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This is a supplement to the paper

[1] G. Casciola, E. Franchini, L. Romani, The mixed directional difference-
summation algorithm for generating the Bézier net of a trivariate four-direction
Box-spline, Numerical Algorithms 43 (2006), pp. 75-98

The reader should consult that paper for more information.

Installation guide for MDDS package

MDDS package is available from Netlib at www.netlib.org/numeralgo/na23.
This package can be used as a stand-alone package. A user needs only stan-
dard Matlab, version 7.X. No additional toolboxes are needed. No particular
problems have been detected with Matlab version 6.5.

Step-by-step installation (Unix environment):

1. Download the gzipped tar archive

na23.tgz

in the directory you use for user’s Matlab packages and toolboxes. Mat-
lab provides a directory usually named

usr/local/matlab/toolbox/

but only an administrator user can write on it. Also the whole con-
tents of this directory is erased when a new Matlab version is installed.
Hence, our suggestion is to create a user’s directory named (for in-
stance)

$HOME/matlab/toolbox
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for installing additional packages.

2. Execute the commands

cd $HOME/matlab/toolbox

tar xvfz na23.tgz

which will create the directory

MDDS

containing the package.

3. Remove (if you want) the archive:

rm na23.tgz

4. Start the Matlab program.

5. Add the path to the package directory, e.g., by means of the Matlab
menu File → Set Path ...

6. Make sure the path is placed at the bottom of Matlab’s search path,
e.g., by clicking the button “Move to Bottom”.

7. Save the changed Matlab search path.

Alternatively, the directory MDDS can be saved everywhere and the pro-
grams can be run in the same directory.

Listing of files in MDDS package:

manual.pdf −→ description of installation and
utilization of the MDDS package

Contents.m −→ description of the files contained
in the MDDS package

? Demonstration
demo mdds2d.m −→ demo of Bézier net computation, exact

evaluation and visualization of
bivariate three-direction Box-splines

demo mdds3d.m −→ demo of Bézier net computation, exact
evaluation and visualization of
trivariate four-direction Box-splines
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? B-net computation
bnet mdds.m −→ computation of the Bézier net coefficients

of an arbitrary bivariate three-direction/
trivariate four-direction Box-spline

step1 mdds2d.m −→ computation of differences-summations
along direction e1 = [1 0]′

step2 mdds2d.m −→ computation of differences-summations
along direction e2 = [0 1]′

step3 mdds2d.m −→ computation of differences-summations
along direction e12 = [1 1]′

step1 mdds3d.m −→ computation of differences-summations
along direction e1 = [1 0 0]′

step2 mdds3d.m −→ computation of differences-summations
along direction e3 = [0 0 1]′

step3 mdds3d.m −→ computation of differences-summations
along direction e2 = [0 1 0]′

step4 mdds3d.m −→ computation of differences-summations
along direction e123 = [1 1 1]′

dupl mdds.m −→ duplication of some coefficients
of the main direction

integ mdds.m −→ computation of antidifferences
(summations) on the coefficients

? Box-splines evaluation
pointeval mdds2d.m −→ exact evaluation of bivariate

three-direction Box-splines in
an arbitrary set of 2D points

findsquare mdds2d.m −→ determination of the unit square
containing the 2D evaluation point
chosen in the Box-spline domain

findtria mdds2d.m −→ determination of the triangle type,
down (“1”) or up (“2”), (see [1])
containing the 2D evaluation point
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pointeval mdds3d.m −→ exact evaluation of trivariate
four-direction Box-splines in an
arbitrary set of 3D points

findcube mdds3d.m −→ determination of the unit cube
containing the 3D evaluation point
chosen in the Box-spline domain

findtetra mdds3d.m −→ determination of the tetrahedron type,
“1”,“2”,“3”,“4”,“5” or “6” (see [1])
containing the 3D evaluation point

? Box-splines visualization
visual mdds2d.m −→ visualization of an arbitrary bivariate

three-direction Box-spline either
through its surface graph or its B-net
representation

computebez mdds2d.m −→ evaluation of Bernstein-Bézier
polynomials on a regular triangular grid

visual mdds3d.m −→ visualization of an arbitrary trivariate
four-direction Box-spline MD either
through the s-set (s ∈ Imm(MD))
extraction of the Box-spline volume
or through the contour lines of the
regions obtained by intersecting the
Box-spline volume with three families
of planes respectively parallel to
yz, xz, xy

computebez mdds3d.m −→ evaluation of Bernstein-Bézier
polynomials on a regular tetrahedral
grid

How to use MDDS package

The user interface is provided by the following five main functions.

1. The function bnet_mdds() that allows to compute the Bézier net coef-
ficients of either bivariate three-direction Box-splines or trivariate four-
direction Box-splines of any degree.

Algorithm: Starting from the Bézier net of the degree-1 Box-spline, the
Bézier net of the required bivariate/trivariate Box-spline is generated
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by successively computing differences-summations of the Bézier coef-
ficients along the three/four directions set. These procedures are imple-
mented respectively in {step1_mdds2d, step2_mdds2d, step3_mdds2d},
{step1_mdds3d, step2_mdds3d, step3_mdds3d, step4_mdds3d}.

2. The function pointeval_mdds2d() that allows to exact evaluate any
bivariate three-direction Box-spline in an arbitrary set of 2D points.

Algorithm: For each evaluation point we determine the unit square
of the Box-spline domain in which it is contained and we identify the
triangle type, down (“1”) or up (“2”) (see [1]) containing the point.
Then, after having computed the Bézier coefficients of the identified
triangular patch, we exploit the de Casteljau algorithm to work out
the Box-spline value in correspondence to that sample point.

3. The function pointeval_mdds3d() that allows to exact evaluate any
trivariate four-direction Box-spline in an arbitrary set of 3D points.

Algorithm: For each evaluation point we determine the unit cube of the
Box-spline domain in which it is contained and we identify the tetrahe-
dron type, (“1”,“2”,“3”,“4”,“5” or “6”) (see [1]) containing the point.
Then, after having computed the Bézier coefficients of the identified
tetrahedral volume, we exploit the trivariate de Casteljau algorithm to
work out the Box-spline value in correspondence to that sample point.

4. The function visual_mdds2d() that allows to visualize any bivariate
three-direction Box-spline either through its surface graph or its B-net
representation.

Algorithm: First we compute the B-net coefficients of the bivariate
three-direction Box-spline associated with the multiplicity vector logged
in by the user. Then we evaluate the bivariate Bernstein-Bézier poly-
nomials on a regular triangular grid and compute the values of the Box-
spline surface over each one of the two triangles obtained by considering
the tessellation of the unit square proposed in Fig.2 right (see [1]). Suc-
cessively we exploit the Matlab functions trisurf() and trimesh()

to visualize respectively the Box-spline surface and its Bézier net.

5. The function visual_mdds3d() that allows to visualize any trivariate
four-direction Box-spline MD either through the s-set (s ∈ Imm(MD))
extraction of the Box-spline volume or through the contour lines of
the regions obtained by intersecting the Box-spline volume with three
families of planes respectively parallel to yz, xz, xy.
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Algorithm: First we compute the B-net coefficients of the trivariate
four-direction Box-spline associated with the multiplicity vector logged
in by the user. Then we evaluate the trivariate Bernstein-Bézier poly-
nomials on a regular tetrahedral grid and compute the values of the
Box-spline volume over each one of the six tetrahedra obtained by
considering the tessellation of the unit cube proposed in Fig.3 (see
[1]). Successively we exploit the Matlab functions isosurface() and
contourslice() to visualize respectively isosurfaces of the Box-spline
volume and contour lines of the regions obtained by intersecting the
Box-spline volume with three families of planes respectively parallel to
yz, xz, xy.

Hierarchy of files in the five main functions:

bnet mdds.m
|

2D
|

↙ ↓ ↘
step1 mdds2d.m step2 mdds2d.m step3 mdds2d.m

↘ ↓ ↙
↙ ↘

dupl mdds.m integ mdds.m
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bnet mdds.m
|

3D
|

↙ ↙ ↘ ↘
step1 mdds3d.m step2 mdds3d.m step3 mdds3d.m step4 mdds3d.m

↘ ↘ ↙ ↙
|

↙ ↘
dupl mdds.m integ mdds.m

pointeval mdds2d.m

↙ ↘
bnet mdds.m findtria mdds2d.m

↙ ↓ ↘ ↓
step1 mdds2d.m step2 mdds2d.m step3 mdds2d.m findsquare mdds2d.m

↘ ↓ ↙
↙ ↘

dupl mdds.m integ mdds.m
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pointeval mdds3d.m

↙ ↘
bnet mdds.m findtetra mdds3d.m

↙ ↙ ↘ ↘ |
step1 mdds3d.m step2 mdds3d.m step3 mdds3d.m step4 mdds3d.m ↓

↘ ↘ ↙ ↙ findcube mdds3d.m

↙ ↘
dupl mdds.m integ mdds.m

visual mdds2d.m

↙ ↘
bnet mdds.m computebez mdds2d.m

↙ ↓ ↘
step1 mdds2d.m step2 mdds2d.m step3 mdds2d.m

↘ ↓ ↙
↙ ↘

dupl mdds.m integ mdds.m
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visual mdds3d.m

↙ ↘
bnet mdds.m computebez mdds3d.m

↙ ↙ ↘ ↘
step1 mdds3d.m step2 mdds3d.m step3 mdds3d.m step4 mdds3d.m

↘ ↘ ↙ ↙
↙ ↘

dupl mdds.m integ mdds.m

Demonstration files:

In order to give you a better understanding of how to use the MDDS package,
we will provide two demonstration files also. These files will show you how
to

• generate the Bézier coefficients matrix;

• exact evaluate a bivariate three-direction/trivariate four-direction Box-
spline in an arbitrary point of the domain;

• visualize the Box-spline.

In the first M-file demo_mdds3d.m three examples of four-direction Box-
splines on R3 are examined: the cubic Box-spline M3

2112, the quintic Box-
spline M5

2222 and the sextic Box-spline M6
3222. Their Bézier coefficients ma-

trix and their evaluation in an arbitrary point of the domain are provided.
Furthermore a visualization through the s-set extraction (s = 0, s = 0.01 for
the Box-spline volume M3

2112; s = 0, s = 0.005 for M5
2222; s = 0, s = 0.001

for M6
3222) and the three families of contour lines is available.

In the second M-file demo_mdds2d.m three examples of three-direction Box-
splines on R2 are examined: the quadratic Box-spline M2

211, the quartic Box-
spline M4

222 and the quintic Box-spline M5
322. Their Bézier coefficients matrix

and their evaluation in an arbitrary point of the domain are provided. Fur-
thermore the visualization of the Box-spline surface and its B-net is available.
For a complete explanation read the paper [1] that accompanies this package.
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Remark:

Mail any questions, problems or suggestions to the authors at:
casciola@dm.unibo.it
elena.franchini@inwind.it
romani@dm.unibo.it
=======================================
Prof. G. Casciola
Dept. of Mathematics - University of Bologna, Italy
casciola@dm.unibo.it

Dr. E. Franchini
Dept. of Pure and Applied Mathematics - University of Padova, Italy
elena.franchini@inwind.it

Dr. L. Romani
Dept. of Mathematics - University of Bologna, Italy
romani@dm.unibo.it
=======================================
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