next up previous
Next: SP Array Up: quick_ref Previous: IP Array

RP Array

The parameters marked ``u'' should be supplied by the user.

I RP(I) u definition
1 RLTRGT u target value for $ \lambda$
2 RTRGT u target value for $ \rho(u,\lambda )$
3 RMTRGT u target value for $ \mu$
4 RLLWR u lower bound for $ \lambda$
5 RLUPR u upper bound for $ \lambda$
6 DTOL u drop tolerance for incomplete factorization
8 SMIN u lower limit for contour colors
9 SMAX u upper limit for contour colors
10 RMAG u window magnification factor
11 CENX u (CENX,CENY) are the window center coordinates
12 CENY u  
15 HMAX u approximate largest element size
16 GRADE u largest growth factor for adjacent elements
17 HMIN u approximate smallest edge length
21 RL   current value of $ \lambda_h$
22 R   current value of $ \rho(u_h,\lambda_h)=\rho_h$
23 RLDOT   current value of $ \dot{\lambda}_h $
24 RDOT   current value of $ \dot{\rho}_h$
25 SVAL   current value of smallest singular value
26 RLSTRT   starting value for $ \lambda_h$
27 RSTRT   starting value for $ \rho(u_h,\lambda_h)$
31 RL0   previous value of $ \lambda_h$
32 R0   previous value of $ \rho(u_h,\lambda_h)=\rho_h$
33 RL0DOT   previous value of $ \dot{\lambda}_h $
34 R0DOT   previous value of $ \dot{\rho}_h$
35 SVAL0   previous value of smallest singular value
37 ENORM1   estimate for $ \vert\!\vert u-u_h \vert\!\vert _{{\cal H}^{1}(\Omega)}$
38 UNORM1   the norm $ \vert\!\vert u_h \vert\!\vert _{{\cal H}^{1}(\Omega)}$
39 ENORM2   estimate for $ \vert\!\vert u-u_h \vert\!\vert _{{\cal L}^{2}(\Omega)}$
40 UNORM2   the norm $ \vert\!\vert u_h \vert\!\vert _{{\cal L}^{2}(\Omega)}$
51 EPS   the machine epsilon
52 STEP   damping step $ s$ for Newton's method
53 RELER0   relative size of solution error $ \vert\!\vert e_h \vert\!\vert _{{\cal H}^1(\Omega)}/\vert\!\vert u_h \vert\!\vert _{{\cal H}^1(\Omega)}$
54 RELERR   relative size of Newton update $ \vert\!\vert \delta U \vert\!\vert/\vert\!\vert U \vert\!\vert$
55 ANORM   maximum diagonal entry in Jacobian matrix
56 RELRES   the relative residual $ \vert\!\vert {\cal G}_k \vert\!\vert/\vert\!\vert {\cal G}_0 \vert\!\vert$
57 BRATIO   the relative residual $ \vert\!\vert {\cal G}_k \vert\!\vert/\vert\!\vert {\cal G}_{k-1} \vert\!\vert$
58 DNEW   the discrete inner product $ -\langle G_{u}\delta U,G\rangle$
59 BNORM0   scaling factor $ \vert\!\vert {\cal G}_0 \vert\!\vert$
60 BMNRM0   scaling factor for $ \rho$
63 RMU   current value of $ \mu$
64 REG   internal regularization parameter
67 SCLEQN   current value of scalar equation $ N-\sigma$
68 SCALE   scaling factor for scalar equation
69 THETAL   $ (2-\theta)\dot{\lambda}_h$ in scalar equation
70 THETAR   $ \theta\dot{\rho}_h$ in scalar equation
71 SIGMA   the step $ \sigma$ for scalar equation
72 DELTA   Newton update for $ \lambda_h$
73 DRDRL   the value of $ \partial\rho/\partial\lambda$
74 SEQDOT   the value of $ \dot{N}$
76 QUAL   target element quality
77 ANGMN   target minimum angle
78 DIAM   approximate diameter of $ \Omega$
79 BEST   value of TRIGEN quality function
80 AREA   area of $ \Omega$
81 TOLA   angle tolerance
82 ARCMIN   minimum arc
83 ARCMAX   maximum arc
84 TOLZ   contour tolerance
85 TOLF   function value tolerance
87 XMIN    
88 XMAX   $ \Omega\subset(XMIN,XMAX)\times(YMIN,YMAX)$
89 YMIN    
90 YMAX    


next up previous
Next: SP Array Up: quick_ref Previous: IP Array
Randolph Bank 2007-09-12