, Appl. Num. Math., 26
(1998), pp. 241–263.

[46] Andrew V. Knyazev, Toward the optimal preconditioned eigensolver: locally
optimal block preconditioned conjugate gradient method, SIAM J. Sci. Comput.,
23 (2001), pp. 517–541 (electronic). Copper Mountain Conference (2000).

[47] Scott Kohn, John Weare, M. Elizabeth Ong, and Scott B. Baden,
Software abstractions and computational issues in parallel structured adaptive
mesh methods for electronic structure calculations, in Workshop on Structured
Adaptive Mesh Refinement Grid Methods, Institute for Mathematics and Its
Applications, University of Minnesota, Minneapolis, MN., 1997.

[48] Shaoying Lu, Parallel Adaptive Multigrid Algorithms, PhD thesis, Depart-
ment of Mathematics, University of California at San Diego, 2004.

Bibliography 137

[49] William F. Mitchell, A comparison of adaptive refinement techniques for
elliptic problems, ACM Trans. Math. Software, 15 (1989), pp. 326–347.

[50] , The full domain partition approach to distributing adaptive grids, Ap-
plied Numerical Mathematics, 26 (1998), pp. 265–275.

[51] , A parallel multigrid method using the full domain partition, Electronic
Transactions on Numerical Analysis, 6 (1998), pp. 224–233.

[52] Hans D. Mittelmann, Multi-grid continuation and spurious solutions for
nonlinear boundary value problems, Rocky Mountain J. Math., 18 (1988),
pp. 387–401.

[53] H. D. Mittelmann and H. Weber, Multigrid solution of bifurcation prob-
lems, SIAM J. Sci. Stat. Comp., 6 (1985), pp. 49–60.

[54] Hieu Nguyen, p- and fully automatic hp- adaptive finite element methods for
elliptic Partial Differential Equations, PhD thesis, University of California, San
Diego, 2010.

[55] Jeffrey S. Ovall, Duality-Based Adaptive Refinement for Elliptic PDEs,
PhD thesis, Department of Mathematics, University of California at San Diego,
2004.

[56] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, Engle-
wood Cliffs, New Jersey, 1980.

[57] Alex Pothen, Horst D. Simon, and Kang-Pu Liou, Partitioning sparse
matrices with eigenvectors of graphs, SIAM J. Matrix Anal. Appl., 11 (1990),
pp. 430–452.

[58] M. C. Rivara, Mesh refinement processes based on the generalized bisection
of simplices, SIAM J. Numer. Anal., 21 (1984), pp. 604–613.

[59] P. M. Selwood, M. Berzins, and P. M. Dew, 3D parallel mesh adaptivity:
Data structures and algorithms, in Parallel Processing for Scientific Computing,
Philadelphia, 1997, SIAM.

[60] Horst D. Simon and Shang-Hua Teng, How good is recursive bisection?,
SIAM J. Sci. Comput., 18 (1997), pp. 1436–1445.

[61] Rudiger Verfürth, A Posteriori Error Estimation and Adaptive Mesh Re-
finement Techniques, Teubner Skripten zur Numerik, B. G. Teubner, Stuttgart,
1995.

[62] C. Walshaw and M. Berzins, Dynamic load balancing for pde solvers on
adaptive unstructured meshes, Concurrency: Practice and Experience, 7 (1995),
pp. 17–28.

138 Bibliography

[63] A. Weiser, Local-Mesh, Local-Order Adaptive Finite Element Methods with
A-Posteriori Error Estimators for Elliptic Partial Differential Equations, PhD
thesis, Yale University, 1981.

[64] Linbo Zhang, Tao Cui, and Hui Liu, A set of symmetric quadrature rules
on triangles and tetrahedra, J. Comput. Math., 27 (2009), pp. 89–96.

Index

A1XY
calling sequence, 28

A2XY
calling sequence, 28

ANGMN, see Table 2.13
ANORM, see Table 2.13
AREA, see Table 2.13
ATEST

array dimensions, 108
commands, 102
common blocks, 108
initialization defaults, 108
reading data files, 109
resetting parameters

long form, 103
short form, 104

writing data files, 109
ATEST1

common block, 108
ATEST2

common block, 108
ATEST3

common block, 108
ATEST4

common block, 108
ATEST5

common block, 108
ATEST6

common block, 108

BEST, see Table 2.13
BFILE, see Table 2.14

PLTMG output, 73
BGCLR, see Table 2.14

definition, 107
BHFILE, see Table 2.14

definition, 116

BLUE
definition, 114

BMNRM0, see Table 2.13
BNORM

definition, 72
BNORM0, see Table 2.13
BRATIO, see Table 2.13
BTNBG, see Table 2.14

definition, 107

calling sequence
A1XY, 28
A2XY, 28
CENTRE, 11
FXY, 28
GDATA, 112
GDXY, 31
GNXY, 31
GPHPLT, 94
INPLT, 91
P1XY, 28
P2XY, 31
PFILL, 114
PFRAME, 114
PLINE, 114
PLTMG, 59
PLTUTL, 114
QXY, 32
SKLUTL, 18
SXY, 12
TIMER, 113
TRIGEN, 37
TRIPLT, 84
USRCMD, 110
USRSET, 110

CENTRE
calling sequence, 11

139

140 Index

CENX, see Table 2.13
definition, 88, 93

CENY, see Table 2.13
definition, 88, 93

CMD, see Table 2.14
coefficient functions, 28
common block

ATEST1, 108
ATEST2, 108
ATEST3, 108
ATEST4, 108
ATEST5, 108
ATEST6, 108
PLTMG1, 28
PLTMG2, 28
PLTMG3, 28
PLTMG4, 28
PLTMG5, 28
PLTMG6, 28
PLTMG7, 28
VAL0, 30
VAL1, 31
VAL2, 32
VAL3, 32
VAL4, 12

curved edges
circular arcs, 10
parametric, 11

DELTA, see Table 2.13
definition, 72

DIAM, see Table 2.13
DNEW, see Table 2.13
DRDRL, see Table 2.13

definition, 68
DTOL, see Table 2.13

definition, 62, 64

E
definition, 19, 21, 43

E0, see Table 2.13
EAVE2, see Table 2.13

definition, 44
EAVEG, see Table 2.13
EF, see Table 2.13
eigenvalue problem, 73

element quality, 38
ENORM1, see Table 2.13

definition, 42
ENORM2, see Table 2.13

definition, 42

f command, see Table 6.1
FDEVCE, see Table 2.12
FTITLE, see Table 2.14

definition, 84
FXY

calling sequence, 28

g command, see Table 6.1
GDATA

calling sequence, 112
GDEVCE, see Table 2.12
GDXY

calling sequence, 31
GF, see Table 2.9

definition, 19
GNXY

calling sequence, 31
GPHPLT

calling sequence, 94
continuation path, 98
error estimates, 98
multigraph convergence histories,

96
Newton convergence history, 94
timing statistics, 97

GRADE, see Table 2.13
definition, 39

GREEN
definition, 114

GTITLE, see Table 2.14
definition, 94

HMAX, see Table 2.13
definition, 39

HMIN, see Table 2.13

i command, see Table 6.1
IADAPT, see Tables 2.12 and 3.1

definition, 37
IBNDRY, see also Table 2.1

Index 141

definition, 15
ICONT, see Table 2.12, see Table 5.2

definition, 84
ICRSN, see Tables 2.12 and 5.2, see

Table 5.2
definition, 90
in parallel graphics, 84

IERRSW, see Tables 2.12 and 3.2
definition, 41

IEVALS, see Table 2.12
definition, 62

IFIRST, see Tables 2.12 and 2.5
definition, 22

IFLAG, see Tables 2.12 and 2.15
definition, 23

IFUN, see Tables 2.12 and 5.1
definition, 84

IGRSW, see Tables 2.12 and 5.5
definition, 94

IKND
definition, 113

INPLSW, see Tables 2.12 and 5.3, see
Table 5.3

definition, 92, 93
INPLT

calling sequence, 91
skeleton plots, 93
triangle plots, 92

IOMSG, see Table 2.14
IORD, see Table 2.12
IP

definition, 22
IPATH, see Table 2.10

definition, 21
IPROB, see Tables 2.12 and 4.1

definition, 59
IREFN, see Table 2.12

definition, 50
IRGN, see Table 2.12
IRTYPE, see Tables 2.12 and 3.3

definition, 43
ISCALE, see Tables 2.12 and 5.2, see

Table 5.2
definition, 89

ISING, see Table 2.12
definition, 32

ISNGL
definition, 113

ISPD, see Tables 2.12 and 2.14
ITASK, see Tables 2.12 and 4.2

parameter identification problem,
74

definition, 59, 68
ITDOF, see also Table 2.8

definition, 19
ITITLE, see Table 2.14

definition, 92
ITNODE, see also Table 2.3, see also

Table 2.5
definition for skeleton, 16
definition for triangulation, 13

ITNUM, see Table 2.12
definition, 62

ITRGT, see Table 2.12
definition, 90
in parallel graphics, 84

IU
definition, 109

IUSRSW, see Table 2.12
definition, 110

j command, see Table 6.1
definition, 110

JDEVCE, see Table 2.12
journal file

definition, 110
JRFILE, see Table 2.14

definition, 110
JTFILE, see Table 2.14
JWFILE, see Table 2.14

PLTMG output, 73

k command, see Table 6.1

LENAD, see Table 2.12
LENAOD, see Table 2.12
LENJA, see Table 2.12
LENJA0, see Table 2.12
LENJU, see Table 2.12
LENJU0, see Table 2.12
LENJUC, see Table 2.12
LENU0, see Table 2.12

142 Index

LENUOD, see Table 2.12
LINES, see Tables 2.12 and 5.2, see

Table 5.2
definition, 89

LIPATH, see Table 2.12
LOGO, see Table 2.14

definition, 107

MAXB, see Table 2.12
definition, 109

MAXD, see Table 2.12
definition, 109

MAXPTH, see Table 2.12
definition, 109

MAXT, see Table 2.12
definition, 109

MAXV, see Table 2.12
definition, 109

METHOD, see Tables 2.12 and 4.3
definition, 62

MFLAG, see Table 2.12
MODE, see Tables 2.12 and 6.1

definition, 101
MPI

creating IPATH, 56
domain decomposition, 65
file names, 108
interface, 117
load balancing, 54
parallel graphics, 84, 98

MPIRGN, see Table 2.12, see Table 5.2
files, 109
in graphics, 89, 93

MPISW, see Table 2.12
definition, 108

MTHDEF
definition, 112

MX, see Table 2.12
definition, 99

MXCG, see Table 2.12
definition, 62

MXCOLR, see Table 2.12
definition, 83, 93

MXNWTT, see Table 2.12
definition, 61

MXORD, see Tables 2.12

MY, see Table 2.12
definition, 99

MZ, see Table 2.12
definition, 99

N0, see Table 2.13
NB, see Table 2.12

definition, 34
NBB, see Table 2.12
NBF, see Table 2.12

definition, 10, 13, 15
NBG, see Table 2.12
NBI, see Table 2.12
NCOLOR

definition, 114
NCON, see Table 2.12

definition, 87, 88
NDD, see Table 2.12
NDF, see Table 2.12

definition, 20
NDG, see Table 2.12
NDI, see Table 2.12
NDL, see Table 2.12

definition, 41
NDTRGT, see Table 2.12

definition, 43
NEF, see Table 2.12
NEWNBF, see Table 2.12
NEWNDF, see Table 2.12
NEWNTF, see Table 2.12
NEWNVF, see Table 2.12
NF, see Table 2.13
NGF, see Table 2.12
NGRAPH, see Table 2.12

definition, 106
NPROC, see Table 2.12

definition, 54, 107
NRL, see Table 2.12

definition, 74
parametric edges, 12

NTF, see Table 2.12
definition, 13, 14

NTG, see Table 2.12
NUMBRS, see Tables 2.12 and 5.2,

see Table 5.2
definition, 89, 93

Index 143

NVDD, see Table 2.12
NVF, see Table 2.12

definition, 10, 13, 15
NVG, see Table 2.12
NVI, see Table 2.12
NVV, see Table 2.12
NX, see Table 2.12

definition, 87, 88
NY, see Table 2.12

definition, 87, 88
NZ, see Table 2.12

definition, 87, 88

p command, see Table 6.1
w command

definition, 108
P1XY

calling sequence, 28
P2XY

calling sequence, 31
PFILL

calling sequence, 114
PFRAME

calling sequence, 114
PLINE

calling sequence, 114
PLTMG

branch switching, 71
calling sequence, 59
common blocks, 28
discretization, 3
initialization defaults, 28
normalization equations, 68

PLTMG1
common block, 28

PLTMG2
common block, 28

PLTMG3
common block, 28

PLTMG4
common block, 28

PLTMG5
common block, 28

PLTMG6
common block, 28

PLTMG6

common block, 28
PLTUTL

calling sequence, 114
PSFILE, see Table 2.14

definition, 116

q command, see Table 6.1
QUAL, see Table 2.13
QXY

calling sequence, 32

R, see Table 2.13
r command, see Table 6.1

definition, 109
R0, see Table 2.13
R0DOT, see Table 2.13
RDBLE

definition, 113
RDOT, see Table 2.13
RED

definition, 114
REG4, see Table 2.13
REG5, see Table 2.13
RELER0, see Table 2.13
RELERP, see Table 2.13
RELERR, see Table 2.13
RELRES, see Table 2.13
RKND

definition, 113
RL, see Table 2.13
RL0, see Table 2.13
RL0DOT, see Table 2.13
RL1, see Table 2.13
RL10, see Table 2.13
RL2, see Table 2.13
RL3, see Table 2.13
RL4, see Table 2.13
RL5, see Table 2.13
RL6, see Table 2.13
RL7, see Table 2.13
RL8, see Table 2.13
RL9, see Table 2.13
RLDOT, see Table 2.13
RLSTRT, see Table 2.13
RLTRGT, see Table 2.13

definition, 68

144 Index

RMAG, see Table 2.13
definition, 88, 93

RMTRGT, see Table 2.13
definition, 67

RMU, see Table 2.13
RP, see Table 2.13

definition, 22
RSNGL

definition, 113
RSTRT, see Table 2.13
RTRGT, see Table 2.13

definition, 68
RU

definition, 109
RWFILE, see Table 2.14

definition, 109

s command, see Table 6.1
SCALE, see Table 2.13

definition, 72
SCLEQN, see Table 2.13

definition, 68
SEQDOT, see Table 2.13
SF

circular arcs, 10
parametric, 12

SFAVE, see Table 2.13
SFMAX, see Table 2.13
SFMIN, see Table 2.13
SFVAR, see Table 2.13
SGHOST, see Table 2.14

definition, 116
SHCMD, see Table 2.14

definition, 110
SIGMA, see Table 2.13

definition, 68
skeleton

definition, 14
SKLUTL

calling sequence, 18
SMAX, see Table 2.13

definition, 87, 88
SMIN, see Table 2.13

definition, 87, 88
SP, see Table 2.14

definition, 22

STEP, see Table 2.13
definition, 61

SU
definition, 109

SVAL, see Table 2.13
SVAL0, see Table 2.13
SXY

calling sequence, 12
symmetry

in TRIGEN, 17

t command, see Table 6.1
test problem

SQUARE, 120
BATTERY, 127
BOX, 129
BURGER, 126
CIRCLE, 119
CONTROL, 127
DOMAINS, 122
IDENT, 128
JCN, 124
MESSAGE, 129
MNSURF, 126
NACA, 122
OB, 125
USMAP, 130

THETA
definition, 68

THETAL, see Table 2.13
THETAR, see Table 2.13
TIMER

calling sequence, 113
triangulation

definition, 13
TRIGEN

calling sequence, 37
element quality, 38
error estimates, 41
mesh smoothing, 48
refinement, 43, 50
triangulation algorithms, 39
unrefinement, 43

TRIPLT
calling sequence, 84
hidden lines, 91

Index 145

surface plots, 84
vector plots, 88

u command, see Table 6.1
definition, 110

UNORM1, see Table 2.13
UNORM2, see Table 2.13
USRCMD

calling sequence, 110
USRSET

calling sequence, 110

VAL0
common block, 30

VAL1
common block, 31

VAL2
common block, 32

VAL3
common block, 32

VAL4
common block, 12

VX
definition, 10

VY
definition, 10

w command, see Table 6.1
definition, 109

X-Windows
interface, 117

XMAX, see Table 2.13
XMIN, see Table 2.13
XPFILE, see Table 2.14

definition, 116

YMAX, see Table 2.13
YMIN, see Table 2.13

	Preface
	Introduction
	Problem Specification.
	Approximation Spaces.
	Elliptic Boundary Value Problem.
	Obstacle Problem.
	Continuation Problem.
	Parameter Identification Problem.
	Optimal Control Problem.

	Main Subroutines
	Installation.

	Data Structures
	Overview.
	Edge Definitions
	Curved Edges – Circular Arcs
	Curved Edges – Parametric

	The Triangulation.
	The Skeleton.
	Finite Element Data Structures.
	Parallel Processing Data Structure.
	Parameter Arrays.
	Coefficient Functions.
	Sparse Matrix Storage.

	Mesh Generation
	Overview.
	Creating a Triangulation from a Skeleton.
	A Posteriori Error Estimates.
	Adaptive Mesh Refinement and Unrefinement.
	 Procedure Refine
	 Procedure Unrefine
	h Refinement
	h Unrefinement
	p Refinement
	p Unrefinement

	Adaptive Mesh Smoothing.
	Uniform Refinement.
	h Uniform Refinement
	p Uniform Refinement

	An Example
	Parallel Adaptive Methods.
	Mesh Partitioning.
	Reconciling the Mesh.

	Equation Solution
	Overview.
	Elliptic Boundary Value Problems.
	Linear Solvers.
	Domain Decomposition Solver
	Obstacle Problems.
	Continuation Problems.
	Parameter Identification Problems.
	Optimal Control Problems.

	Graphics
	Overview.
	Subroutine TRIPLT.
	Surface Plots.
	Vector Plots.
	Parameters RMAG, CENX, and CENY.
	Parameters ISCALE, LINES, NUMBRS, and MPIRGN.
	Parameters ICRSN and ITRGT.
	Some Algorithmic Details.

	Subroutine INPLT.
	Triangle Plots.
	Skeleton Plots.

	Subroutine GPHPLT.
	Iteration Information.
	Timing Statistics.
	Continuation Path.
	Parallel Statistics
	Error Estimates.
	Displaying Data Arrays.

	Test Driver
	Overview.
	Terminal Mode.
	X-Windows Mode.
	Batch Mode.
	Parallel Processing
	Array Dimensions and Initialization.
	Reading and Writing Files.
	Journal Files.
	Shell Command.
	Subroutine USRCMD.
	Subroutine GDATA.
	Machine Dependent Routines.
	Arithmetic Specification.
	Timing Routine.
	Graphics Interface.
	X-Windows Interface.
	MPI Interface

	Test Problems
	Overview.
	Test Problem CIRCLE.
	Test Problem SQUARE.
	Test Problem DOMAINS.
	Test Problem NACA.
	Test Problem JCN.
	Test Problem OB.
	Test Problem MNSURF.
	Test Problem BURGER.
	Test Problem BATTERY.
	Test Problem CONTROL.
	Test Problem IDENT.
	Test Problem BOX.
	Test Problem MESSAGE.
	Test Problem USMAP.

	Bibliography
	Index

