
UTV Tools

Matlab Templates for

Rank Revealing UTV Decompositions

Version 1.1 for Matlab 7.0

This version fixes a few bugs

Ricardo D. Fierro

Department of Mathematics
California State University San Marcos

San Marcos, CA 92096

Per Christian Hansen

and

Peter Søren Kirk Hansen

Department of Mathematical Modelling
Building 321, Technical University of Denmark

DK-2800 Lyngby, Denmark

February 2005

This work was supported in part by NATO Collaborative Research Grant No. 951327.





Contents

1 Introduction 5
Changes from Earlier Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Rank-Revealing Orthogonal Decompositions 7
2.1 The Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Numerical Rank and Singular Subspaces . . . . . . . . . . . . . . . . . . . . . 8
2.3 UTV Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 UTV Algorithms 13
3.1 High-Rank Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Low-Rank Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Refinement Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Up- and Downdating 19
4.1 Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Downdating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Quotient UTV Decompositions 23
5.1 The Rank-Revealing ULLV Decomposition . . . . . . . . . . . . . . . . . . . . 23
5.2 ULLV Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.1 A Simple ULLV Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.2 Updating Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.3 Downdating Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Manual Pages 29
The Demo Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
app giv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
app hous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
ccvl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
gen giv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
gen hous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
hrrqr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
hulv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3



4 CONTENTS

hulv a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
hurv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
hurv a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
inviter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
lanczos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
lrrqr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
lulv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
lulv a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
lurv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
lurv a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
mgsr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
powiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
trrqr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
tulv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
turv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
ullv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
ullv csne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
ullv dw a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
ullv dw b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
ullv rdef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
ullv ref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
ullv up a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
ullv up b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
ulv cdef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
ulv csne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
ulv dw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
ulv qrit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
ulv rdef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
ulv ref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
ulv up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
ulv win . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
urv cdef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
urv csne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
urv dw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
urv qrit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
urv rdef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
urv ref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
urv up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
urv win . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



1. Introduction

Algorithms based on orthogonal transformations play an important role in many signal pro-
cessing applications. There are several reasons for this. Orthogonal transformations are
numerically stable, which is particularly important when the matrix dimensions m and n
increase and/or the condition number increases, and when the numerical rank of the matrix
is an issue. Decompositions based on orthogonal transformations are often easy to update
in a reliable fashion, thus reducing the computational burden by a factor m or n. And,
finally, these decompositions can yield information about certain subspaces defined on the
matrix which play an essential role in noise suppression techniques and other signal processing
applications.

One of the main numerical tools in signal processing based on orthogonal transformations
is the singular value decomposition (SVD), cf. [5], [25, §2.5], [56, §1.4.3], and its generaliza-
tions to matrix pairs, triplets, etc. The SVD detects near-rank deficiency in a matrix very
reliably and yields all the necessary subspace information. Because the SVD algorithm is so
reliable and numerically stable, it is used in a wide variety of applications, such as frequency
estimation via least squares and total least squares [47], [48], [57], principal component anal-
ysis [59], noise reduction in speech processing [32], computer-aided geometric design [39], and
information retrieval [4]. Additional applications of the SVD can be found in the International
Workshop on SVD and Signal Processing proceedings [16], [41], [58].

Although the SVD is a valuable analytical and computational tool, it has certain draw-
backs. First, for many problems the SVD is unpractical because the algorithm is unable to
take advantage of important matrix properties, such as structure or sparsity, to minimize
both computational work-load and storage requirements. This is due to the full bidiagonal-
ization phase in the algorithm. This drawback also appears in specialized algorithms such
as the partial SVD algorithm designed to compute only the “needed” information. Second,
the SVD is difficult to update and downdate [9], [26], and thus it is not always suitable for
applications with real-time constraints. Depending on the application, these difficulties with
the SVD make alternative decompositions attractive, provided they are nearly as reliable and
more efficient to compute and up/downdate.

The rank-revealing QR (RRQR) decomposition [10], [23] is one of the alternatives to the
SVD, being faster to compute and yet providing reliable estimates for the rank and the desired
subspaces. Indeed, the RRQR decomposition has advantages in sparse matrix computations
[46] and subset selection problems [25, §12.2], but unfortunately its representation of the
numerical null space is not well suited for up- and downdating [6].

Rank-revealing two-sided orthogonal decompositions, also referred to as UTV decompo-
sitions [54], [56, §5.4] or complete orthogonal decompositions [25, §5.4.2], are other promising
alternatives to the SVD that provide reliable estimates for the numerical rank and the de-
sired subspaces. There are two main advantages in using rank-revealing UTV decompositions

5



6 CHAPTER 1. INTRODUCTION

instead of the SVD or RRQR decomposition: UTV decompositions can be computed more
efficiently than the SVD, and their subspace information is easier to up- and downdate, cf.
[3], [25, §12.5.5], [44], [51], [52]. Some applications of UTV decompositions can be found in
[1], [2], [22], [36], [45], [52].

The SVD can be generalized to pairs of matrices in several ways, depending on the
application [15], and the same holds for the UTV decompositions. For example, the socalled
ULLV decomposition due to Luk and Qiao [37] reveals the numerical rank of the matrix
“quotient” AB† (where B† is the pseudoinverse of the second matrix B), and thus it matches
the quotient SVD. The ULLV decomposition can be up- and downdated by means of the
same techniques as the UTV decompositions.

The purpose of this work is to provide a package with easy-to-use Matlab templates
for computing and working with UTV decompositions. For completeness, we include a few
templates for computing the RRQR decomposition. In our implementations we focus on
robustness and modularity, rather than ultimate performance. The reason behind this choice
is that in most signal processing applications, the algorithms must be tuned to the particular
application anyway. Hence, we consider Matlab templates the optimal way to communicate
algorithms, developed by numerical analysts, to the signal processing community and other
users.

Our notation is standard linear algebra notation plus Matlab-style matrix indexing where,
e.g., A(1: k, 1: k) denotes the leading k×k submatrix of A. The particular notation used here
follows closely the one used in [20] where the accuracy of the various quantities, computed
by means of UTV and RRQR decompositions, are investigated, and where several numerical
examples can be found.

After a brief introduction to rank-revealing decompositions, we summarize some impor-
tant properties of UTV decompositions in Section 2. Next, in Sections 3 and 4, we describe
the algorithms used in this package for computing and up/downdating UTV decompositions.
In Section 5 we turn to definitions and algorithms for the ULLV decomposition of a matrix
pair. We do by no means attempt to be complete; all algorithmic details can be found else-
where in the literature, and pointers to the relevant literature is always given. We conclude
with manual pages in Section 6 for all 46 functions included in the package.

We wish to thank Adam Bojanczyk for sharing his ULLV algorithms with us during the
early stages of this project. Also thanks to Sanzheng Qiao for kindly providing us with his
Matlab software.

Changes from Earlier Versions

Version 1.1 is available from Netlib at http://www.netlib.org/numerbalgo/na16 and can
be used with Matlab Version 7.0. This version fixes some minor misprints and bugs, too
small to mention here. Also, two more serious bugs were fixed:

– ullv rdef: an incorrect call to Givens rotation routine app giv has been corrected.

– ulv up: incorrect estimation of the smallest singular value of the updated matrix has
been corrected.



2. Rank-Revealing Orthogonal Decompositions

Roughly speaking, a rank-revealing decomposition is a decomposition in which information
about the numerical rank of the matrix can be easily extracted. Here, “numerical rank” usu-
ally means the number of singular values larger than a certain threshold, and it is important
to realize that for this concept to make sense, there has to be a well-determined gap in the
singular value spectrum at the threshold [24], [28, §3.1]. Hence, rank-revealing decomposi-
tions may also be labeled as “gap-revealing decompositions,” a phrase coined by Stewart [55].
General treatments of rank-revealing decompositions are presented in [28, Chap. 3] and [56,
Chap. 5].

Turning to algorithms for computing rank-revealing orthogonal decompositions, experi-
ence shows that it is natural to distinguish between high-rank and low-rank algorithms for
the two important cases where the numerical rank is either close to the number of rows or
columns of the matrix, or much smaller. So far, no efficient algorithm has been developed
for computing a rank-revealing orthogonal decomposition of a matrix whose numerical rank
is approximately half the number of rows or columns.

All rank-revealing orthogonal decompositions introduced so far are two-sided in nature,
i.e., they are of the general form A = XM Y T , where the two “outer matrices” X and
Y are orthogonal — occasionally they are permutation matrices — and the “middle matrix”
M is the matrix that reveals the numerical rank or gap. We conjecture that rank-revealing
decompositions must be two-sided; for example, in connection with the RRQR decomposition,
column permutations are needed to guarantee that one reliably detects the numerical rank.

2.1. The Singular Value Decomposition

The most well-known example of a rank-revealing two-sided orthogonal decomposition is the
singular value decomposition (SVD), cf. [25, §2.5]. The SVD of an m × n matrix A with
m ≥ n is given by

A = U

(
Σ
0

)
V T = U1 ΣV T =

r∑

i=1

σi ui v
T
i , (2.1)

where U1 = U(: , 1:n) and r = rank(A). Both U and V are orthogonal, i.e., UTU = Im and
UT1 U1 = V TV = In. The diagonal elements σi of the n× n diagonal matrix Σ are called the
singular values of A with the ordering

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0.

The columns of U and V are referred to as the left and right singular vectors, respectively.
The first r columns of U and V are the orthonormal eigenvectors associated with the r
nonzero eigenvalues of AAT and ATA, respectively.

7



8 CHAPTER 2. RANK-REVEALING ORTHOGONAL DECOMPOSITIONS

Given an integer k ≤ r, we partition the SVD according to

A = (Uk, U0, U⊥)




Σk 0
0 Σ0

0 0


 (Vk, V0)T , (2.2)

where Σk = diag(σ1, . . . , σk) and Σ0 = diag(σk+1, . . . , σn) are diagonal matrices consisting
of the k largest and the n − k smallest singular values, respectively. The matrix Ak defined
by Ak = Uk Σk V

T
k is a rank-k matrix approximation to A, and is the nearest one in the

2-norm. This matrix is called the truncated SVD matrix, and it has important theoretical
and practical value [28, §3.2]

2.2. Numerical Rank and Singular Subspaces

The selection of k obviously depends on both the application and the method used to deter-
mine the parameter. One way is to simply specify the first k or last n − k singular triplets
(σi, ui, vi) needed to capture the most relevant information in the data matrix A for the
particular application. This approach is used, for example, in information retrieval [4]. A
difficult aspect of this approach is that ad hoc procedures are often used to choose k.

Another way is to specify a threshold τ , and then k is identified as the largest integer
such that σk > τ . The parameter k is then called the numerical rank of A with respect to τ .
Suppose, for example, that the singular values of A are

σ1 = 1.0, σ2 = 0.5, σ3 = 0.1, σ4 = 10−5, and σ5 = 10−10.

Then k = 3 with respect to τ = 10−3, but k = 2 with respect to τ = 0.3. The parameter
k plays an important role in signal processing in distinguishing signal from noise, when the
signal can be considered as a sum of a pure signal plus additive white noise. The parameter
τ reflects the noise level, and k is related to the number of prominent signals. Moreover,
the matrices Uk, Σk, and Vk carry information about the pure signal (plus some noise),
while (U0, U⊥), Σ0, and V0 carry information solely about the noise. Some issues concerning
the very important subproblem of selecting τ for numerical rank detection are discussed
in [27], [50], [53].

Once k is specified, there are four fundamental numerical subspaces defined by the SVD
of A. They are

R(Ak) = R(Uk) the numerical range of A
N (Ak) = R(V0) the numerical null space of A
R(ATk ) = R(Vk) the numerical row space of A
N (ATk ) = R((U0, U⊥)) the numerical null space of AT .

Here, R(M) denotes the range (or column space) of the matrix M and N (M) denotes the
null space of M .



2.3. UTV DECOMPOSITIONS 9

2.3. UTV Decompositions

The SVD is a special two-sided decomposition because the middle matrix Σ is diagonal, and
this is what makes the algorithm computationally expensive and also difficult to update. In
many circumstances one can sacrifice the diagonal structure of Σ for a more efficient algorithm
that computes a decomposition which provides approximately the same rank and subspace
information, and which can be updated efficiently. This is the main idea behind the UTV
decomposition, which is a product of three matrices: an orthogonal matrix, a middle matrix
that is triangular or block-triangular, and another orthogonal matrix.

If the middle matrix is upper triangular, then the decomposition is called the URV de-
composition, and for m ≥ n it takes the form

A = UR

(
R
0

)
V T
R = (URk, UR0, UR⊥)




Rk F
0 G
0 0


 (VRk, VR0)T , (2.3)

where Rk is a k × k non-singular matrix and G is an (n − k) × (n − k) matrix. If A has a
well-defined gap (σk+1 � σk), then the URV decomposition is said to be rank-revealing if

σmin(Rk) = O(σk) and ‖(F T , GT )‖2 = O(σk+1). (2.4)

The second form, in which the middle matrix is lower triangular, is called the ULV decom-
position, and it takes the form

A = UL

(
L
0

)
V T
L = (ULk, UL0, UL⊥)




Lk 0
H E
0 0


 (VLk, VL0)T , (2.5)

where Lk is a k × k non-singular matrix and E is an (n − k) × (n − k) matrix. If A has a
well-defined gap (σk+1 � σk), then the ULV decomposition is said to be rank-revealing if

σmin(Lk) = O(σk) and ‖(H, E )‖2 = O(σk+1). (2.6)

Although decompositions of the form (2.3) and (2.5) have been around for some time (they
are discussed in the classical book by Lawson and Hanson [34] from 1974), algorithms which
guarantee the rank-revealing property (2.4) and (2.6) are more recent. From the standard
perturbation theory for singular values, cf. [25, §8.6.1], it follows that the smaller the norm
of the off-diagonal block, the better the approximations in (2.4) and (2.6).

We mention that there are situations where σk and σk+1 are not well separated but Σk,
Uk, and Vk of the SVD are still useful. In some of these cases a UTV decomposition may still
be an appropriate tool, but more research is needed in order to understand precisely when
(see [30] for an example).

UTV decompositions are often used to supply good estimates of basis vectors for the
numerical subspaces. For example, the subspace R(URk) or R(ULk) can be considered an
approximation to the numerical range R(Uk), and the subspaces are identical if the off-
diagonal block is zero. Hence it is natural to compare the numerical subspaces of A to
the corresponding UTV-based subspaces of A. The following theorem gives bounds for the
distance between the SVD- and UTV-based subspaces (see [25, §2.6.3] for more information
about subspace distances).



10 CHAPTER 2. RANK-REVEALING ORTHOGONAL DECOMPOSITIONS

Theorem 1. [19]. Let A have the UTV decompositions as in (2.3) and (2.5) and the SVD
as in (2.1). If σmin(Rk) > ‖G‖2, then

dist(R(Uk),R(URk)) ≤ ‖F‖2 ‖G‖2
σmin(Rk)2 − ‖G‖22

(2.7)

and
‖F‖2

2 ‖R‖2 ≤ dist(R(V0),R(VR0)) ≤ σmin(Rk) ‖F‖2
σmin(Rk)2 − ‖G‖22

. (2.8)

Similarly, if σmin(Lk) > ‖E‖2, then

‖H|2
2 ‖L‖2 ≤ dist(R(Uk),R(ULk)) ≤ σmin(Lk) ‖H‖2

σmin(Lk)2 − ‖E‖22
(2.9)

and

dist(R(V0),R(VL0)) ≤ ‖H‖2 ‖E‖2
σmin(Lk)2 − ‖E‖22

. (2.10)

The a posteriori bounds in (2.7)–(2.10) show that the UTV-based subspaces of A are
accurate approximations of the singular subspaces of A provided the off-diagonal block of
the middle matrix is sufficiently small in norm. In the next section we discuss strategies to
compute UTV decompositions so that the off-diagonal block is sufficiently small.

Another important result that follows from Theorem 1 is that the URV-matrix URk,
considered as an approximate basis for the numerical range R(Uk), has a smaller upper
bound than the corresponding ULV-matrix ULk, due to the factor ‖F‖2 instead of the factor
σmin(Lk). On the other hand, the ULV-matrix VL0, considered as an approximate basis for the
numerical null space R(V0), has a smaller upper bound than the corresponding URV-matrix
VR0. We conclude that the choice of decomposition depends on which quantities one wants
to estimate; e.g., if one wants to estimate numerical null spaces then the ULV decomposition
is preferred.

At this stage we mention that the matrix A is often a noisy realization of a pure matrix
A plus additive noise, where A can be assumed to be exactly rank deficient. Hence, it is
of interest to compare the UTV-based subspaces, computed from A, with the corresponding
exact subspaces defined from A which, in turn, are identical to the fundamental SVD-based
subspaces of A . The relevant perturbation theory can be found in [18].

The standard way to use the UTV decompositions in solving numerically rank-deficient
least squares problems min ‖Ax − b‖2 is to “plug in” either of the UTV decompositions
for A and then neglect the two blocks with small norm, i.e., either F and G in the URV
decomposition, or E and H in the ULV decomposition. The corresponding UTV-based least
squares solutions are then given by

xRk = VRkR
−1
k UTRkb and xLk = VLkL

−1
k UTLkb,

and the accuracy of these solutions is investigated in [20]. The computation of truncated
UTV solutions is implemented in the two Matlab functions tulv and turv for computing xRk
and xLk, respectively. Similar UTV-based total least squares solutions are studied in [61].



2.4. A NUMERICAL EXAMPLE 11

Although the RRQR decomposition was not introduced this way, it can be considered as
a special URV decomposition in which the right orthogonal matrix is a permutation matrix
Π. It is customary to write this decomposition in the form

AΠ = Q

(
RQ
0

)
= (Q1, Q2, Q⊥)




R11 R12

0 R22

0 0


 , Π = (Π1, Π2).

Computation of the RRQR decomposition is implemented in the two Matlab functions hrrqr
and lrrqr, designed for the high- and low-rank cases, respectively, cf. [10], [12], and [23].
The corresponding truncated RRQR solution is given by xQk = Π1(R11, R12)†QT1 b, and
computation of this solution is implemented in the Matlab function trrqr. We note that
RRQR algorithms often, in addition to the three matrices Q, R, and Π, return a matrix W
whose columns span an approximation to either N (Ak), in the high-rank case, or R(ATk ),
in the low-rank case, and RRQR-based total least squares solutions can be based on this
matrix. More details about RRQR-based solutions can be found in [11], while a study of the
accuracy of the RRQR-based subspaces and solutions is presented in [20].

2.4. A Numerical Example

To illustrate some of the quantities defined above, we generate an 8×6 matrix A with singular
values

2, 1, 0.5, 0.2, 0.05, 0.001,

and the numerical rank of A, with respect to the threshold τ = 0.1, is k = 4. Then we
use the Matlab function hurv (described in the next section) to compute a rank-revealing
decomposition of A. The computed triangular factor R has the form

R =




0.47 0.67 −0.54 0.92 7.7 · 10−5 −4.3 · 10−6

0 1.46 −0.79 0.03 −3.8 · 10−5 1.2 · 10−6

0 0 0.64 −0.34 5.2 · 10−5 −1.8 · 10−6

0 0 0 0.46 −1.1 · 10−4 6.5 · 10−6

0 0 0 0 4.5 · 10−3 2.3 · 10−4

0 0 0 0 0 1.0 · 10−3



.

The norms of the three nonzero blocks are ‖Rk‖2 = 2.00, ‖F‖2 = 1.46 · 10−4, and ‖G‖2 =
5.00 · 10−3, clearly revealing the numerical rank of A, and the smallest singular value of Rk
is σmin(Rk) = 0.20. The accuracy of the estimated subspaces, and the corresponding upper
bounds from Theorem 1, are as follows:

dist(R(Uk),R(URk)) = 1.68 · 10−5,
‖F‖2 ‖G‖2

σmin(Rk)2 − ‖G‖22
= 1.85 · 10−5

dist(R(V0),R(VR0)) = 6.85 · 10−4,
σmin(Rk) ‖F‖2

σmin(Rk)2 − ‖G‖22
= 7.35 · 10−4

and we see that the upper bounds are very close to the actual subspace distances. This ex-
ample illustrates that the rank-revealing URV decomposition indeed provides good estimates



12 CHAPTER 2. RANK-REVEALING ORTHOGONAL DECOMPOSITIONS

for the SVD-based quantities, and that the numerical range is better approximated than the
numerical null space.

We also compute rank-revealing ULV and RRQR decompositions by means of the Matlab
functions hulv and hrrqr, and the corresponding triangular matrices L and RQ are

L =




0.22 0 0 0 0 0
−0.11 0.90 0 0 0 0
−0.02 −1.18 0.93 0 0 0

0.39 −0.61 0.68 −1.08 0 0
1.4 · 10−4 4.7 · 10−5 9.1 · 10−5 5.6 · 10−5 5.0 · 10−3 0
4.4 · 10−6 1.5 · 10−6 2.9 · 10−6 1.8 · 10−6 1.3 · 10−4 1.0 · 10−3




and

RQ =




0.89 0.74 0.81 0.22 0.56 0.94
0 10.56 0.30 0.76 0.21 0.33
0 0 0.43 0.52 0.37 −0.14
0 0 0 0.49 0.08 −0.06
0 0 0 0 5.9 · 10−3 7.3 · 10−4

0 0 0 0 0 1.6 · 10−3



,

both revealing the numerical rank of A. The ULV subspace distances and their upper bounds
from Theorem 1 are

dist(R(Uk),R(ULk)) = 8.50 · 10−4,
σmin(Lk) ‖H‖2

σmin(Lk)2 − ‖E‖22
= 8.99 · 10−4

dist(R(V0),R(VL0)) = 2.10 · 10−5,
‖H‖2 ‖E‖2

σmin(Lk)2 − ‖E‖22
= 2.25 · 10−5

illustrating that for the rank-revealing ULV decomposition, the null space estimate is indeed
more accurate than the estimate of the numerical range. Finally, turning to the RRQR
decomposition, the quantities Q1 and W provide approximate bases for the numerical range
and null space with

dist(R(Uk),R(Q1)) = 5.29 · 10−3, dist(R(V0),R(W )) = 6.78 · 10−4,

and we see that both approximations are poorer than those from the UTV decompositions.



3. UTV Algorithms

Turning to algorithms for computing UTV decompositions, experience shows that it is natural
to distinguish between high-rank algorithms for the case k ≈ n, and low-rank algorithms for
the case k � n. So far, no efficient algorithm has been developed for computing a rank-
revealing orthogonal decomposition of a matrix whose numerical rank is approximately half
the number of rows or columns.

We concentrate on the ULV algorithms; the URV algorithms are very similar, and thus
we omit a discussion of these algorithms. We assume that the reader is familiar with stan-
dard “building blocks” of numerical linear algebra such as orthogonal transformations and
condition estimation. Finally, we mention that all of our algorithms are designed for the case
m ≥ n, and if the left orthogonal matrix is required then we always compute the “skinny”
part, i.e., U1.

3.1. High-Rank Algorithms

Many applications give rise to high-rank matricesA where k ≈ n. One example is direction-of-
arrival estimation in signal processing, where k corresponds to the number of incoming signals
which is usually comparable to the number of sensors n. Another example is discretizations
of certain deconvolution problems (Fredholm integral equations of the first kind), in which
the integral operator has a null space of small dimension.

For such high-rank matrices, Stewart introduced the rank-revealing URV and ULV de-
compositions and algorithms [51], [52] as alternatives to the SVD. In these algorithms, the
rectangular matrix A is preprocessed by a standard orthogonal triangular factorization, in
which the “skinny” form is computed if only U1 is required. This factorization can take
advantage of the structure of A, such as Toeplitz structure (although the feature is not im-
plemented in our package). Then condition estimation, plane rotations from the left and
right, and deflation steps are used to achieve the rank-revealing form. Here, by condition es-
timation we mean estimation of the smallest singular value of a matrix and the corresponding
left or right singular vector.

Stewart’s high-rank algorithms “peel off” the small singular values of A one at a time,
starting with the smallest. In each step, the estimated singular vector is used to generate
Givens rotations which, when applied to A, produce the desired rank-revealing triangular
form. If τ denotes the threshold used in determining the numerical rank, then the generic
high-rank ULV algorithm can be summarized as follows for the case m ≥ n:

13



14 CHAPTER 3. UTV ALGORITHMS

Generic High-Rank ULV Algorithm (Stewart).

1. Let k ← n and compute an initial factorization A = U1L
with a lower triangular L.

2. Condition estimation: let σ̃k estimate σmin(L(1: k, 1: k))
and let wk estimate the corresponding left singular vector.

3. If σ̃k > τ then exit.
4. Revealment: determine an orthogonal Pk such that Pkwk = (0, . . . , 0, 1)T ;
5. update L(1: k, 1: k)← P Tk L(1: k, 1: k);
6. update L(1: k, 1: k)← L(1: k, 1: k)Qk, where the orthogonal

matrix Qk is chosen such that the updated L is triangular;
7. Refinement (optional): while ‖L(k, 1: k − 1)‖2 > δ ‖L‖F

apply QR-refinement to the bottom row of L(1: k, 1: k).
8. Deflation: let k ← k − 1.
9. Go to step 2.

The three phases that we — for clarity — call revealment (steps 4–6), refinement (step 7),
and deflation (step 8) are usually referred to collectively as “refinement.” Before step 8, a
small singular value has revealed itself in the form of small elements in absolute value in the
bottom row of L(1: k, 1: k).

Steps 5 and 6 consist of interleaved left and right Givens transformations applied in such
a way that intermediate fill-in is restricted to the upper bidiagonal of L. The left and right
transformations are accumulated into U1 and In in order to compute the two final orthogonal
matrices U1 and V . This approach is efficient for high-rank matrices with k ≈ n, because the
smallest n−k singular values are guaranteed to emerge first, one per deflation step, and thus
the algorithm terminates after n− k deflation steps when only large singular values remain.

The optional QR-refinement in step 7, which can be used to reduce and control the norm
of the off-diagonal block, is explained in Section 3.3 (the iteration is, of course, safeguarded
by allowing only a small number of refinement steps for each k). If refinement is used, then
upon completion of the ULV algorithm we can guarantee that ‖(H , E)‖F ≤

√
n− k δ ‖L‖F .

The condition estimation in step 2 can be implemented in various ways, and there are
many algorithms available for triangular matrices, cf. the survey [31]. The algorithm we
have chosen was designed by Cline, Conn, and Van Loan [13] to be consistent with the 2-
norm, and it is implemented in the Matlab function ccvl. The complete high-rank algorithms
are implemented in the two Matlab functions hulv and hurv for computing ULV and URV
decompositions, respectively.

There is an intimate and subtle relationship between the accuracy of the condition es-
timator and the norm of the off-diagonal block H or F , cf. the study in [19]. The main
conclusion is that an accurate condition estimator will produce an off-diagonal block with
small norm. This fact has inspired us to develop alternative high-rank UTV algorithms,
implemented in Matlab functions hulv a and hurv a, in which the condition estimation and
revealment steps can be repeated — for each value of k— until the norm of the current off-
diagonal block is sufficiently small. Thus, we have replaced QR-refinement with refinement
of the condition estimation. The condition estimation used in these algorithms is inverse
iteration (implemented in the Matlab function inviter), which allows us — for a fixed k— to
restart the iterations in a simple way. The use of inverse iterations has also been suggested



3.2. LOW-RANK ALGORITHMS 15

by Yoon and Barlow in connection with a ULV downdating algorithm [64]. The alternative
ULV algorithm takes the following form for m ≥ n.
Generic High-Rank ULV Algorithm (Alternative Version).

1. Let k ← n and compute an initial factorization A = U1L
with a lower triangular L.

2. Let wok ← k−1/2 · ones(k, 1).
3. Condition estimation: let (σ̃k, wk)← inviter(L(1: k, 1: k), wok).
4. Revealment — similar to steps 4–6 in Stewart’s algorithm.
5. Refinement (optional): if ‖L(k, 1: k − 1)‖2 > δ ‖L‖F
6. let wok ← (0, . . . , 0, 1)T ,
7. go to step 3.
8. If σ̃k > τ then exit.
9. Deflate: let k ← k − 1.

10. Go to step 2.

Here, ones is Matlab’s built-in function for generating a vector of all ones, and the revealment
step 4 is identical to steps 4–6 in Stewart’s algorithm. The notation used in step 3 means that
the estimates σ̃k and wk are computed by means of inverse iteration with starting vector wok.
We use a fixed starting vector in order to ensure that the decomposition can be reproduced.
Ideally, we would like to stop the inverse iterations when the estimate wk ensures that the
norm ‖L(k, 1: k− 1)‖2 — after the revealment step — is sufficiently small. Unfortunately, the
only available a priori bound is ‖L(k, 1: k − 1)‖2 < σ̃k, which is too crude. Hence, when
refinement is used it is necessary to perform alternating condition-estimation and revealment
steps.

3.2. Low-Rank Algorithms

Certain applications give rise to low-rank matrices A in which k � n. For instance, low-rank
matrices arise in information retrieval using latent semantic indexing (LSI) [4], where the
elements of the m × n matrix A provide an incomplete connection between n documents
which define the database, and m key words pertaining to the database. The parameter k is
typically 0.1% of min(m,n), thus relatively few factors are adequate for the LSI approach.

Low-rank problems are traditionally solved using SVD-based techniques, and more details
can be found in [60]. Low-rank UTV algorithms [21] are computationally attractive alterna-
tives to the SVD because they provide enough important information, but more efficiently
than the SVD.

Our generic low-rank UTV algorithms are very similar to the alternative version of the
high-rank algorithm. They “peel off” the large singular values of A one at a time, starting
with the largest, and in each step the estimated singular vector is used to generate Givens
rotations which, when applied to A, produce the desired rank-revealing triangular form. The
low-rank revealment step differs from the high-rank version in that the permutation matrix Pk
is chosen such that Pkwk = (1, 0, . . . , 0). If again τ denotes the threshold used in determining
the numerical rank, the generic ULV algorithm can be summarized as follows for m ≥ n:



16 CHAPTER 3. UTV ALGORITHMS

Generic Low-Rank ULV Algorithm.

1. Let k ← 1 and compute an initial factorization A = U1L
with a lower triangular L.

2. Let wok ← (n− k + 1)−1/2 · ones(n− k + 1, 1) and ` = 1.
3. Norm estimation: (σ̃k, wk)← normest(L(k:n, k:n), wok).
4. Revealment — as explained in the text above.
5. Refinement (optional): if ` < `max

6. let wok ← (1, 0, . . . , 0)T and ` = `+ 1,
7. go to step 3.
8. If σ̃k > τ then exit.
9. Deflate: let k ← k + 1.

10. Go to step 2.

The notation in step 3 means that the estimates σ̃k and wk are computed by means of a 2-norm
estimator with starting vector wok. We say that this algorithm is “warm started” because of
the initial triangular factorization, and again the left and right orthogonal transformations
are accumulated into U1 and In, respectively, to produce the final U1 and V .

In the low-rank algorithms, the condition estimation of the high-rank algorithms is re-
placed by estimation of the largest singular value (which is identical to the 2-norm) and a
corresponding singular vector. This can be accomplished by means of the classical power
method [25, §8.2] or by means of Lanczos bidiagonalization [25, §9.2]. The number of it-
erations in both methods depends on the gap between the largest and the second largest
singular values in the current submatrix, and often the Lanczos method is faster than the
power method; see [21] for more details.

The most important difference between the high- and low-rank algorithms is that in
the low-rank algorithm, the norm of the current off-diagonal block (i.e., L(k + 1:n, 1: k) in
the ULV algorithm) does not become small until k reaches its final value — the details are
discussed in [21]. Hence, we cannot use the norm of the current off-diagonal block to control
the refinement process, so this process is controlled only by the maximum number `max of
refinement steps allowed for each k.

The two warm-started low-rank Matlab functions included in this package are lulv and
lurv for computing low-rank ULV and URV decompositions, respectively, and the underlying
power and Lanczos methods are implemented in the Matlab functions powiter and lanczos.
From a probabilistic point of view, random starting vectors for the iterative singular value
estimators are superior to fixed vectors [33], but still we have chosen to use a fixed starting
vector because this ensures that the computed decompositions can be reproduced.

We remark that several Lanczos-based algorithms have been suggested for computing good
estimates of the low-dimensional signal subspaces associated with various problems [14], [17],
[62], [63]. None of these algorithms produce a UTV decomposition, only approximations to
the desired subspaces — whether this is a drawback depends on the particular application.

When estimating the largest singular value of a matrix, there is no particular need for
working with a triangular matrix (which, on the other hand, is essential when estimating the
smallest singular value efficiently in the high-rank algorithms). This lead to the definition of
an alternative form of the UTV decomposition in which the initial triangularization is omitted,
and the final matrix middle matrix is block triangular with a square (m−k)× (n−k) bottom



3.3. REFINEMENT TECHNIQUES 17

right submatrix. This version, and the corresponding “cold started” algorithm, is described
in [21], and the corresponding Householder-based low-rank algorithms are implemented in
the Matlab functions lulv a and lurv a.

3.3. Refinement Techniques

Once a UTV decomposition has been computed, one may want to improve the accuracy of
the estimated singular subspaces, represented by the columns of the matrices U and V . It
follows from Theorem 1 that this can be achieved by reducing the norm of the off-diagonal
block, i.e., either F in the URV decomposition, or H in the ULV decomposition.

This can be accomplished by a block QR iteration applied to either R or L, as described
in [40]. Consider the URV decomposition. In the first step, right Givens rotations are
constructed such that F is annihilated and the (2,1)-block fills out. In the second step, left
Givens rotations are applied to the updated matrix in order to annihilate the (2,1)-block
again and thus restore the upper triangular form. If these two steps are repeated, then it
is proved in [40] that the norm of the off-diagonal block converges linearly to zero, with a
factor equal to ‖G‖2/σmin(Rk) for the URV decomposition, and ‖E‖2/σmin(Lk) for the ULV
decomposition. These “post processing” refinement operations are implemented in the two
Matlab functions ulv qrit and urv qrit.

Refinement can also be applied in each step of the UTV algorithms, as shown in Stewart’s
high-rank algorithm above, by “flipping” the last row of the current L(1: k, 1: k) — or the last
column of R(1: k, 1: k) — as in the block QR iteration. Again, it follows from the theory in [40]
that refinement of a single row or columns of the current triangular matrix, as implemented
in Stewart’s algorithm, will reduce the norm of the off-diagonal block. In the alternative high-
rank algorithm, as well as in the low-rank algorithms, the QR-refinement steps are replaced
by repeated restarts of the condition or norm estimator followed by revealment. The initial
guess in the restart is chosen so that one continues the iterations in order to further improve
the norm estimate, thereby resulting in a reduction of the off-diagonal block’s norm.

A different flavor of refinement is used in Stewart’s PLQ decomposition [55], where a
pivoted QR factorization is followed by an orthogonal reduction to lower triangular form,
which can be considered as “half a QR iteration”. The lower triangular matrix produced
in this way is sometimes quite good at revealing gaps in the singular value spectrum, but
without the theoretical justification underlying the UTV decompositions.

3.4. Numerical Examples

We will first show the influence of the number of power iterations used to estimate the largest
singular value in the low-rank ULV algorithm. We generate a low-rank 8× 6 matrix A with
singular values 0.3, 0.2, 0.05, 0.03, 0.02 and 0.01, and the numerical rank of A with respect
to the threshold τ = 0.1 is k = 2. Then we use the Matlab function lulv to compute ULV
decompositions of A using a fixed number of 1, 2, 3, and 4 power iterations in each stage of
the algorithm, and the results are shown in Table 3.1 where we use the notation

d(Uk) = dist(R(Uk),R(URk)), d(V0) = dist(R(V0),R(VR0)).



18 CHAPTER 3. UTV ALGORITHMS

Power iterations ‖H‖2 d(Uk) d(V0)
1 3.4 · 10−2 1.6 · 10−1 3.7 · 10−2

2 1.8 · 10−3 9.2 · 10−3 2.3 · 10−3

3 1.1 · 10−4 5.6 · 10−4 1.4 · 10−4

4 6.5 · 10−6 3.4 · 10−5 8.6 · 10−6

Table 3.1: Results from the low-rank ULV algorithm with the call lulv(A,0.1,power its).

Refinement steps ‖H‖2 d(Uk) d(V0)
0 3.4 · 10−2 1.6 · 10−1 3.7 · 10−2

1 2.0 · 10−3 1.1 · 10−2 2.6 · 10−3

2 5.1 · 10−5 2.7 · 10−4 6.8 · 10−5

3 3.0 · 10−6 1.6 · 10−5 4.0 · 10−6

4 1.8 · 10−7 9.7 · 10−7 2.4 · 10−7

Table 3.2: Results from the low-rank ULV algorithm with the call lulv(A,0.1,1,ref steps).

First of all, we see that the norm of the off-diagonal block H decreases as the number of power
iterations increases, reflecting the fact that the more accurate the singular vector estimate,
the closer the triangular matrix is to block diagonal form, and thus the more accurate the
subspace estimates. Moreover, as expected from Theorem 1, we see that the approximate
null space bases are always more accurate than the bases for the numerical range.

Another way to achieve accurate subspace estimates is to perform one or more refinement
steps in each stage of the algorithm. To illustrate this, we use lulv again with one power
iteration followed by refinement in the form of 0, 1, 2, 3, or 4 refinement steps in each stage.
The results of this experiment are shown in Table 3.2, and it is no surprise that the results
improve as the number of refinement steps increases.

The third way to improve the accuracy of the UTV subspaces is to perform block QR
iterations on the final triangular matrix L, and we illustrate this by applying block iterations
(using the function ulv qrit) to the matrix L computed with one power iteration and no
refinement in each stage. Clearly, the block QR iterations reduce the off-diagonal block’s
norm and improve the subspace estimates. The same conclusions hold for the high-rank
algorithms; we do not show the results here.

Block iterations ‖H‖2 d(Uk) d(V0)
0 3.4 · 10−2 1.6 · 10−1 3.7 · 10−2

1 1.7 · 10−3 8.9 · 10−3 2.2 · 10−3

2 1.0 · 10−4 5.4 · 10−4 1.3 · 10−4

3 6.3 · 10−6 3.4 · 10−5 8.4 · 10−6

4 3.9 · 10−7 2.1 · 10−6 5.2 · 10−7

Table 3.3: Results from the ULV refinement algorithm using block QR iterations, with the
call lulv qrit(k,block its,L,V,U).



4. Up- and Downdating

One of the most important properties of the UTV decompositions is their ability to be
updated and downdated efficiently and stably. Here we briefly summarize the algorithms
used in the package. It should be noted that none of the algorithms described below apply to
the block triangular low-rank UTV decomposition computed by the cold-started algorithms
mentioned in Section 3.2.

4.1. Updating

Consider first updating the UTV decomposition with an additional row wT and with a positive
weighting factor β ≤ 1 applied to A (which is a standard operation in signal processing), i.e.,
given the UTV decomposition A = U1 T V

T , where T is either L or R, we want to compute
the new UTV decomposition (

βA
wT

)
= U1 T V

T
.

The updating is accomplished by promoting wT to the middle matrix,
(
βA
wT

)
=
(
U1 0
0 1

)(
T

wTV

)
V T ,

and then left Givens rotations G are used to annihilate the elements of wTV . Thus we obtain
(
βA
wT

)
=
(
U1 0
0 1

)
G

(
T
0

)
V T =

(
U1 u2

)( T
0

)
V T = U1T V

T ,

i.e., V = V . Notice that V is always needed in order to accomplish the updating, while U1 is
not required.

The order in which the Givens rotations are applied is important because we wish, as far
as possible, to maintain the small elements present in the triangular matrix T . Using the
scheme proposed by Stewart [51] together with the fact that if β = 1 then the numerical rank
can either remain at k or increase by one, we merely have to apply one step of condition
estimation and at most one deflation step in this case. See [25, §12.5.5] or [51] for more
details.

The updating algorithm is implemented in the Matlab functions ulv up and urv up, and
after all the Givens rotations have been applied, we normalize the columns of U1 as recommend
in [42]. In these implementations, the condition estimation is accomplished by means of ccvl,
and we allow refinement of the updated triangular matrix.

Moonen et al. [43] presented a related updating algorithm in which the updating step is
followed by one — or a few — sweeps of Kogbetliantz’s iterative SVD algorithm. The result

19



20 CHAPTER 4. UP- AND DOWNDATING

of this post-processing is that if the initial middle matrix T is close to diagonal (e.g., if the
initial decomposition is the SVD), then the norm of the off-diagonal part of T stays relatively
small after each updating step. We have not implemented this variant in our package.

4.2. Downdating

The downdating problem is the following: given the UTV decomposition A = U1 T V
T ,

where T is either L or R, compute the new UTV decomposition of the (m−1)×n submatrix
A(2:m, : ), i.e.,

A =
(

wT

A(2:m, : )

)
, A(2:m, : ) = U1 T V

T .

Downdating is a more complicated problem than updating, and the algorithm depends on
whether the matrix U1 is explicitly available, because its first row is required in the down-
dating algorithm. The matrix V is always required.

If U1 is available, then the first step is to augment U1 with one additional column u2 that
is orthogonal to the columns of U1, i.e., UT1 u2 = 0, in such a way that the norm of the first row
of the matrix (U1, u2) is one, and this can almost always be achieved by orthonormalizing
the unit vector e1 = (1, 0, . . . , 0)T to U1 by means of the modified Gram-Schmidt (MGS)
process. At this stage, the UTV decomposition of A can be reformulated as

A = (U1, u2)
(

T
0T

)
V T .

If T = R, then we use the standard algorithm for downdating a QR factorization, cf. [25,
§12.5.3]. We apply a sequence of right Givens rotations G that annihilate all but the first
element of the first row of (U1, u2), starting from the right, and these rotations are also applied
from the left to the middle matrix:

(U1, u2)G =
( ±1 0T

0 U

)
and GT

(
R
0T

)
=
(
yT

R

)
,

where the (m− 1)×n matrix U has orthonormal columns. Then it follows immediately that
the three matrices U , R, and V constitute a URV decomposition of A(2:m, : ).

If T = L, then we use the algorithm from [8]. First we annihilate all but the first element
of U1, again starting from the right, and when these rotations G are applied from the left to
L then they must be interleaved with right rotations H that restore the triangular form:

U1G = Ũ =
(

υ eT1
Ũ(2:m, : )

)
, GT LH = L̃, Ṽ = V H,

where |υ| ≤ 1. We finish by a single Givens rotation G̃ involving u2 and the first column of
Ũ in which υ = Ũ(1, 1) is annihilated, and when G̃ is applied from the left to the middle
matrix, it introduces a single fill-in in the bottom row:

(
Ũ , u2

)
G̃ =

(
0T ±1
U 0

)
and G̃T

(
L̃
0T

)
=
(

L
α eT1

)
.



4.2. DOWNDATING 21

Then the ULV decomposition of A(2:m, : ) consists of U , L, and Ṽ .
Finally, we need to make the new UTV decomposition a rank-revealing one. We note that

the numerical rank can either remain at k or decrease by one. Hence, due to the ordering
of the Givens rotations, most of the small elements in T remain small, and we need only
perform a few condition estimation and deflation steps.

Consider now the case where U1 is not available, which is common in signal processing
applications due to memory constraints. The vector qT = U1(1, : ) can be computed from the
relation wT = qTTV T by solving this equation for q, i.e.

q =
(
T T
)−1

V Tw, (4.1)

and the first element of u2 is then given by u2(1) = (1 − ‖q‖22)1/2. Once this information
is available, it follows from the relations above that the downdating can be accomplished.
Unfortunately, this so-called Linpack procedure is numerically inferior when ‖q‖2 is close
to one, in which case it is more safe to use algorithms based on the corrected semi-normal
equation (CSNE) approach [7]. Our implementations offer two versions of this approach: the
first is developed by Bojanczyk and Lebak [8], and the second is developed by Park and Eldén
[44] and further improved by Barlow, Yoon, and Zha [3]. It is outside the scope of this work
to present the details of these sophisticated downdating algorithms; instead we refer to the
papers for details.

The process of orthogonalizing e1 to U1 breaks down when e1 lies in the range of U1, and
one instance where this happens is when the exact rank of the coefficient matrix decreases
during the downdating process, as shown in the following theorem.

Theorem 2. Let qT = U1(1, : ). If rank(A(2:m, : )) < rank(A), then

e1 ∈ R(U1) ⇐⇒ ‖q‖2 = 1. (4.2)

Proof. Since rank(T ) = rank(A), and since

rank(U1(2:m, : )T ) = rank(A(2:m, : )) = rank(A)− 1,

we conclude that U1(2:m, : ) must be rank deficient. Now, from the CS decomposition [25,
§2.6.4] of U1 it is clear that ‖q‖2 = 1⇔ rank(U1(2:m, : )T ) = n−1. Hence, rank(A(2:m, : )) <
rank(A) implies that ‖q‖2 = 1. This, in turn, is equivalent to e1 ∈ R(U1) because ‖UT1 e1‖2 =
‖q‖2 is the norm of the orthogonal projection of e1 on the range of U1. 2

Our algorithms detect and overcome this difficulty as follows. If U1 is available, the
situation is detected reliably by the “twice is enough” strategy in MGS, and instead we
orthonormalize the vector (1, 2, . . . ,m)T to U1 which yields a vector u2 whose first component
is of the order of the machine precision. If U1 is not available, the situation is detected during
the CSNE algorithm which returns an exact zero for u2(1).

At this stage, we want to emphasize that numerically stable UTV downdating algorithms
have become very complex, and the computational overhead can become quite large, espe-
cially when the exact rank decreases. In certain real-time applications where the complexity
of the software is limited, it may be worth to consider whether recomputation of the ULV
decomposition — which simplifies the code at the expense of introducing a time delay or a



22 CHAPTER 4. UP- AND DOWNDATING

gap in the output data — is to be preferred to the more complex algorithms. The decision
to recompute the UTV decomposition should then be linked to the detection of the situation
when e1 on the range of U1.

The downdating algorithms described above are implemented in the two Matlab functions
ulv dw and urv dw for downdating the ULV and URV decompositions, respectively. Similar
to the updating implementations, we normalize the columns of U1 and V once all Givens
rotations have been applied.

Downdating frequently arises in signal processing in connection with sliding window ap-
plications where, in each time step, the top row of A is skipped and a new row is appended
to the bottom of A. Algorithmically, this is treated by means of an updating step followed
by a downdating step, and this combined action is implemented in the two Matlab functions
ulv win and urv win. We note that these functions, in order to be as general as possible, allow
a weighting factor β ≤ 1, but β = 1 in classical sliding window applications.

4.3. A Numerical Example

The subspace tracking capability of the up- and downdating algorithms is demonstrated
in the Matlab demo functions wulvdemo and wurvdemo. Here, we illustrate some of the
inherent numerical difficulties associated with a ULV downdating step as implemented in
ulv dw. Consider first the case where U1 is available, and let A be a 6 × 4 matrix such that
svd(A) = (2.08, 1.03, 0.21, 1.24 ·10−16), svd(A(2:m, : )) = (2, 1, 1.96 ·10−16, 8.11 ·10−17) and
svd(U1(2:m, : )) = (1, 1, 1, 2.41 ·10−16). First we use MGS with one reorthogonalization step
to orthogonalize z = e1 to U1, by means of the generic algorithm:

Generic MGS Algorithm.
1. For j = 1:n, z ← z − U1(: , j)

(
U1(: , j)T z

)
; end

2. If ‖z‖2 < 2−1/2 then
3. for j = 1:n, z ← z − U1(: , j)

(
U1(: , j)T z

)
; end

We obtain ‖z‖2 = 2.32 · 10−16, and we conclude that e1 ∈ R(U1). Instead, we choose
z = (1, 2, . . . ,m)T and apply the above MGS algorithm to this vector. After normalization
we end up with a vector u2 whose first component, as expected, is practically zero, u2(1) =
−1.34 · 10−17. Then the downdating process can be completed.

Next, consider the situation where U1 is not available, and where q must be computed
from w via (4.1). With the same data as above, the Linpack procedure yields

q = (−0.968, −0.200, 0.153, −4.40 · 10−16)

with ‖q‖2 = 1 exactly, and thus u2(1) = 0. Hence, in this exactly rank deficient case, there
is in principle no problem in using the simple Linpack approach. However, in finite precision
arithmetic we cannot distinguish an exactly rank-deficient problem from a near-rank-deficient
problem. To illustrate this, we modify the matrix slightly, such the small singular values of
A and A(2:m, : ) become somewhat larger than the machine precision (8.49 · 10−7 and 10−6,
10−9, respectively); now ‖q‖2 6= 1, but it is so close to one that u2(1) cannot be computed
as (1 − ‖q‖22)1/2. Thus, we must switch to the CSNE approach, which leads to the result
u2(1) = 5.36 · 10−9.



5. Quotient UTV Decompositions

Throughout the years, rank-revealing orthogonal decompositions — and in particular the
SVD — have been generalized to matrix pairs, triplets, etc. One of the most well known
and most frequently used generalizations is the quotient SVD (QSVD), or generalized SVD,
of two matrices A and B with the same number of columns [25, §8.7.3], which yields infor-
mation about the numerical rank and numerical subspaces of the matrix “quotient” AB−1

when B is invertible, and AB† (where B† is the pseudoinverse [25, §5.5.4] of B) when B has
full column rank. The QSVD has numerous applications in signal processing as well as in
many other applications, cf. [15], [28], and is available in Matlab 5.2 as function gsvd.

5.1. The Rank-Revealing ULLV Decomposition

In signal processing applications, the QSVD is often used in connection with problems that
involve additive colored noise, where the matrix A represents the sampled noisy signal, while
the matrix B represents the noise. As long a A and B have the same number of columns
and B has full column rank, the matrix quotient AB† represents a so-called prewhitened
signal with white noise, to which the standard filtering and noise-reduction techniques can
be applied; see [32] for details.

In these applications it is natural to generalize the UTV decomposition to such pairs of
matrices with the same number of columns. In this work, we focus on the important case
where B has full column rank, which is very often the case in signal processing applications.
Then the quotient ULV composition, also referred to as the ULLV decomposition [37], takes
the form

A = UA LA LV
T , B = UB LV

T , (5.1)

where UA and UB have orthonormal columns and V is orthogonal, i.e., UTAUA = UTBUB =
V TV = In, while LA and L are both lower triangular. Moreover, L has full rank, because
we assume that B has full column rank. The corresponding quotient URV decomposition is
defined analogously, and we shall not pursue this decomposition here.

Since B has full rank, its pseudoinverse is given by B† = V L−1UTB , and thus the matrix
quotient can be written in terms of the ULLV decomposition as

AB† = UA LA U
T
B .

We see that the three matrices UA, LA, and UB form the ULV decomposition of AB†, and
this decomposition can always be made to reveal the numerical rank of AB† by means of
ULV revealment steps. When this is the case, we say that the ULLV decomposition (5.1) is
a rank-revealing quotient ULV decomposition of A and B.

23



24 CHAPTER 5. QUOTIENT UTV DECOMPOSITIONS

For completeness, we mention that if B does not have column full rank, then we can
always assume that preprocessing has been applied to the matrix pair such that B is p × n
with rank(B) = p < n. The corresponding quotient ULV decomposition then takes the form

A = UA LA

(
L 0
0 In−p

)
V T , B = UB (L, 0)V T ,

where L is now p × p; for more details about this version and its application in interference
problems, see [29] and [38]. Other generalized UTV decompositions are discussed in [49]
(matrix quotients of the form A−1B) and [8] (a decomposition of the form A = UA LA LV

T ,
B = UB LB LV

T ).
We note that the approximation bounds in Theorem 1 immediately carry over to the

numerical subspaces of the matrix quotient AB†, when applied to the columns of UA and UB
and the corresponding vectors of the QSVD.

5.2. ULLV Algorithms

The algorithms for computing and modifying rank-revealing quotient UTV decompositions
are similar to those for the ordinary UTV decompositions, except that care must be taken to
maintain the triangular structure of both LA and L. Here, we assume that the matrix B has
full rank. We restrict ourselves to a ULLV algorithm for the high-rank case; corresponding
low-rank ULLV algorithms can always derived from the low-rank ULV implementations lulv
and lulv a.

5.2.1. A Simple ULLV Algorithm

To compute a rank-revealing ULLV decomposition in the high-rank case, we need an initial
decomposition with the same structure. As long as B has full rank and is well conditioned,
we can use the following approach.

Initial ULLV Algorithm.
1. Compute the QL factorization B = UB L.
2. Solve A = Z L for Z (i.e., formally, Z = AL−1).
3. Compute the QL factorization Z = UA LA.

Then the condition estimation and deflation steps of Stewart’s high-rank UTV algorithm are
applied to the three matrices UA, LA, and UB in order to make the ULLV decomposition
reveal the numerical rank of AB†. Note that some of the Givens rotations in these steps are
also be applied from the left to L, and they must be interleaved with right Givens rotations
(which are also applied to V ) in order to maintain the triangular form of L. The complete
algorithm is implemented in the Matlab function ullv, where the details of the condition
estimation and deflation steps can be studied. We do not provide low-rank algorithms for
the ULLV decomposition.

5.2.2. Updating Algorithms

Algorithms for updating the ULLV decomposition (5.1) when a row is appended to A and/or
B are described in [37]. Consider the case where a row wT is appended to A; then we promote



5.2. ULLV ALGORITHMS 25

this row to L as follows (where a weighting factor β is included for completeness):
(
β A
wT

)
=
(
UA 0
0T 1

)(
β LA 0
0T 1

)(
L

wTV

)
V T , B = UB (In, 0)

(
L

wTV

)
V T .

Now left and right Givens rotations are used to annihilate all but the leftmost element of the
row wTV and, simultaneous, maintain the triangular structure of L. The left rotations are
also applied from the right to LA and interleaved with other rotations applied from the left
that maintain the triangular form of LA, and we arrive at the intermediate form

(
β A
wT

)
=
(
ŨA 0
0T 1

)(
L̃A 0
0T 1

)(
L̃
ξ eT1

)
Ṽ T , B = ŨB (In, 0)

(
L̃
ξ eT1

)
Ṽ T .

Next, the element ξ is annihilated by means of a scaled rotation Y from the left, satisfying

Y

(
L̃
ξ eT1

)
=
(
L̃
0

)
.

The transformation Y is a Givens rotation scaled by c, and it has the form

Y =




c2 0T cs
0 In−1 0
−cs 0T c2


 , Y −1 =




1 0T −s/c
0 In−1 0
s/c 0T 1


 . (5.2)

When Y −1 is propagated to the left it creates fill,
(
L̃A 0
0T 1

)
Y −1 =

(
L̃A z̃
η eT1 1

)
, (In, 0)Y −1 = (In, −η e1),

where η = s/c, and fortunately this fill does not contribute to the updated A or to B because
of the newly created zero row. Notice that the scaled rotation maintains the submatrices L̃,
L̃A, and In. At this second intermediate stage, we have

(
βA
wT

)
=
(
ŨA 0
0T 1

)(
L̃A
η eT1

)
L̃ V

T
, B = ŨB L̃ Ṽ

T ,

and now η is annihilated by means of a single left Givens rotation which creates fill in the
last column of the leftmost factor of A that can be neglected:

(
ŨA 0
0T 1

)(
L̃A
η eT1

)
= (UA, z)

(
LA
0

)
= UA LA.

Hence, we arrive at (
βA
wT

)
= UA LA L̃ V

T
, B = ŨB L̃ V

T
.

The updating process concludes, as usual, with condition estimation, revealment, and defla-
tion. We refer to [37] for more details as well as a similar algorithm for updating B. The
updating algorithms are implemented in the two Matlab functions ullv up a and ullv up b,
respectively, where further details can be found.

Whenever B is ill conditioned or rank deficient, the initial ULLV algorithm described
above must be avoided, and instead one should apply the updating algorithm ullv up a a
number of times to the initial matrix pair 0 and B with β = 1, in such a way that the rows
of A are introduced one at a time, cf. [37].



26 CHAPTER 5. QUOTIENT UTV DECOMPOSITIONS

5.2.3. Downdating Algorithms

Algorithms for downdating the ULLV decomposition (5.1) when a row is removed from A
and/or B are described in [30]. These algorithms, in turn, are adapted from the downdating
algorithms presented in the unpublished report [35]. They are not as sophisticated as the
algorithms in [3] and [44], but more research is necessary to extend the latter algorithms to
the ULLV decomposition.

When A is downdated, then the matrix UA is first augmented with an additional column
u2 that is orthonormal to the columns of UA in such a way that the norm of the first row of
(UA, u2) has norm one. Then we formally write the ULLV decomposition as

A =
(

wT

A(2:m, : )

)
= (UA, u2)

(
LA 0
0T 1

)(
L
0T

)
V T ,

B = UB (In, −η e1)
(

L
0T

)
V T ,

where η is a parameter to be determined later. Now we annihilate all but the leftmost element
of the top row of UA by means of a sequence of Givens rotations, starting from the right.
Applying the necessary Givens rotations in order to maintain the triangular form of LA and
L, we compute

A =
(
υ eT1 u2(1)
ŨA u2(2:m)

) (
L̃A 0
0T 1

)(
L̃
0T

)
Ṽ T , B = ŨB (In, −η e1)

(
L̃
0T

)
Ṽ T .

Next, we apply a single Givens rotation to the first and last columns of the leftmost matrix
in the expressions for A to annihilate υ, and we obtain

(
υ eT1 u2(1)
ŨA u2(2:m)

) (
L̃A 0
0T 1

)
=
(

0T ±1
ÛA 0

) (
L̂A −s e1

η eT1 c

)
.

This relation defines the quantity η used in the augmented expression for B. Finally, we
apply the scaled transformation Y (5.2) from the right to the rightmost matrix in the above
expression, with c and s determined from the relations η = s/c and c2 + s2 = 1. This
transformation annihilates η, and we obtain

(
L̂A −s e1

η eT1 c

)(
L̃
0T

)
=
(
LA 0
0 1

)(
L
ξ eT1

)
,

(In, −η e1)
(

L̃
0T

)
= (In, 0)

(
L̃
ξ eT1

)
.

We thus arrive at the expressions

A(2:m, : ) = ÛA LA L Ṽ
T , B = ŨB L Ṽ

T .

Finally, condition estimation and deflation steps are applied. We refer to [30] for more details
and for a similar algorithm for downdating B. The downdating algorithms are implemented
in the two Matlab functions ullv dw a and ullv dw b, respectively, where details can also be
found.



5.3. NUMERICAL EXAMPLES 27

5.3. Numerical Examples

Our first example illustrates the structure of the two triangular matrices LA and L. Both A
and B are random 8× 5 matrices; A has numerical rank k = 3 with respect to the threshold
τ = 0.005, and B is well conditioned with condition number equal to 6.3. Using the function
ullv, we compute

LA =




2.7 · 10−2 0 0 0 0
−3.2 · 10−1 2.8 · 10−1 0 0 0

1.1 · 10−2 5.3 · 10−1 7.5 · 10−1 0 0
1.1 · 10−4 1.3 · 10−4 −9.2 · 10−5 2.9 · 10−3 0
−5.4 · 10−6 −6.3 · 10−6 4.5 · 10−6 −1.6 · 10−4 1.2 · 10−3




and

L =




0.45 0 0 0 0
0.06 0.62 0 0 0
−2.4 0.38 2.5 0 0
0.45 0.05 −0.74 1.07 0
−0.19 0.11 −0.04 −0.12 1.01



.

With respect to the same threshold τ = 0.005, the numerical rank of AB† is clearly revealed
through LA as 3.

Our second example illustrates that the numerical rank of the matrix coefficient AB† can
differ from that of A, thus showing the need for a quotient ULV decomposition. The matrix
A is 8× 5 and its singular values are

σ1 = 10, σ2 = 7, σ1 = 4, σ1 = 0.4, σ1 = 0.2.

There is obviously a cluster of three large singular values, i.e., the rank is three with respect
to the threshold τ = 1. The 8× 5 matrix B is again well conditioned with ‖B‖2 = 23.1 and
condition number equal to 58.9. The five singular values of the matrix quotient AB† are

σ1 = 10, σ2 = 5, σ1 = 0.5, σ1 = 0.2, σ1 = 0.1,

showing that the gap in the singular value spectrum has changed; the matrix quotient has
a cluster of only two large singular values, i.e., the numerical rank is now two with respect
to the same threshold τ = 1. These two different numerical ranks are estimated correctly by
the ULV decomposition of A and the ULLV decomposition of (A,B). By means of hulv we
compute A’s lower triangular factor in the ULV decomposition,




5.14 0 0 0 0
4.98 8.09 0 0 0
0.87 −1.48 6.73 0 0

−9.5 · 10−4 5.1 · 10−4 9.7 · 10−4 0.40 0
−3.7 · 10−4 2.2 · 10−4 1.7 · 10−4 3.2 · 10−2 0.20



,



28 CHAPTER 5. QUOTIENT UTV DECOMPOSITIONS

and by means of ullv we compute the following LA-factor in the ULLV decomposition:

LA =




5.13 0 0 0 0
−1.94 9.74 0 0 0

−1.2 · 10−3 4.1 · 10−3 0.50 0 0
1.9 · 10−5 2.3 · 10−4 1.0 · 10−2 0.19 0
−8.6 · 10−5 3.7 · 10−5 2.6 · 10−3 −4.3 · 10−2 0.10



.

Both triangular factors reveal the correct numerical rank of A and AB†, respectively



6. Manual Pages

Demo Functions
hulvdemo Demonstrates the use of the high-rank ULV algorithms hulv and hulv a.
hurvdemo Demonstrates the use of the high-rank URV algorithms hurv and hurv a.
lulvdemo Demonstrates the use of the low-rank ULV algorithms lulv and lulv a.
lurvdemo Demonstrates the use of the low-rank URV algorithms lurv and lurv a.
rrqrdemo Demonstrates the use of the RRQR algorithms hrrqr and lrrqr.
ullvdemo Demonstrates the use of the high-rank ULLV algorithm ullv.
wulvdemo Demonstrates the use of the ULV up- and downdating algorithms,

implemented in ulv win, applied to a sliding window example.
wurvdemo Demonstrates the use of the URV up- and downdating algorithms,

implemented in urv win, applied to a sliding window example.

UTV-Based Solvers
tulv Solves a numerically rank-deficient least squares problem using the

rank-revealing ULV decomposition.
turv Similar to tulv, except it uses the rank-revealing URV decomposition.

High-Rank UTV Algorithms
hulv Stewart’s rank-revealing ULV algorithm.
hulv a The alternative rank-revealing ULV algorithm.
hurv Stewart’s rank-revealing URV algorithm.
hurv a The alternative rank-revealing URV algorithm.

Low-Rank UTV Algorithms
lulv Warm-started rank-revealing ULV algorithm.
lurv Warm-started rank-revealing URV algorithm.
lulv a Cold-started rank-revealing ULV algorithm.
lurv a Cold-started rank-revealing URV algorithm.

Block QR Refinement
ulv qrit Refinement of L in the ULV decomposition.
urv qrit Refinement of R in the URV decomposition.

29



30 CHAPTER 6. MANUAL PAGES

UTV Up- and Downdating
ulv dw Downdate the rank-revealing ULV decomposition.
ulv up Update the rank-revealing ULV decomposition.
ulv win Sliding window modification of the rank-revealing ULV decomposition.
urv dw Downdate the rank-revealing URV decomposition.
urv up Update the rank-revealing URV decomposition.
urv win Sliding window modification of the rank-revealing URV decomposition.

ULLV Algorithms
ullv Compute a high-rank revealing ULLV decomposition.
ullv dw a Downdate A in the rank-revealing ULLV decomposition.
ullv dw b Downdate B in the rank-revealing ULLV decomposition.
ullv up a Update A in the rank-revealing ULLV decomposition.
ullv up b Update B in the rank-revealing ULLV decomposition.

RRQR Algorithms
hrrqr Chan/Foster high-rank RRQR algorithm.
lrrqr Chan-Hansen low-rank RRQR algorithm.
trrqr Solves a numerically rank-deficient least squares problem

using the RRQR decomposition.

Misc. Tools
app giv Apply a Givens rotation (from the left or right).
app hous Apply a Householder reflection (from the left or right).
ccvl Estimation of the smallest singular value via Cline-Conn-Van Loan algorithm.
gen giv Determine a 2× 2 Givens rotation matrix.
gen hous Determine a Householder reflection matrix.
inviter Estimation of the smallest singular value via inverse iteration.
lanczos Estimation of the largest singular value via Lanczos bidiagonalization.
mgsr Modified Gram-Schmidt with reorthogonalization (expansion step).
power Estimation of the largest singular value via the power method.
ullv csne Corrected semi-normal equations expansion step (for ULLV).
ullv rdef Deflate one row of LA in the ULLV decomposition.
ullv ref Refine one row of LA in the ULLV decomposition.
ulv cdef Deflate one column of L in the ULV decomposition.
ulv csne Corrected semi-normal equations expansion step (for ULV).
ulv rdef Deflate one row of L in the ULV decomposition.
ulv ref Refine one row of L in the ULV decomposition.
urv cdef Deflate one column of R in the URV decomposition.
urv csne Corrected semi-normal equations expansion step (for URV).
urv rdef Deflate one row of R in the URV decomposition.
urv ref Refine one column of R in the URV decomposition.



31

The Demo Functions

The package includes eight demo functions that illustrate the use and functionality of the
main algorithms, by applying them to small test matrices with known singular values. In
addition, we demonstrate that our up- and downdating algorithms are capable of tracking
the numerical rank of a difficult test problem from [35].

The test matrices used in the ULV, URV and RRQR demos are “random” matrices with
dimensions 50×20, and their singular values are generated by means of the Matlab commands

s1 = 2*logspace(1,-3,13);
s2 = 5*logspace(-4,-6,7);
s = [s1;s2];

The ULLV demo makes use of a “random” pair of test matrices (A,B) with dimensions
50× 20 and 20× 20, respectively, whose generalized singular values – i.e., the singular values
of AB−1 – are generated by the above Matlab commands. hence, the numerical rank in all
the test problems is 13 with respect to the thresold τ = 10−3. These matrices are used in the
following six demos:

Demo function Functions illustrated
hulvdemo hulv hulv a
hurvdemo hurv hurv a
lulvdemo lulv lulv a
lurvdemo lurv lurv a
rrqrdemo hrrqr lrrqr
ullvdemo ullv

The test matrices used to illustrate the up- and downdating algorithms are from [35].
A “sliding window” technique is used, in which a 5 × 5 matrix is modified in a series of 19
steps, each step involving updating with one new row and downdating involving the oldest
row of the matrix. The matrix is constructed such that the numerical rank in the 20 stages
(including the initial stage) are given by the sequence

3, 3, 3, 3, 4, 5, 4, 3, 2, 2, 2, 2, 3, 4, 5, 4, 3, 3, 3, 3.

The available up- and downdating strategies are illustrated as follows:

Demo function Functions illustrated technique illustrated
ullvdemo ullv up a ullv dw a U available

U not available, CSNE approach
wulvdemo ulv win U available

U not available, CSNE approach
U not available, improved CSNE approach

wurvdemo urv win U available
U not available, CSNE approach
U not available, improved CSNE approach



32 CHAPTER 6. MANUAL PAGES

app giv

Purpose
Apply a Givens rotation (left/right).

Synopsis
[u1,u2] = app giv(v1,v2,c,s)

Description
Apply a Givens rotation, defined by the parameters c and s, from the left to the row
vectors v1 and v2 such that

[u1] = [ c s] [v1]
[u2] [-s c] [v2]

or from the right to the column vectors v1 and v2 such that

[u1 u2] = [v1 v2] [c -s]
[s c]

See Also
gen giv – Determine a 2-by-2 Givens rotation matrix.

References

[1] G.H. Golub and C.F. Van Loan, “Matrix Computations”, Johns Hopkins Univer-
sity Press, 3. Ed., p. 216, (1996).



33

app hous

Purpose
Apply a Householder transformation.

Synopsis
A = app hous(A,beta,v)

Description
Applies the Householder transformation, defined by vector v and scalar beta, to the
matrix A, i.e., A = (I - beta∗v∗v’)∗A.

See Also
gen hous – Determine a Householder transformation.

References

[1] G.H. Golub and C.F. Van Loan, “Matrix Computations”, Johns Hopkins Univer-
sity Press, 3. Ed., p. 211, (1996).



34 CHAPTER 6. MANUAL PAGES

ccvl

Purpose
Singular value/vector estimates via condition estimation.

Synopsis
[smin,vmin] = ccvl(R)

Description
Compute estimates smin and vmin of the smallest singular value and corresponding
right singular vector of the upper triangular matrix R.

Algorithm
The function is based on the generalized LINPACK condition number estimator.

See Also
inviter – Singular value/vector estimates via inverse iteration.

References

[1] A.K. Cline, A.R. Conn & C.F. Van Loan, “Generalizing the LINPACK Condi-
tion Estimator”; in J.P. Hennart (Ed.), “Numerical Analysis”, Lecture Notes in
Mathematics, Vol. 909, pp. 73-83, Springer, (1982).



35

gen giv

Purpose
Determine a 2-by-2 Givens rotation matrix.

Synopsis
[c,s,r] = gen giv(a,b)

Description
Compute a (complex) Givens rotation to annihilate b using a, i.e., compute c, s, and r
such that

[ c s] [a] = [r] or [a b] [c -s] = [r 0]
[-s c] [b] [0] [s c]

See Also
app giv – Apply a Givens rotation (left/right).

References

[1] G.H. Golub and C.F. Van Loan, “Matrix Computations”, Johns Hopkins Univer-
sity Press, 3. Ed., p. 215, (1996).



36 CHAPTER 6. MANUAL PAGES

gen hous

Purpose
Determine a Householder transformation.

Synopsis
[beta,v,r] = gen hous(x)

Description
Given a vector x, this function computes the scalar beta and the vector v such that (I -
beta∗v∗v’)x is zero in all but the first component r = -sign(x1)∗norm(x). If x = 0 then
v = 0 and beta = 1 is returned.

See Also
app hous – Apply a Householder transformation.

References

[1] G.H. Golub and C.F. Van Loan, “Matrix Computations”, Johns Hopkins Univer-
sity Press, 3. Ed., p. 210, (1996).



37

hrrqr

Purpose
Chan/Foster high-rank-revealing RRQR algorithm.

Synopsis
[p,R,Pi,Q,W,vec] = hrrqr(A)
[p,R,Pi,Q,W,vec] = hrrqr(A,tol rank)
[p,R,Pi,Q,W,vec] = hrrqr(A,tol rank,fixed rank)

Description
Computes a rank-revealing RRQR decomposition of an m-by-n matrix A (m ≥ n) with
numerical rank p close to n. The n-by-n matrix R is upper triangular and will reveal
the numerical rank p of A. The norm of the (2,2) block of R is of the order sigma (p+1).

Input Parameters
A m-by-n matrix (m ≥ n);
tol rank rank decision tolerance;
fixed rank deflate to the fixed rank given by fixed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)∗norm(A,1)∗eps;

Output Parameters
p numerical rank of A;
R, Pi, Q the RRQR factors so that A∗Pi = Q∗R;
W an n-by-p matrix whose columns span an

approximation to the null space of A;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm
The rectangular matrix A is preprocessed by a QR factorization, A = Q∗R. Then
deflation steps based on the generalized LINPACK condition estimator are employed
to produce a rank-revealing decomposition.

See Also
lrrqr – Chan-Hansen low-rank-revealing RRQR algorithm.

References

[1] T.F. Chan, “Rank Revealing QR Factorizations”, Lin. Alg. Appl., 88/89 (1987),
pp. 67–82.

[2] L. Foster, “Rank and Null Space Calculations Using Matrix Decomposition With-
out Column Interchanges”, Lin. Alg. Appl., 74 (1986), pp. 47–71.



38 CHAPTER 6. MANUAL PAGES

hulv

Purpose
Stewart’s high-rank-revealing ULV algorithm.

Synopsis
[p,L,V,U,vec] = hulv(A)
[p,L,V,U,vec] = hulv(A,tol rank)
[p,L,V,U,vec] = hulv(A,tol rank,tol ref,max ref)
[p,L,V,U,vec] = hulv(A,tol rank,tol ref,max ref,fixed rank)

Description
Computes a rank-revealing ULV decomposition of an m-by-n matrix A with m ≥ n,
where the algorithm is optimized for numerical rank p close to n. In the two-sided
orthogonal decomposition, the n-by-n matrix L is lower triangular and will reveal the
numerical rank p of A. Thus, the norm of the (2,1) and (2,2) blocks of L are of the
order sigma (p+1). U and V are unitary matrices, where only the first n columns of U
are computed.

Input Parameters
A m-by-n matrix (m ≥ n);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the off-diagonal block

L(p+1:n,1:p) relative to the Frobenius-norm of L;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank deflate to the fixed rank given by fixed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)∗norm(A,1)∗eps;
tol ref = 1e-04;
max ref = 0;

Output Parameters
p numerical rank of A;
L, V, U the ULV factors such that A = U∗L∗V’;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(L(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm
The rectangular matrix A is preprocessed by a QL factorization, A = U∗L. Then defla-
tion and refinement (optional) are employed to produce a rank-revealing decomposition.
The deflation procedure is based on the generalized LINPACK condition estimator, and
the refinement steps on QR-iterations.



39

See Also
hulv a – An alternative high-rank-revealing ULV algorithm.

References

[1] G.W. Stewart, “Updating a Rank-Revealing ULV Decomposition”, SIAM J. Ma-
trix Anal. and Appl., 14 (1993), pp. 494–499.



40 CHAPTER 6. MANUAL PAGES

hulv a

Purpose
An alternative high-rank-revealing ULV algorithm.

Synopsis
[p,L,V,U,vec] = hulv a(A)
[p,L,V,U,vec] = hulv a(A,tol rank)
[p,L,V,U,vec] = hulv a(A,tol rank,max iter)
[p,L,V,U,vec] = hulv a(A,tol rank,max iter,tol ref,max ref)
[p,L,V,U,vec] = hulv a(A,tol rank,max iter,tol ref,max ref,fixed rank)

Description
Computes a rank-revealing ULV decomposition of an m-by-n matrix A with m ≥ n,
where the algorithm is optimized for numerical rank p close to n. In the two-sided
orthogonal decomposition, the n-by-n matrix L is lower triangular and will reveal the
numerical rank p of A. Thus, the norm of the (2,1) and (2,2) blocks of L are of the
order sigma (p+1). U and V are unitary matrices, where only the first n columns of U
are computed.

Input Parameters
A m-by-n matrix (m ≥ n);
tol rank rank decision tolerance;
max iter maximum number of steps of inverse iteration in

the singular vector estimator;
tol ref upper bound on the 2-norm of the off-diagonal block

L(p+1:n,1:p) relative to the Frobenius-norm of L;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank deflate to the fixed rank given by fixed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)∗norm(A,1)∗eps;
max iter = 5;
tol ref = 1e-04;
max ref = 0;

Output Parameters
p numerical rank of A;
L, V, U the ULV factors such that A = U∗L∗V’;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(L(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm



41

The rectangular matrix A is preprocessed by a QL factorization, A = U∗L. Then defla-
tion and refinement (optional) are employed to produce a rank-revealing decomposition.
The deflation procedure is based on singular vector estimation via inverse iteration,
which can be repeated using refined singular vector estimates.

See Also
hulv – Stewart’s high-rank-revealing ULV algorithm.

References

[1] R.D. Fierro, L. Vanhamme and S. Van Huffel, “Total Least Squares Algorithms
Based on Rank-Revealing Complete Orthogonal Decompositions”. In “Recent
Advances in Total Least Squares Techniques and Errors-in-Variables Modeling”,
pp. 99–116, SIAM, Philadelphia, 1997.



42 CHAPTER 6. MANUAL PAGES

hurv

Purpose
Stewart’s high-rank-revealing URV algorithm.

Synopsis
[p,R,V,U,vec] = hurv(A)
[p,R,V,U,vec] = hurv(A,tol rank)
[p,R,V,U,vec] = hurv(A,tol rank,tol ref,max ref)
[p,R,V,U,vec] = hurv(A,tol rank,tol ref,max ref,fixed rank)

Description
Computes a rank-revealing URV decomposition of an m-by-n matrix A with m ≥ n,
where the algorithm is optimized for numerical rank p close to n. In the two-sided
orthogonal decomposition, the n-by-n matrix R is upper triangular and will reveal the
numerical rank p of A. Thus, the norm of the (1,2) and (2,2) blocks of R are of the
order sigma (p+1). U and V are unitary matrices, where only the first n columns of U
are computed.

Input Parameters
A m-by-n matrix (m ≥ n);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the off-diagonal block

R(1:p,p+1:n) relative to the Frobenius-norm of R;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank deflate to the fixed rank given by fixed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)∗norm(A,1)∗eps;
tol ref = 1e-04;
max ref = 0;

Output Parameters
p numerical rank of A;
R, V, U the URV factors such that A = U∗R∗V’;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm
The rectangular matrix A is preprocessed by a QR factorization, A = U∗R. Then defla-
tion and refinement (optional) are employed to produce a rank-revealing decomposition.
The deflation procedure is based on the generalized LINPACK condition estimator, and
the refinement steps on QR-iterations.



43

See Also
hurv a – An alternative high-rank-revealing URV algorithm.

References

[1] G.W. Stewart, “An Updating Algorithm for Subspace Tracking”, IEEE Trans. on
SP, 40 (1992), pp. 1535–1541.



44 CHAPTER 6. MANUAL PAGES

hurv a

Purpose
An alternative high-rank-revealing URV algorithm.

Synopsis
[p,R,V,U,vec] = hurv a(A)
[p,R,V,U,vec] = hurv a(A,tol rank)
[p,R,V,U,vec] = hurv a(A,tol rank,max iter)
[p,R,V,U,vec] = hurv a(A,tol rank,max iter,tol ref,max ref)
[p,R,V,U,vec] = hurv a(A,tol rank,max iter,tol ref,max ref,fixed rank)

Description
Computes a rank-revealing URV decomposition of an m-by-n matrix A with m ≥ n,
where the algorithm is optimized for numerical rank p close to n. In the two-sided
orthogonal decomposition, the n-by-n matrix R is upper triangular and will reveal the
numerical rank p of A. Thus, the norm of the (1,2) and (2,2) blocks of R are of the
order sigma (p+1). U and V are unitary matrices, where only the first n columns of U
are computed.

Input Parameters
A m-by-n matrix (m ≥ n);
tol rank rank decision tolerance;
max iter maximum number of steps of inverse iteration in

the singular vector estimator;
tol ref upper bound on the 2-norm of the off-diagonal block

R(1:p,p+1:n) relative to the Frobenius-norm of R;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank deflate to the fixed rank given by fixed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)∗norm(A,1)∗eps;
max iter = 5;
tol ref = 1e-04;
max ref = 0;

Output Parameters
p the numerical rank of A;
R, V, U the URV factors such that A = U∗R∗V’;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm
The rectangular matrix A is preprocessed by a QR factorization, A = U∗R. Then



45

deflation and refinement (optional) are employed to produce a rank-revealing decom-
position. The deflation procedure is based on singular vector estimation via inverse
iteration, which can be repeated using refined singular vector estimates.

See Also
hurv – Stewart’s high-rank-revealing URV algorithm.

References

[1] R.D. Fierro, L. Vanhamme and S. Van Huffel, “Total Least Squares Algorithms
Based on Rank-Revealing Complete Orthogonal Decompositions”. In “Recent
Advances in Total Least Squares Techniques and Errors-in-Variables Modeling”,
pp. 99–116, SIAM, Philadelphia, 1997.



46 CHAPTER 6. MANUAL PAGES

inviter

Purpose
Singular value/vector estimates via inverse iteration.

Synopsis
[smin,vmin] = inviter(R,max iter,guess v)

Description
Compute estimates smin and vmin of the smallest singular value and correspond-
ing right singular vector of the upper triangular matrix R via inverse iteration using
max iter iterations. The vector guess v is the initial guess.

Input Parameters
R upper triangular matrix;
max iter maximum number of steps of inverse iteration;
guess v initial guess vector;

See Also
ccvl – Singular value/vector estimates via condition estimation.

References

[1] G.H. Golub and C.F. Van Loan, “Matrix Computations”, Johns Hopkins Univer-
sity Press, 3. Ed., p. 362, 1996.



47

lanczos

Purpose
Singular value/vector estimates using the Lanczos procedure.

Synopsis
[umax,smax,vmax] = lanczos(A,max iter,guess u)
[umax,smax,vmax] = lanczos(A,max iter,guess u,reorth)

Description
Computes an estimate of the largest singular value and the associated singular vec-
tors of the matrix A using Lanczos bidiagonalization with a maximum of max iter
iterations. The vector guess u is the starting vector, and if reorth is true, then MGS
reorthogonalization is used.

Input Parameters
A m-by-n matrix;
max iter maximum number of iterations;
guess u initial guess vector;
reorth MGS reorthogonalization if true;

Defaults reorth = 1 (reorthogonalization).

See Also
powiter – Singular value/vector estimates using the power method.

References

[1] G.H. Golub and C.F. Van Loan, “Matrix Computations”, Johns Hopkins Univer-
sity Press, 3. Ed., p. 495, 1996.



48 CHAPTER 6. MANUAL PAGES

lrrqr

Purpose
Chan-Hansen low-rank-revealing RRQR algorithm.

Synopsis
[p,R,Pi,Q,W,vec] = lrrqr(A)
[p,R,Pi,Q,W,vec] = lrrqr(A,tol rank)
[p,R,Pi,Q,W,vec] = lrrqr(A,tol rank,max iter)
[p,R,Pi,Q,W,vec] = lrrqr(A,tol rank,max iter,fixed rank)

Description
Computes a rank-revealing RRQR decomposition of an m-by-n matrix A (m ≥ n) with
numerical rank p close to 1. The n-by-n matrix R is upper triangular and will reveal the
numerical rank p of A. The norm of the (2,2) block of R is of the order sigma (p+1).

Input Parameters
A m-by-n matrix (m ≥ n);
tol rank rank decision tolerance;
max iter max. number of steps of the singular vector estimator;
fixed rank deflate to the fixed rank given by fixed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)∗norm(A,1)∗eps;
max iter = 5;

Output Parameters
p numerical rank of A;
R, Pi, Q the RRQR factors so that A∗Pi = Q∗R;
W an n-by-p matrix whose columns span an

approximation to the null space of A;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm
The rectangular matrix A is preprocessed by a QR factorization, A = Q∗R. Then
deflation steps based on principal singular vector estimation via the power method are
employed to produce a rank-revealing decomposition.

See Also
hrrqr – Chan/Foster high-rank-revealing RRQR algorithm.

References

[1] T.F. Chan and P. C. Hansen, “Low-Rank Revealing QR Factorizations”, Num.
Lin. Alg. with Applications, 1 (1994), pp. 33–44.



49

lulv

Purpose
Warm-started low-rank-revealing ULV algorithm.

Synopsis
[p,L,V,U,vec] = lulv(A)
[p,L,V,U,vec] = lulv(A,tol rank)
[p,L,V,U,vec] = lulv(A,tol rank,max iter)
[p,L,V,U,vec] = lulv(A,tol rank,max iter,num ref)
[p,L,V,U,vec] = lulv(A,tol rank,max iter,num ref,est type)
[p,L,V,U,vec] = lulv(A,tol rank,max iter,num ref,est type,fixed rank)

Description
Computes a rank-revealing ULV decomposition of an m-by-n matrix A with m ≥ n,
where the algorithm is optimized for numerical rank p � n. In the two-sided or-
thogonal decomposition, the n-by-n matrix L is lower triangular and will reveal the
numerical rank p of A. Thus, the norm of the (2,1) and (2,2) blocks of L are of the
order sigma (p+1). U and V are unitary matrices, where only the first n columns of U
are computed.

Input Parameters
A m-by-n matrix (m ≥ n);
tol rank rank decision tolerance;
max iter max. number of steps of the singular vector estimator;
num ref number of refinement steps per singular value;
est type if true, then estimate singular vectors by means of

the Lanczos procedure, else use the power method;
fixed rank deflate to the fixed rank given by fixed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)∗norm(A,1)∗eps;
max iter = 5;
num ref = 0;
est type = 0 (power method);

Output Parameters
p the numerical rank of A;
L, V, U the ULV factors such that A = U∗L∗V’;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(L(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm
The rectangular matrix A is preprocessed by a QL factorization, A = U∗L. Then defla-
tion and refinement (optional) are employed to produce a rank-revealing decomposition.



50 CHAPTER 6. MANUAL PAGES

The deflation procedure is based on principal singular vector estimation via the Lanczos
or power method, which can be repeated using refined singular vector estimates.

See Also
lulv a – Cold-started low-rank-revealing ULV algorithm.

References

[1] R.D. Fierro and P.C. Hansen, “Low-Rank Revealing UTV Decompositions”, Nu-
merical Algorithms, 15 (1997), pp. 37–55.



51

lulv a

Purpose
Cold-started low-rank-revealing ULV algorithm.

Synopsis
[p,L,V,U,vec] = lulv a(A)
[p,L,V,U,vec] = lulv a(A,tol rank)
[p,L,V,U,vec] = lulv a(A,tol rank,max iter)
[p,L,V,U,vec] = lulv a(A,tol rank,max iter,num ref)
[p,L,V,U,vec] = lulv a(A,tol rank,max iter,num ref,est type)
[p,L,V,U,vec] = lulv a(A,tol rank,max iter,num ref,est type,fixed rank)

Description
Computes a rank-revealing ULV decomposition of an m-by-n matrix A with m ≥ n,
where the algorithm is optimized for numerical rank p � n. In the two-sided orthog-
onal decomposition, the m-by-n matrix L is lower block-triangular and will reveal the
numerical rank p of A. Thus, the norm of the (2,1) and (2,2) blocks of L are of the
order sigma (p+1). U and V are unitary matrices.

Input Parameters
A m-by-n matrix (m ≥ n);
tol rank rank decision tolerance;
max iter max. number of steps of the singular vector estimator;
num ref number of refinement steps per singular value;
est type if true, then estimate singular vectors by means of

the Lanczos procedure, else use the power method;
fixed rank deflate to the fixed rank given by fixed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)∗norm(A,1)∗eps;
max iter = 5;
num ref = 0;
est type = 0 (power method);

Output Parameters
p the numerical rank of A;
L, V, U the ULV factors such that A = U∗L∗V’;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(L(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm
There is no initial decomposition. Deflation and refinement (optional) are employed by
means of Householder transformations to produce a rank-revealing decomposition. The



52 CHAPTER 6. MANUAL PAGES

deflation procedure is based on principal singular vector estimation via the Lanczos or
power method, which can be repeated using refined singular vector estimates.

See Also
lulv – Warm-started low-rank-revealing ULV algorithm.

References

[1] R.D. Fierro and P.C. Hansen, “Low-Rank Revealing UTV Decompositions”, Nu-
merical Algorithms, 15 (1997), pp. 37–55.



53

lurv

Purpose
Warm-started low-rank-revealing URV algorithm.

Synopsis
[p,R,V,U,vec] = lurv(A)
[p,R,V,U,vec] = lurv(A,tol rank)
[p,R,V,U,vec] = lurv(A,tol rank,max iter)
[p,R,V,U,vec] = lurv(A,tol rank,max iter,num ref)
[p,R,V,U,vec] = lurv(A,tol rank,max iter,num ref,est type)
[p,R,V,U,vec] = lurv(A,tol rank,max iter,num ref,est type,fixed rank)

Description
Computes a rank-revealing URV decomposition of an m-by-n matrix A with m ≥ n,
where the algorithm is optimized for numerical rank p � n. In the two-sided or-
thogonal decomposition, the n-by-n matrix R is upper triangular and will reveal the
numerical rank p of A. Thus, the norm of the (1,2) and (2,2) blocks of R are of the
order sigma (p+1). U and V are unitary matrices, where only the first n columns of U
are computed.

Input Parameters
A m-by-n matrix (m ≥ n);
tol rank rank decision tolerance;
max iter max. number of steps of the singular vector estimator;
num ref number of refinement steps per singular value;
est type if true, then estimate singular vectors by means of

the Lanczos procedure, else use the power method;
fixed rank deflate to the fixed rank given by fixed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)∗norm(A,1)∗eps;
max iter = 5;
num ref = 0;
est type = 0 (power method);

Output Parameters
p the numerical rank of A;
R, V, U the URV factors such that A = U∗R∗V’;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm
The rectangular matrix A is preprocessed by a QR factorization, A = U∗R. Then defla-
tion and refinement (optional) are employed to produce a rank-revealing decomposition.



54 CHAPTER 6. MANUAL PAGES

The deflation procedure is based on principal singular vector estimation via the Lanczos
or power method, which can be repeated using refined singular vector estimates.

See Also
lurv a – Cold-started low-rank-revealing URV algorithm.

References

[1] R.D. Fierro and P.C. Hansen, “Low-Rank Revealing UTV Decompositions”, Nu-
merical Algorithms, 15 (1997), pp. 37–55.



55

lurv a

Purpose
Cold-started low-rank-revealing URV algorithm.

Synopsis
[p,R,V,U,vec] = lurv a(A)
[p,R,V,U,vec] = lurv a(A,tol rank)
[p,R,V,U,vec] = lurv a(A,tol rank,max iter)
[p,R,V,U,vec] = lurv a(A,tol rank,max iter,num ref)
[p,R,V,U,vec] = lurv a(A,tol rank,max iter,num ref,est type)
[p,R,V,U,vec] = lurv a(A,tol rank,max iter,num ref,est type,fixed rank)

Description
Computes a rank-revealing URV decomposition of an m-by-n matrix A with m ≥ n,
where the algorithm is optimized for numerical rank p � n. In the two-sided orthogo-
nal decomposition, the m-by-n matrix R is upper block-triangular and will reveal the
numerical rank p of A. Thus, the norm of the (1,2) and (2,2) blocks of R are of the
order sigma (p+1). U and V are unitary matrices.

Input Parameters
A m-by-n matrix (m ≥ n);
tol rank rank decision tolerance;
max iter max. number of steps of the singular vector estimator;
num ref number of refinement steps per singular value;
est type if true, then estimate singular vectors by means of

the Lanczos procedure, else use the power method;
fixed rank deflate to the fixed rank given by fixed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)∗norm(A,1)∗eps;
max iter = 5;
num ref = 0;
est type = 0 (power method);

Output Parameters
p the numerical rank of A;
R, V, U the URV factors such that A = U∗R∗V’;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm
There is no initial decomposition. Deflation and refinement (optional) are employed by
means of Householder transformations to produce a rank-revealing decomposition. The



56 CHAPTER 6. MANUAL PAGES

deflation procedure is based on principal singular vector estimation via the Lanczos or
power method, which can be repeated using refined singular vector estimates.

See Also
lurv – Warm-started low-rank-revealing URV algorithm.

References

[1] R.D. Fierro and P.C. Hansen, “Low-Rank Revealing UTV Decompositions”, Nu-
merical Algorithms, 15 (1997), pp. 37–55.



57

mgsr

Purpose
Modified Gram-Schmidt with re-orthogonalization (expansion step).

Synopsis
q = mgsr(U,kappa)

Description
Modified Gram-Schmidt with re-orthogonalization is used to expand the m-by-n ma-
trix U having orthogonal columns with a new column q, which is orthogonal to the
other columns of U. The parameter kappa (greater than one) is used to decide if re-
orthogonalization is needed; kappa = 1 ensures re-orthogonalization, however, a typical
value for kappa is sqrt(2).

Algorithm
The algorithm relies on the fact that one re-orthogonalization is always enough.

See Also
ulv csne – Corrected semi-normal equations expansion (ULV).
urv csne – Corrected semi-normal equations expansion (URV).
ullv csne – Corrected semi-normal equations expansion (ULLV).

References

[1] J.W. Daniel, W.B. Gragg, L. Kaufman and G.W. Stewart, “Reorthogonalization
and Stable Algorithms for Updating the Gram-Schmidt QR Factorization”, Math.
Comp., 30 (1976), pp. 772–795.



58 CHAPTER 6. MANUAL PAGES

powiter

Purpose
Singular value/vector estimates using the power method.

Synopsis
[umax,smax,vmax] = powiter(A,max iter,guess u)

Description
Compute approximations smax, umax, and vmax to the principal singular value and the
corresponding left and right singular vectors of the m-by-n matrix A using the power
method. The initial guess of umax is guess u, and the maximum number of iterations
is determined by max iter.

See Also
lanczos – Singular value/vector estimates using the Lanczos procedure.

References

[1] G.H. Golub and C.F. Van Loan, “Matrix Computations”, Johns Hopkins Univer-
sity Press, 3. Ed., p. 330, 1996.



59

trrqr

Purpose
Solves a least squares problem using the RRQR decomposition.

Synopsis
x trrqr = trrqr(Q,R,Pi,p,b)

Description
Solves the near-rank deficient least squares problem

min_x || b-A*x ||_2

using the RRQR decomposition. Here, A∗Pi = Q∗R is the RRQR decomposition of A,
p is the numerical rank of A, and the TRRQR solution is defined by

x_trrqr = Pi(:,1:p)*inv(R(1:p,1:p))*Q(:,1:p)’*b.

See Also
tulv – Solves a least squares problem using the ULV decomposition.
turv – Solves a least squares problem using the URV decomposition.



60 CHAPTER 6. MANUAL PAGES

tulv

Purpose
Solves a least squares problem using the ULV decomposition.

Synopsis
x tulv = tulv(U,L,V,p,b)

Description
Solves the near-rank deficient least squares problem

min_x || b-A*x ||_2

using the ULV decomposition. Here, A = U∗L∗V’ is the ULV decomposition of A, p is
the numerical rank of A, and the TULV solution is defined by

x_tulv = V(:,1:p)*inv(L(1:p,1:p))*U(:,1:p)’*b.

See Also
turv – Solves a least squares problem using the URV decomposition.
trrqr – Solves a least squares problem using the RRQR decomposition.



61

turv

Purpose
Solves a least squares problem using the URV decomposition.

Synopsis
x turv = turv(U,R,V,p,b)

Description
Solves the near-rank deficient least squares problem

min_x || b-A*x ||_2

using the URV decomposition. Here, A = U∗R∗V’ is the URV decomposition of A, p
is the numerical rank of A, and the TURV solution is defined by

x_turv = V(:,1:p)*inv(R(1:p,1:p))*U(:,1:p)’*b.

See Also
tulv – Solves a least squares problem using the ULV decomposition.
trrqr – Solves a least squares problem using the RRQR decomposition.



62 CHAPTER 6. MANUAL PAGES

ullv

Purpose
High-rank-revealing ULLV algorithm.

Synopsis
[p,LA,L,V,UA,UB,vec] = ullv(A,B)
[p,LA,L,V,UA,UB,vec] = ullv(A,B,tol rank)
[p,LA,L,V,UA,UB,vec] = ullv(A,B,tol rank,tol ref,max ref)
[p,LA,L,V,UA,UB,vec] = ullv(A,B,tol rank,tol ref,max ref,fixed rank)

Description
Computes a rank-revealing ULLV decomposition of an mA-by-n matrix A (mA ≥ n)
and an mB-by-n full-rank matrix B (mB ≥ n):

A = UA*LA*L*V’ and B = UB*L*V’

The ULLV decomposition is a quotient ULV decomposition, i.e., the n-by-n matrix LA
is lower triangular and will reveal the numerical rank p of A∗pinv(B). Thus, the norm
of the (2,1) and (2,2) blocks of LA are of the order sigma (p+1). U and V are unitary
matrices, where only the first n columns of UA and UB are computed.

Note that the algorithm is optimized for numerical rank p close to n, and that this
algorithm should not be used if B is ill conditioned or rank deficient.

Input Parameters
A mA-by-n matrix (mA ≥ n);
B mB-by-n matrix (mB ≥ n);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the off-diagonal block

LA(p+1:n,1:p) relative to the Frobenius-norm of LA;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank deflate to the fixed rank given by fixed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)∗norm(A,1)∗eps;
tol ref = 1e-04;
max ref = 0;



63

Output Parameters
p numerical rank of A∗pseudoinverse(B);
LA,L,V,UA,UB the ULLV factors such that A = UA∗LA∗L∗V’

and B = UB∗L∗V’;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(LA(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm
First find the QL factorization of B = UB∗L and solve X = A∗inv(L) followed by another
QL factorization of X = UA∗LA. Thus, A = UA∗LA∗L and B = UB∗L. Then deflation
and refinement (optional) are employed to produce a rank-revealing decomposition.
The deflation procedure is based on the generalized LINPACK condition estimator,
and the refinement steps on QR-iterations.

See Also
hulv – Stewart’s high-rank-revealing ULV algorithm.
hulv a – An alternative high-rank-revealing ULV algorithm.

References

[1] F.T. Luk and S. Qiao, “A New Matrix Decomposition for Signal Processing”,
Automatica, 30 (1994), pp. 39–43.



64 CHAPTER 6. MANUAL PAGES

ullv csne

Purpose
Corrected semi-normal equations expansion (ULLV).

Synopsis
[u1,q1,flag csne] = ullv csne(A,LA,L,V,kappa)

Description
Compute the first row u1 of the m-by-n matrix UA and the first element q1 of the
expanded column q which is orthogonal to the columns of UA, by using the LINPACK
approach if it is safe, and if not, by solving the following least squares problem by means
of the CSNE method:

(A*V)’*(A*V)*z = (LA*L)’*(LA*L)*z = (A*V)’*e1

where

A = UA*LA*L*V’

If the parameter flag csne is true, the CSNE approach has been used. The parameter
kappa (greater than one) is used to control the orthogonalization procedure. A typical
value for kappa is sqrt(2).

Algorithm
The algorithm is based on triangular solves. If LA is rank deficient, then the rank
information is used in the triangular solves.

See Also
mgsr – Modified Gram-Schmidt expansion.
ulv csne – Corrected semi-normal equations expansion (ULV).

References

[1] A. Bjorck, H. Park and L. Elden, “Accurate Downdating of Least Squares Solu-
tions”, SIAM J. Matrix. Anal. Appl., 15 (1994), pp. 549–568.

[2] H. Park and L. Elden, “Downdating the Rank Revealing URV Decomposition”,
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 138–155.



65

ullv dw a

Purpose
Downdate the A-part of the rank-revealing ULLV decomposition.

Synopsis
[p,LA,L,V,UA,UB,vec] = ullv dw a(p,LA,L,V,UA,UB)
[p,LA,L,V,UA,UB,vec] = ullv dw a(p,LA,L,V,UA,UB,A)
[p,LA,L,V,UA,UB,vec] = ullv dw a(p,LA,L,V,UA,UB,A,tol rank)
[p,LA,L,V,UA,UB,vec] = ullv dw a(p,LA,L,V,UA,UB,A,tol rank,tol ref, ...
max ref)
[p,LA,L,V,UA,UB,vec] = ullv dw a(p,LA,L,V,UA,UB,A,tol rank,tol ref, ...
max ref,fixed rank)

Description
Given a rank-revealing ULLV decomposition of the mA-by-n matrix A = UA∗LA∗L∗V’
and mB-by-n matrix B = UB∗L∗V’ (mA > n), the function computes the downdated
decomposition

A = [ a ] and B = UB*L*V’
[UA*LA*L*V’]

where a is the top row being removed from A. If the matrix UA is maintained, the
modified Gram-Schmidt algorithm is used in the expansion step of the downdating
algorithm. If the matrix UA is left out by inserting an empty matrix [], the method
of LINPACK/CSNE (corrected semi-normal equations) is used, and the matrix A is
needed. Note that the row dimension of UA will decrease by one, and that the matrix
UB can always be left out by inserting an empty matrix [].

Input Parameters
p numerical rank of A∗pseudoinv(B) revealed in LA;
LA,L,V,UA,UB the ULLV factors such that A = UA∗LA∗L∗V’

and B = UB∗L∗V’;
A mA-by-n matrix (mA > n);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the off-diagonal block

LA(p+1:n,1:p) relative to the Frobenius-norm of LA;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank if true, deflate to the fixed rank given by p

instead of using the rank decision tolerance;

Defaults tol rank = sqrt(n)∗norm(LA,1)∗eps;
tol ref = 1e-04;
max ref = 0;



66 CHAPTER 6. MANUAL PAGES

Output Parameters
p numerical rank of the downdated decomposition;
LA,L,V,UA,UB the ULLV factors such that

A = [a; UA∗LA∗L∗V’] and B = UB∗L∗V’;
vec a 6-by-1 vector with:

vec(1) = upper bound of norm(LA(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.
vec(6) = true if CSNE approach has been used.

See Also
ullv up a – Update the A-part of the rank-revealing ULLV decomposition.

References

[1] A.W. Bojanczyk and J.M. Lebak, “Downdating a ULLV Decomposition of Two
Matrices”; in J.G. Lewis (Ed.), “Applied Linear Algebra”, SIAM, Philadelphia,
1994.

[2] J.M. Lebak and A.W. Bojanczyk, “Modifying a Rank-Revealing ULLV Decomposi-
tion”, Report CTC94TR186, School of Electrical Engineering, Cornell University,
1994.

[3] M. Moonen, P. Van Dooren and J. Vandewalle, “A Note on Efficient Numerically
Stabilized Rank-One Eigenstructure Updating”, IEEE Trans. on Signal Process-
ing, 39 (1991), pp. 1911–1913.



67

ullv dw b

Purpose
Downdate the B-part of the rank-revealing ULLV decomposition.

Synopsis
[p,LA,L,V,UA,UB,vec] = ullv dw b(p,LA,L,V,UA,UB)
[p,LA,L,V,UA,UB,vec] = ullv dw b(p,LA,L,V,UA,UB,B)
[p,LA,L,V,UA,UB,vec] = ullv dw b(p,LA,L,V,UA,UB,B,tol rank)
[p,LA,L,V,UA,UB,vec] = ullv dw b(p,LA,L,V,UA,UB,B,tol rank,tol ref, ...
max ref)
[p,LA,L,V,UA,UB,vec] = ullv dw b(p,LA,L,V,UA,UB,B,tol rank,tol ref, ...
max ref,fixed rank)

Description
Given a rank-revealing ULLV decomposition of the mA-by-n matrix A = UA∗LA∗L∗V’
and mB-by-n matrix B = UB∗L∗V’ (mB > n), the function computes the downdated
decomposition

A = UA*LA*L*V’ and B = [ b ]
[UB*L*V’]

where b is the top row being removed from B. If the matrix UB is maintained, the
modified Gram-Schmidt algorithm is used in the expansion step of the downdating
algorithm. If the matrix UB is left out by inserting an empty matrix [], the method
of LINPACK/CSNE (corrected semi-normal equations) is used, and the matrix B is
needed. Note that the row dimension of UB will decrease by one, and that the matrix
UA can always be left out by inserting an empty matrix [].

Input Parameters
p numerical rank of A∗pseudoinv(B) revealed in LA;
LA,L,V,UA,UB the ULLV factors such that A = UA∗LA∗L∗V’

and B = UB∗L∗V’;
B mB-by-n matrix (mB > n);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the off-diagonal block

LA(p+1:n,1:p) relative to the Frobenius-norm of LA;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank if true, deflate to the fixed rank given by p

instead of using the rank decision tolerance;

Defaults tol rank = sqrt(n)∗norm(LA,1)∗eps;
tol ref = 1e-04;
max ref = 0;



68 CHAPTER 6. MANUAL PAGES

Output Parameters
p numerical rank of the downdated decomposition;
LA,L,V,UA,UB the ULLV factors such that

A = UA∗LA∗L∗V’ and B = [b; UB∗L∗V’];
vec a 6-by-1 vector with:

vec(1) = upper bound of norm(LA(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.
vec(6) = true if CSNE approach has been used.

See Also
ullv up b – Update the B-part of the rank-revealing ULLV decomposition.

References

[1] A.W. Bojanczyk and J.M. Lebak, “Downdating a ULLV Decomposition of Two
Matrices”; in J.G. Lewis (Ed.), “Applied Linear Algebra”, SIAM, Philadelphia,
1994.

[2] J.M. Lebak and A.W. Bojanczyk, “Modifying a Rank-Revealing ULLV Decomposi-
tion”, Report CTC94TR186, School of Electrical Engineering, Cornell University,
1994.

[3] M. Moonen, P. Van Dooren and J. Vandewalle, “A Note on Efficient Numerically
Stabilized Rank-One Eigenstructure Updating”, IEEE Trans. on Signal Process-
ing, 39 (1991), pp. 1911–1913.



69

ullv rdef

Purpose
Deflate one row of LA in the ULLV decomposition.

Synopsis
[LA,L,V,UA,UB] = ullv rdef(LA,L,V,UA,UB,r,umin)

Description
Given the ULLV decomposition of the matrix pair A = UA∗LA∗L∗V’ and B = UB∗L∗V’,
the function deflates LA(1:r,1:r). umin is an estimate of the left singular vector of
LA(1:r,1:r) associated with the smallest singular value. On return, norm(LA(r,1:r)) is
of the order sigma (r). The matrices UA, UB and V can be left out by inserting an
empty matrix [].

See Also
ullv ref – Refine one row of LA in the ULLV decomposition.

References

[1] G.W. Stewart, “An Updating Algorithm for Subspace Tracking”, IEEE Trans. on
SP 40 (1992), pp. 1535–1541.

[2] G.W. Stewart, “Updating a Rank-Revealing ULV Decomposition”, SIAM J. Ma-
trix Anal. Appl., 14 (1993), pp. 494–499.



70 CHAPTER 6. MANUAL PAGES

ullv ref

Purpose
Refine one row of LA in the ULLV decomposition.

Synopsis
[LA,L,V,UA,UB] = ullv ref(LA,L,V,UA,UB,r)

Description
Given the ULLV decomposition of the matrix pair A = UA∗LA∗L∗V’ and B = UB∗L∗V’,
the function refines the last row of LA(1:r,1:r). The matrices UA, UB and V can be
left out by inserting an empty matrix [].

Algorithm
Refinement is an iterative algorithm, which reduces the norm of the target row by
applying one block QR iteration to LA.

See Also
ullv rdef – Deflate one row of LA in the ULLV decomposition.

References

[1] S.Qiao, “Computing the ULLV Decomposition”, CRL Report 278, Communica-
tions Research Laboratory, McMaster Uni., Hamilton, Canada, pp. 1–13, January,
(1994).

[2] G.W. Stewart, “An Updating Algorithm for Subspace Tracking”, IEEE Trans. on
SP, 40 (1992), pp. 1535–1541.

[3] G.W. Stewart, “Updating a Rank-Revealing ULV Decomposition”, SIAM J. Ma-
trix Anal. and Appl., 14 (1993), pp. 494–499.



71

ullv up a

Purpose
Update the A-part of the rank-revealing ULLV decomposition.

Synopsis
[p,LA,L,V,UA,UB,vec] = ullv up a(p,LA,L,V,UA,UB,a)
[p,LA,L,V,UA,UB,vec] = ullv up a(p,LA,L,V,UA,UB,a,beta)
[p,LA,L,V,UA,UB,vec] = ullv up a(p,LA,L,V,UA,UB,a,beta,tol rank)
[p,LA,L,V,UA,UB,vec] = ullv up a(p,LA,L,V,UA,UB,a,beta, ...
tol rank,tol ref,max ref)
[p,LA,L,V,UA,UB,vec] = ullv up a(p,LA,L,V,UA,UB,a,beta, ...
tol rank,tol ref,max ref,fixed rank)

Description
Given a rank-revealing ULLV decomposition of the mA-by-n matrix A = UA∗LA∗L∗V’
and mB-by-n matrix B = UB∗L∗V’ (mA,mB ≥ n), the function computes the updated
decomposition

[beta*A] = UA*LA*L*V’ and B = UB*L*V’
[ a ]

where a is the new row added to A, and beta is a forgetting factor in [0;1], which is
multiplied to existing rows to damp out the old data. Note that the row dimension of
UA will increase by one, and that the matrices UA and UB can be left out by inserting
an empty matrix [].

Input Parameters
p numerical rank of A∗pseudoinv(B) revealed in LA;
LA,L,V,UA,UB the ULLV factors such that A = UA∗LA∗L∗V’

and B = UB∗L∗V’;
a the new row added to A;
beta forgetting factor in [0;1];
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the off-diagonal block

LA(p+1:n,1:p) relative to the Frobenius-norm of LA;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank if true, deflate to the fixed rank given by p

instead of using the rank decision tolerance;

Defaults beta = 1;
tol rank = sqrt(n)∗norm(LA,1)∗eps;
tol ref = 1e-04;
max ref = 0;



72 CHAPTER 6. MANUAL PAGES

Output Parameters
p numerical rank of [beta∗A; a]∗pseudoinverse(B);
LA,L,V,UA,UB the ULLV factors such that

[beta∗A; a] = UA∗LA∗L∗V’ and B = UB∗L∗V’;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(LA(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

See Also
ullv up b – Update the B-part of the rank-revealing ULLV decomp.
ullv dw a – Downdate the A-part of the rank-revealing ULLV decomp.

References

[1] F.T.Luk and S.Qiao, “A New Matrix Decomposition for Signal Processing”, Au-
tomatica, 30 (1994), pp. 39–43.

[2] M. Moonen, P. Van Dooren and J. Vandewalle, “A Note on Efficient Numerically
Stabilized Rank-One Eigenstructure Updating”, IEEE Trans. on Signal Process-
ing, 39 (1991), pp. 1911–1913.



73

ullv up b

Purpose
Update the B-part of the rank-revealing ULLV decomposition.

Synopsis
[p,LA,L,V,UA,UB,vec] = ullv up b(p,LA,L,V,UA,UB,b)
[p,LA,L,V,UA,UB,vec] = ullv up b(p,LA,L,V,UA,UB,b,beta)
[p,LA,L,V,UA,UB,vec] = ullv up b(p,LA,L,V,UA,UB,b,beta,tol rank)
[p,LA,L,V,UA,UB,vec] = ullv up b(p,LA,L,V,UA,UB,b,beta, ...
tol rank,tol ref,max ref)
[p,LA,L,V,UA,UB,vec] = ullv up b(p,LA,L,V,UA,UB,b,beta, ...
tol rank,tol ref,max ref,fixed rank)

Description
Given a rank-revealing ULLV decomposition of the mA-by-n matrix A = UA∗LA∗L∗V’
and mB-by-n matrix B = UB∗L∗V’ (mA,mB ≥ n), the function computes the updated
decomposition

A = UA*LA*L*V’ and [beta*B] = UB*L*V’
[ b ]

where b is the new row added to B, and beta is a forgetting factor in [0;1], which is
multiplied to existing rows to damp out the old data. Note that the row dimension of
UB will increase by one, and that the matrices UA and UB can be left out by inserting
an empty matrix [].

Input Parameters
p numerical rank of A∗pseudoinv(B) revealed in LA;
LA,L,V,UA,UB the ULLV factors such that A = UA∗LA∗L∗V’

and B = UB∗L∗V’;
b the new row added to B;
beta forgetting factor in [0;1];
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the off-diagonal block

LA(p+1:n,1:p) relative to the Frobenius-norm of LA;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank if true, deflate to the fixed rank given by p

instead of using the rank decision tolerance;

Defaults beta = 1;
tol rank = sqrt(n)∗norm(LA,1)∗eps;
tol ref = 1e-04;
max ref = 0;



74 CHAPTER 6. MANUAL PAGES

Output Parameters
p numerical rank of A∗pseudoinverse([beta∗B; b]);
LA,L,V,UA,UB the ULLV factors such that

A = UA∗LA∗L∗V’ and [beta∗B; b] = UB∗L∗V’;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(LA(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

See Also
ullv up a – Update the A-part of the rank-revealing ULLV decomp.
ullv dw b – Downdate the B-part of the rank-revealing ULLV decomp.

References

[1] F.T.Luk and S.Qiao, “A New Matrix Decomposition for Signal Processing”, Au-
tomatica, 30 (1994), pp. 39–43.

[2] M. Moonen, P. Van Dooren and J. Vandewalle, “A Note on Efficient Numerically
Stabilized Rank-One Eigenstructure Updating”, IEEE Trans. on Signal Process-
ing, 39 (1991), pp. 1911–1913.



75

ulv cdef

Purpose
Deflate one column of L in the ULV decomposition.

Synopsis
[L,V,U] = ulv cdef(L,V,U,r,umax)

Description
Given the ULV decomposition U∗L∗V’, the function deflates L(r:n,r:n). umax is an
estimate of the left singular vector of L(r:n,r:n) associated with the largest singular
value. On return, norm(L(r:n,r)) is of the order sigma r. The matrices U and V can be
left out by inserting an empty matrix [].

See Also
ulv rdef – Deflate one row of L in the ULV decomposition.

References

[1] R.D. Fierro and P.C. Hansen, “Low-Rank Revealing UTV Decompositions”, Nu-
merical Algorithms, 15 (1997), pp. 37–55.



76 CHAPTER 6. MANUAL PAGES

ulv csne

Purpose
Corrected semi-normal equations expansion (ULV).

Synopsis
[u1,q1,flag csne] = ulv csne(A,L,V,kappa)

Description
Compute the first row u1 of the m-by-n matrix U and the first element q1 of the
expanded column q which is orthogonal to the columns of U, by using the LINPACK
approach if it is safe, and if not, by solving the following least squares problem by means
of the CSNE method:

(A*V)’*(A*V)*z = L’*L*z = (A*V)’*e1

where

A = U*L*V’

If the parameter flag csne is true, the CSNE approach has been used. The parameter
kappa (greater than one) is used to control the orthogonalization procedure. A typical
value for kappa is sqrt(2).

Algorithm
The algorithm is based on triangular solves. If L is rank deficient, then the rank
information is used in the triangular solves.

See Also
mgsr – Modified Gram-Schmidt expansion.
urv csne – Corrected semi-normal equations expansion (URV).
ullv csne – Corrected semi-normal equations expansion (ULLV).

References

[1] A. Bjorck, H. Park and L. Elden, “Accurate Downdating of Least Squares Solu-
tions”, SIAM J. Matrix. Anal. Appl., 15 (1994), pp. 549–568.

[2] H. Park and L. Elden, “Downdating the Rank Revealing URV Decomposition”,
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 138–155.



77

ulv dw

Purpose
Downdating a row in the rank-revealing ULV decomposition.

Synopsis
[p,L,V,U,vec] = ulv dw(p,L,V,U)
[p,L,V,U,vec] = ulv dw(p,L,V,U,A)
[p,L,V,U,vec] = ulv dw(p,L,V,U,A,alg type)
[p,L,V,U,vec] = ulv dw(p,L,V,U,A,alg type,tol rank)
[p,L,V,U,vec] = ulv dw(p,L,V,U,A,alg type,tol rank,tol ref,max ref)
[p,L,V,U,vec] = ulv dw(p,L,V,U,A,alg type,tol rank,tol ref, ...
max ref,fixed rank)

Description
Given a rank-revealing ULV decomposition of an m-by-n matrix A = U∗L∗V’ with m
≥ n, the function computes the downdated decomposition

A = [ a ]
[U*L*V’]

where a is the top row being removed from A. Two of the downdating algorithms oper-
ate on the lower triangular matrix L without using the information of its rank-revealing
structure in the downdate step. The two variants differ in the way they obtain infor-
mation of the first row of U. If the matrix U is maintained, the modified Gram-Schmidt
algorithm is used in the expansion step of the downdating algorithm (alg type=3).
Note that the row dimension of the returned U has decreased by one. If the matrix U
is left out by inserting an empty matrix [], the method of LINPACK/CSNE (corrected
semi-normal equations) is used (alg type=1), and the matrix A is needed.

The third downdating algorithm operates on the lower triangular matrix L by using the
information of its rank-revealing structure to the extent possible (alg type=2). This
variant can be considered as an improved version of LINPACK/CSNE, and its accuracy
will be in between the two other algorithms.

Input Parameters
p numerical rank of A revealed in L;
L, V, U the ULV factors such that A = U∗L∗V’;
A m-by-n matrix (m > n);
alg type algorithm type (see Description);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the off-diagonal block

L(p+1:n,1:p) relative to the Frobenius-norm of L;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank if true, deflate to the fixed rank given by p

instead of using the rank decision tolerance;



78 CHAPTER 6. MANUAL PAGES

Defaults alg type = 3;
tol rank = sqrt(n)∗norm(L,1)∗eps;
tol ref = 1e-04;
max ref = 0;

Output Parameters
p numerical rank of the downdated decomposition;
L, V, U the ULV factors such that A = [a; U∗L∗V’];
vec a 6-by-1 vector with:

vec(1) = upper bound of norm(L(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.
vec(6) = true if CSNE approach has been used.

See Also
ulv up – Updating a row in the rank-revealing ULV decomposition.
ulv win – Sliding window modification of the rank-revealing ULV decomp.

References

[1] A. Bjorck, H. Park and L. Elden, “Accurate Downdating of Least Squares Solu-
tions”, SIAM J. Matrix. Anal. Appl., 15 (1994), pp. 549–568.

[2] H. Park and L. Elden, “Downdating the Rank Revealing URV Decomposition”,
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 138–155.

[3] A.W. Bojanczyk and J.M. Lebak, “Downdating a ULLV Decomposition of Two
Matrices”; in J.G. Lewis (Ed.), “Applied Linear Algebra”, SIAM, Philadelphia,
1994.

[4] J. L. Barlow, P. A. Yoon and H. Zha, “An Algorithm and a Stability Theory for
Downdating the ULV Decomposition”, BIT, 36 (1996), pp. 14–40.

[5] M. Moonen, P. Van Dooren and J. Vandewalle, “A Note on Efficient Numerically
Stabilized Rank-One Eigenstructure Updating”, IEEE Trans. on Signal Process-
ing, 39 (1991), pp. 1911–1913.



79

ulv qrit

Purpose
Refinement of L in the ULV decomposition via QR-iterations.

Synopsis
[L,V,U] = ulv qrit(p,num ref,L,V,U)
[L,V] = ulv qrit(p,num ref,L,V)
[L] = ulv qrit(p,num ref,L)

Description
Given the ULV decomposition U∗L∗V’ with numerical rank p, the function refines the
rank-revealing decomposition via num ref steps of block QR iterations.

Algorithm
Refinement is identical to block QR iteration, in which the off-diagonal block of the
lower triangular matrix L is “flipped” to the (1,2)-position and then back again.

See Also
ulv ref – Refine one row of L in the ULV decomposition.

References

[1] R. Mathias and G.W. Stewart, “A Block QR Algorithm and the Singular Value
Decomposition”, Lin. Alg. Appl., 182 (1993), pp. 91–100.



80 CHAPTER 6. MANUAL PAGES

ulv rdef

Purpose
Deflate one row of L in the ULV decomposition.

Synopsis
[L,V,U] = ulv rdef(L,V,U,r,umin)

Description
Given the ULV decomposition U∗L∗V’, the function deflates L(1:r,1:r). umin is an
estimate of the left singular vector of L(1:r,1:r) associated with the smallest singular
value. On return, norm(L(r,1:r)) is of the order sigma r. The matrices U and V can be
left out by inserting an empty matrix [].

See Also
ulv cdef – Deflate one column of L in the ULV decomposition.
ulv ref – Refine one row of L in the ULV decomposition.

References

[1] G.W. Stewart, “An Updating Algorithm for Subspace Tracking”, IEEE Trans. on
SP 40 (1992), pp. 1535–1541.

[2] G.W. Stewart, “Updating a Rank-Revealing ULV Decomposition”, SIAM J. Ma-
trix Anal. Appl., 14 (1993), pp. 494–499.



81

ulv ref

Purpose
Refine one row of L in the ULV decomposition.

Synopsis
[L,V,U] = ulv ref(L,V,U,r)

Description
Given the ULV decomposition U∗L∗V’, the function refines the last row of L(1:r,1:r).
The matrices U and V can be left out by inserting an empty matrix [].

Algorithm
Refinement is an iterative algorithm, which reduces the norm of the target row by
applying one block QR iteration to L.

See Also
ulv rdef – Deflate one row of L in the ULV decomposition.

References

[1] G.W. Stewart, “An Updating Algorithm for Subspace Tracking”, IEEE Trans. on
SP, 40 (1992), pp. 1535–1541.

[2] G.W. Stewart, “Updating a Rank-Revealing ULV Decomposition”, SIAM J. Ma-
trix Anal. and Appl., 14 (1993), pp. 494–499.



82 CHAPTER 6. MANUAL PAGES

ulv up

Purpose
Updating a row in the rank-revealing ULV decomposition.

Synopsis
[p,L,V,U,vec] = ulv up(p,L,V,U,a)
[p,L,V,U,vec] = ulv up(p,L,V,U,a,beta)
[p,L,V,U,vec] = ulv up(p,L,V,U,a,beta,tol rank)
[p,L,V,U,vec] = ulv up(p,L,V,U,a,beta,tol rank,tol ref,max ref)
[p,L,V,U,vec] = ulv up(p,L,V,U,a,beta,tol rank,tol ref,max ref,fixed rank)

Description
Given a rank-revealing ULV decomposition of an m-by-n matrix A = U∗L∗V’ with m
≥ n, the function computes the updated decomposition

[beta*A] = U*L*V’
[ a ]

where a is the new row added to A, and beta is a forgetting factor in [0;1], which is
multiplied to existing rows to damp out the old data. Note that the row dimension of
U will increase by one, and that the matrix U can be left out by inserting an empty
matrix [].

Input Parameters
p numerical rank of A revealed in L;
L, V, U the ULV factors such that A = U∗L∗V’;
a the new row added to A;
beta forgetting factor in [0;1];
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the off-diagonal block

L(p+1:n,1:p) relative to the Frobenius-norm of L;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank if true, deflate to the fixed rank given by p

instead of using the rank decision tolerance;

Defaults beta = 1;
tol rank = sqrt(n)∗norm(L,1)∗eps;
tol ref = 1e-04;
max ref = 0;



83

Output Parameters
p numerical rank of [beta∗A; a];
L, V, U the ULV factors such that [beta∗A; a] = U∗L∗V’;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(L(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

See Also
ulv dw – Downdating a row in the rank-revealing ULV decomposition.
ulv win – Sliding window modification of the rank-revealing ULV decomp.

References

[1] G.W. Stewart, “An Updating Algorithm for Subspace Tracking”, IEEE Trans. on
SP, 40 (1992), pp. 1535–1541.

[2] G.W. Stewart, “Updating a Rank-Revealing ULV Decomposition”, SIAM J. Ma-
trix Anal. and Appl., 14 (1993), pp. 494–499.

[3] M. Moonen, P. Van Dooren and J. Vandewalle, “A Note on Efficient Numerically
Stabilized Rank-One Eigenstructure Updating”, IEEE Trans. on Signal Process-
ing, 39 (1991), pp. 1911–1913.



84 CHAPTER 6. MANUAL PAGES

ulv win

Purpose
Sliding window modification of the rank-revealing ULV decomp.

Synopsis
[p,L,V,U,vec] = ulv win(p,L,V,U,A,a)
[p,L,V,U,vec] = ulv win(p,L,V,U,A,a,alg type)
[p,L,V,U,vec] = ulv win(p,L,V,U,A,a,alg type,tol rank)
[p,L,V,U,vec] = ulv win(p,L,V,U,A,a,alg type,tol rank,tol ref,max ref)
[p,L,V,U,vec] = ulv win(p,L,V,U,A,a,alg type,tol rank,tol ref, ...
max ref,fixed rank)

Description
Given a rank-revealing ULV decomposition of an m-by-n matrix A = U∗L∗V’ (m ≥ n),
the function computes the updated decomposition corresponding to the combined up-
and down-dating action

A -> [ A ] -> [ w ]
[ a ] [ A ]

where a is a new row added to A, and w is the row that is downdated after the updating
process. If U is not available, then insert the empty matrix [].

Input Parameters
p numerical rank of A revealed in L;
L, V, U the ULV factors such that A = U∗L∗V’;
A m-by-n matrix (m ≥ n);
a new row added to A;
alg type algorithm type (see Description of ulv dw);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the off-diagonal block

L(p+1:n,1:p) relative to the Frobenius-norm of L;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank if true, deflate to the fixed rank given by p

instead of using the rank decision tolerance;

Defaults alg type = 3;
tol rank = sqrt(n)∗norm(L,1)∗eps;
tol ref = 1e-04;
max ref = 0;



85

Output Parameters
p numerical rank of the modified A;
L, V, U the ULV factors such that the modified A = U∗L∗V’;
vec a 6-by-1 vector with:

vec(1) = upper bound of norm(L(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.
vec(6) = true if CSNE approach has been used.

See Also
urv win – Sliding window modification of the rank-revealing URV decomp.

References

[1] G.W. Stewart, “Updating a Rank-Revealing ULV Decomposition”, SIAM J. Ma-
trix Anal. Appl., 14 (1993), pp. 494–499.



86 CHAPTER 6. MANUAL PAGES

urv cdef

Purpose
Deflate one column of R in the URV decomposition.

Synopsis
[R,V,U] = urv cdef(R,V,U,r,vmin)

Description
Given the URV decomposition U∗R∗V’, the function deflates R(1:r,1:r). vmin is an
estimate of the right singular vector of R(1:r,1:r) associated with the smallest singular
value. On return, norm(R(1:r,r)) is of the order sigma r. The matrices U and V can be
left out by inserting an empty matrix [].

See Also
urv rdef – Deflate one row of R in the URV decomposition.
urv ref – Refine one column of R in the URV decomposition.

References

[1] G.W. Stewart, “An Updating Algorithm for Subspace Tracking”, IEEE Trans. on
SP, 40 (1992), pp. 1535–1541.

[2] G.W. Stewart, “Updating a Rank-Revealing ULV Decomposition”, SIAM J. Ma-
trix Anal. Appl., 14 (1993), pp. 494–499.



87

urv csne

Purpose
Corrected semi-normal equations expansion (URV).

Synopsis
[u1,q1,flag csne] = urv csne(A,R,V,kappa)

Description
Compute the first row u1 of the m-by-n matrix U and the first element q1 of the
expanded column q which is orthogonal to the columns of U, by using the LINPACK
approach if it is safe, and if not, by solving the following least squares problem by means
of the CSNE method:

(A*V)’*(A*V)*z = R’*R*z = (A*V)’*e1

where

A = U*R*V’

If the parameter flag csne is true, the CSNE approach has been used. The parameter
kappa (greater than one) is used to control the orthogonalization procedure. A typical
value for kappa is sqrt(2).

Algorithm
The algorithm is based on triangular solves. If R is rank deficient, then the rank
information is used in the triangular solves.

See Also
mgsr – Modified Gram-Schmidt expansion.
ulv csne – Corrected semi-normal equations expansion (ULV).

References

[1] A. Bjorck, H. Park and L. Elden, “Accurate Downdating of Least Squares Solu-
tions”, SIAM J. Matrix. Anal. Appl., 15 (1994), pp. 549–568.

[2] H. Park and L. Elden, “Downdating the Rank Revealing URV Decomposition”,
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 138–155.



88 CHAPTER 6. MANUAL PAGES

urv dw

Purpose
Downdating a row in the rank-revealing URV decomposition.

Synopsis
[p,R,V,U,vec] = urv dw(p,R,V,U)
[p,R,V,U,vec] = urv dw(p,R,V,U,A)
[p,R,V,U,vec] = urv dw(p,R,V,U,A,alg type)
[p,R,V,U,vec] = urv dw(p,R,V,U,A,alg type,tol rank)
[p,R,V,U,vec] = urv dw(p,R,V,U,A,alg type,tol rank,tol ref,max ref)
[p,R,V,U,vec] = urv dw(p,R,V,U,A,alg type,tol rank,tol ref, ...
max ref,fixed rank)

Description
Given a rank-revealing URV decomposition of an m-by-n matrix A = U∗R∗V’ with m
≥ n, the function computes the downdated decomposition

A = [ a ]
[U*R*V’]

where a is the top row being removed from A. Two of the downdating algorithms oper-
ate on the upper triangular matrix R without using the information of its rank-revealing
structure in the downdate step. The two variants differ in the way they obtain infor-
mation of the first row of U. If the matrix U is maintained, the modified Gram-Schmidt
algorithm is used in the expansion step of the downdating algorithm (alg type=3).
Note that the row dimension of the returned U has decreased by one. If the matrix U
is left out by inserting an empty matrix [], the method of LINPACK/CSNE (corrected
semi-normal equations) is used (alg type=1), and the matrix A is needed.

The third downdating algorithm operates on the upper triangular matrix R by using
the information of its rank-revealing structure to the extent possible (alg type=2). This
variant can be considered as an improved version of LINPACK/CSNE, so its accuracy
will be in between the two other algorithms.

Input Parameters
p numerical rank of A revealed in R;
R, V, U the URV factors such that A = U∗R∗V’;
A m-by-n matrix (m > n);
alg type algorithm type (see Description);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the off-diagonal block

R(1:p,p+1:n) relative to the Frobenius-norm of R;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank if true, deflate to the fixed rank given by p

instead of using the rank decision tolerance;



89

Defaults alg type = 3;
tol rank = sqrt(n)∗norm(R,1)∗eps;
tol ref = 1e-04;
max ref = 0;

Output Parameters
p the numerical rank of the downdated decomposition;
R, V, U the URV factors such that A = [a; U∗R∗V’];
vec a 6-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.
vec(6) = true if CSNE approach has been used.

See Also
urv up – Updating a row in the rank-revealing URV decomposition.
urv win – Sliding window modification of the rank-revealing URV decomp.

References

[1] A. Bjorck, H. Park and L. Elden, “Accurate Downdating of Least Squares Solu-
tions”, SIAM J. Matrix. Anal. Appl., 15 (1994), pp. 549–568.

[2] H. Park and L. Elden, “Downdating the Rank Revealing URV Decomposition”,
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 138–155.

[3] A.W. Bojanczyk and J.M. Lebak, “Downdating a ULLV Decomposition of Two
Matrices”; in J.G. Lewis (Ed.), “Applied Linear Algebra”, SIAM, Philadelphia,
1994.

[4] J. L. Barlow, P. A. Yoon and H. Zha, “An Algorithm and a Stability Theory for
Downdating the ULV Decomposition”, BIT, 36 (1996), pp. 14–40.

[5] M. Moonen, P. Van Dooren and J. Vandewalle, “A Note on Efficient Numerically
Stabilized Rank-One Eigenstructure Updating”, IEEE Trans. on Signal Process-
ing, 39 (1991), pp. 1911–1913.



90 CHAPTER 6. MANUAL PAGES

urv qrit

Purpose
Refinement of R in the URV decomposition via QR-iterations.

Synopsis
[R,V,U] = urv qrit(p,num ref,R,V,U)
[R,V] = urv qrit(p,num ref,R,V)
[R] = urv qrit(p,num ref,R)

Description
Given the URV decomposition U∗R∗V’ with numerical rank p, the function refines the
rank-revealing decomposition via num ref steps of block QR iterations.

Algorithm
Refinement is identical to block QR iteration, in which the off-diagonal block of the
upper triangular matrix R is “flipped” to the (2,1)-position and then back again.

See Also
urv ref – Refine one column of R in the URV decomposition.

References

[1] R. Mathias and G.W. Stewart, “A Block QR Algorithm and the Singular Value
Decomposition”, Lin. Alg. Appl., 182 (1993), pp. 91–100.



91

urv rdef

Purpose
Deflate one row of R in the URV decomposition.

Synopsis
[R,V,U] = urv rdef(R,V,U,r,vmax)

Description
Given the URV decomposition U∗R∗V’, the function deflates R(r:n,r:n). vmax is an
estimate of the right singular vector of R(r:n,r:n) associated with the largest singular
value. On return, norm(R(r,r:n)) is of the order sigma r. The matrices U and V can
be left out by inserting an empty matrix [].

See Also
urv cdef – Deflate one column of R in the URV decomposition.

References

[1] R.D. Fierro and P.C. Hansen, “Low-Rank Revealing UTV Decompositions”, Nu-
merical Algorithms, 15 (1997), pp. 37–55.



92 CHAPTER 6. MANUAL PAGES

urv ref

Purpose
Refine one column of R in the URV decomposition.

Synopsis
[R,V,U] = urv ref(R,V,U,r)

Description
Given the URV decomposition U∗R∗V’, the function refines the last column of R(1:r,1:r).
The matrices U and V can be left out by inserting an empty matrix [].

Algorithm
Refinement is an iterative algorithm, which reduces the norm of the target column by
applying one block QR iteration to R.

See Also
urv cdef – Deflate one column of R in the URV decomposition.

References

[1] G.W. Stewart, “An Updating Algorithm for Subspace Tracking”, IEEE Trans. on
SP, 40 (1992), pp. 1535–1541.

[2] G.W. Stewart, “Updating a Rank-Revealing ULV Decomposition”, SIAM J. Ma-
trix Anal. and Appl., 14 (1993), pp. 494–499.



93

urv up

Purpose
Updating a row in the rank-revealing URV decomposition.

Synopsis
[p,R,V,U,vec] = urv up(p,R,V,U,a)
[p,R,V,U,vec] = urv up(p,R,V,U,a,beta)
[p,R,V,U,vec] = urv up(p,R,V,U,a,beta,tol rank)
[p,R,V,U,vec] = urv up(p,R,V,U,a,beta,tol rank,tol ref,max ref)
[p,R,V,U,vec] = urv up(p,R,V,U,a,beta,tol rank,tol ref,max ref,fixed rank)

Description
Given a rank-revealing URV decomposition of an m-by-n matrix A = U∗R∗V’ with m
≥ n, the function computes the updated decomposition

[beta*A] = U*R*V’
[ a ]

where a is the new row added to A, and beta is a forgetting factor in [0;1], which is
multiplied to existing rows to damp out the old data. Note that the row dimension of
U will increase by one, and that the matrix U can be left out by inserting an empty
matrix [].

Input Parameters
p numerical rank of A revealed in R;
L, V, U the URV factors such that A = U∗R∗V’;
a the new row added to A;
beta forgetting factor in [0;1];
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the off-diagonal block

R(1:p,p+1:n) relative to the Frobenius-norm of R;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank if true, deflate to the fixed rank given by p

instead of using the rank decision tolerance;

Defaults beta = 1;
tol rank = sqrt(n)∗norm(R,1)∗eps;
tol ref = 1e-04;
max ref = 0;



94 CHAPTER 6. MANUAL PAGES

Output Parameters
p numerical rank of [beta∗A; a];
R, V, U the URV factors such that [beta∗A; a] = U∗R∗V’;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

See Also
urv dw – Downdating a row in the rank-revealing URV decomposition.
urv win – Sliding window modification of the rank-revealing URV decomp.

References

[1] G.W. Stewart, “An Updating Algorithm for Subspace Tracking”, IEEE Trans. on
SP, 40 (1992), pp. 1535–1541.

[2] G.W. Stewart, “Updating a Rank-Revealing ULV Decomposition”, SIAM J. Ma-
trix Anal. and Appl., 14 (1993), pp. 494–499.

[3] M. Moonen, P. Van Dooren and J. Vandewalle, “A Note on Efficient Numerically
Stabilized Rank-One Eigenstructure Updating”, IEEE Trans. on Signal Process-
ing, 39 (1991), pp. 1911–1913.



95

urv win

Purpose
Sliding window modification of the rank-revealing URV decomp.

Synopsis
[p,R,V,U,vec] = urv win(p,R,V,U,A,a)
[p,R,V,U,vec] = urv win(p,R,V,U,A,a,alg type)
[p,R,V,U,vec] = urv win(p,R,V,U,A,a,alg type,tol rank)
[p,R,V,U,vec] = urv win(p,R,V,U,A,a,alg type,tol rank,tol ref,max ref)
[p,R,V,U,vec] = urv win(p,R,V,U,A,a,alg type,tol rank,tol ref, ...
max ref,fixed rank)

Description
Given a rank-revealing URV decomposition of an m-by-n matrix A = U∗R∗V’ (m ≥
n), the function computes the updated decomposition corresponding to the combined
up- and down-dating action

A -> [ A ] -> [ w ]
[ a ] [ A ]

where a is a new row added to A, and w is the row that is downdated after the updating
process. If U is not available, then insert the empty matrix [].

Input Parameters
p numerical rank of A revealed in R;
R, V, U the URV factors such that A = U∗R∗V’;
A m-by-n matrix (m ≥ n);
a new row added to A;
alg type algorithm type (see Description of urv dw);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the off-diagonal block

R(1:p,p+1:n) relative to the Frobenius-norm of R;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank if true, deflate to the fixed rank given by p

instead of using the rank decision tolerance;

Defaults alg type = 3;
tol rank = sqrt(n)∗norm(R,1)∗eps;
tol ref = 1e-04;
max ref = 0;



96 CHAPTER 6. MANUAL PAGES

Output Parameters
p numerical rank of the modified A;
R, V, U the URV factors such that the modified A = U∗R∗V’;
vec a 6-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.
vec(6) = true if CSNE approach has been used.

See Also
ulv win – Sliding window modification of the rank-revealing ULV decomp.

References

[1] G.W. Stewart, “An Updating Algorithm for Subspace Tracking”, IEEE Trans. on
SP, 40 (1992), pp. 1535–1541.



Bibliography

[1] G. Adams, M.F. Griffin, and G.W. Stewart, Direction-of-Arrival Estimation Using the
Rank-Revealing URV Decomposition; in Proc. IEEE Internat. Conf. Acoustics, Speech,
and Signal Processing, Washington, DC, 1991.

[2] J.L. Barlow and P.A. Yoon, Solving Recursive TLS Problems Using the Rank-Revealing
ULV Decomposition; in S. Van Huffel (Ed.), Recent Advances in Total Least Squares
Techniques and Errors-In-Variables Modeling, SIAM, Philadelphia, 1997, pp. 117–126.

[3] J.L. Barlow, P.A. Yoon and H. Zha, An Algorithm and a Stability Theory for Downdating
the ULV Decomposition, BIT, 36 (1996), pp. 15–40.

[4] M.W. Berry, S.T. Dumais, and G.W. O’Brien, Using Linear Algebra for Intelligent In-
formation Retrieval, SIAM Review, 37 (1995), 573–595.

[5] E. Biglieri and K. Yao, Some Properties of Singular Value Decomposition and Their
Applications to Digital Signal Processing, Signal Processing, 18 (1989), pp. 277–289.

[6] C.H. Bischof and G.M. Shroff, On Updating Signal Subspaces, IEEE Trans. Signal Pro-
cessing, 40 (1992), pp. 96-105.

[7] Å. Björck, H. Park, and L. Eldén, Accurate Downdating of Least Squares Solutions,
SIAM J. Matrix. Anal. Appl., 15 (1994), pp. 549–568.

[8] A.W. Bojanczyk and J.M. Lebak, Downdating a ULLV Decomposition of Two Matrices;
in J.G. Lewis (Ed.), Applied Linear Algebra, SIAM, Philadelphia, 1994.

[9] J.R. Bunch and N.P. Nielsen, Updating the Singular Value Decomposition, Numer. Math.,
31 (1978), pp. 111–129.

[10] T.F. Chan, Rank Revealing QR Factorizations, Lin. Alg. Appl., 88/89 (1987), pp. 67-82.

[11] T.F. Chan and P.C. Hansen, Some Applications of the Rank Revealing QR Factorization,
SIAM J. Sci. Stat. Comput., 13 (1992), pp. 727-741.

[12] T.F. Chan & P.C. Hansen, Low-Rank Revealing QR Factorizations, Num. Lin. Alg.
Appl., 1 (1994), 33-44.

[13] A.K. Cline, A.R. Conn, and C.F. Van Loan, Generalizing the LINPACK Condition
Estimator ; in J.P. Hennart (Ed.), Numerical Analysis, Lecture Notes In Mathematics,
Vol. 909, Springer, Berlin, 1882.

97



98 BIBLIOGRAPHY

[14] P. Comon and G.H. Golub, Tracking a Few Extreme Singular Values and Vectors in
Signal Processing, Proc. IEEE, 78 (1990), pp. 1337–1343.

[15] B. De Moor, Generalizations of the OSVD: Structure, Properties and Applications; pp.
83–98 in [58].

[16] F. Deprettere, SVD and Signal Processing, Algorithms, Applications, and Architectures,
North-Holland, Amsterdam, 1988.

[17] L. Eldén and E. Sjöström, Fast Computation of the Principal Singular Vectors of Toeplitz
Matrices Arising in Exponential Data Modelling, Signal Proc., 50 (1996), pp. 151–164.

[18] R.D. Fierro, Perturbation Analysis for Two-Sided (or Complete) Orthogonal Decompo-
sitions, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 383–400.

[19] R.D. Fierro and J.R. Bunch, Bounding the Subspaces From Rank Revealing Two-Sided
Orthogonal Decompositions, SIAM Matrix Anal. Appl., 16 (1995), pp. 743–759.

[20] R.D. Fierro and P.C. Hansen, Accuracy of TSVD Solutions Computed from Rank-
Revealing Decompositions , Numer. Math., 70 (1995), pp. 453–471.

[21] R.D. Fierro and P.C. Hansen, Low-Rank Revealing UTV Decompositions, Numerical
Algorithms, 15 (1997), pp. 37–55.

[22] R.D. Fierro, L. Vanhamme, and S. Van Huffel, Total Least Squares Algorithms Based
on Rank-Revealing Complete Orthogonal Decompositions; in S. Van Huffel (Ed.), Recent
Advances in Total Least Squares Techniques and Errors-In-Variables Modeling, SIAM,
Philadelphia, 1997, pp. 99–116.

[23] L. Foster, Rank and Null Space Calculations Using Matrix Decomposition Without Col-
umn Interchanges, Lin. Alg. Appl., 74 (1986), pp. 47–71.

[24] G.H. Golub, V. Klema, and G.W. Stewart, Rank Degeneracy and Least Squares Prob-
lems, Technical Report TR-456, Dept. of Computer Science, University of Maryland,
Maryland, 1976.

[25] G.H. Golub and C.F. Van Loan, Matrix Computations , 3. Ed., Johns Hopkins University
Press, 1996.

[26] M. Gu and S.C. Eisenstat, Downdating the Singular Value Decomposition, SIAM J.
Matrix Anal. Appl, 16 (1995), pp. 793–810.

[27] P.C. Hansen, The 2-Norm of Random Matrices, J. Comput. Appl. Math., 23 (1988), pp.
117–120.

[28] P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of
Linear Inversion, SIAM, Philadelphia, 1998.

[29] P.C. Hansen, Rank-Deficient Prewhitening by Quotient SVD and UTV, BIT, 38 (1998),
pp. 34–43.



BIBLIOGRAPHY 99

[30] P.S.K. Hansen, Signal Subspace Methods for Speech Enhancement, Ph.D. Thesis, Dept.
of Mathematical Modelling, Technical University of Denmark, 1997.

[31] N.J. Higham, A Survey of Condition Number Estimation for Triangular Matrices, SIAM
Review, 29 (1987), pp. 575–596.

[32] S.H. Jensen, P.C. Hansen, S.D. Hansen, and J.Aa. Sørensen, Reduction of Broad-Band
Noise in Speech by Truncated QSVD, IEEE Trans. Audio Speech Proc. 3 (1995), pp.
439–448.

[33] J. Kuczynski and H. Wozniakowski, Estimating the Largest Eigenvalue by the Power and
Lanczos Algorithms with a Random Start, SIAM J. Matrix Anal., 4 (1992), pp. 1094–
1122.

[34] C.L. Lawson and R.J. Hanson, Solving Least Squares Problems, Prentice-Hall, Englewood
Cliffs, N.J., 1974. Reprinted by SIAM, Philadelphia.

[35] J.M. Lebak and A.W. Bojanczyk, Modifying a Rank-Revealing ULLV Decomposition,
Manuscript, School of Electrical Engineering, Cornell University, 1994.

[36] K.J.R. Liu, D.P. O’Leary, G.W. Stewart, and Y.-J. Wu, URV ESPRIT for Tracking
Time-Varying Signals, IEEE Trans. Signal Proc., 42 (1994), pp. 3441–3448.

[37] F.T. Luk and S. Qiao, A New Matrix Decomposition for Signal Processing, Automatica,
30 (1994), pp. 39–43.

[38] F.T. Luk and S. Qiao, An Adaptive Algorithm for Interference Cancelling in Array
Processing; in F.T. Luk (Ed.), Advanced Signal Processing Algorithms, Architectures,
and Implementations VI, SPIE Proceedings, Vol. 2846, 1996, pp. 151–161.

[39] W. Ma and J.P. Kruth, Mathematical Modelling of Free-Form Curves and Surfaces from
Discrete Points with NURBS ; in P.J. Laurent, A. Le Mehaute, and L.L Schumaker (Eds),
Curves and Surfaces in Geometric Design, A.K. Peters, Ltd., Wellesley, Mass., 1994.

[40] R. Mathias and G.W. Stewart, A Block QR Algorithm and the Singular Value Decom-
position, Lin. Alg. Appl., 182 (1993), 91–100.

[41] M. Moonen and B. De Moor, SVD and Signal Processing, III, Algorithms, Architectures
and Applications, Elsevier, Amsterdam, 1995.

[42] M. Moonen, P. Van Dooren, and J. Vandewalle, A Note on Efficient Numerically Stabi-
lized Rank-One Eigenstructure Updating, IEEE Trans. Signal Proc. 39 (1991), 1911–1913.

[43] M. Moonen, P. Van Dooren, and J. Vandewalle, A Singular Value Decomposition Updat-
ing Algorithm for Subspace Tracking, SIAM J. Matrix Anal. Appl., 13 (1992), 1015–1038.

[44] H. Park and L. Eldén, Downdating the Rank Revealing URV Decomposition, SIAM J.
Matrix Anal. Appl., 16 (1995), pp. 138–155.



100 BIBLIOGRAPHY

[45] H. Park, S. Van Huffel, and L. Eldén, Fast Algorithms for Exponential Data Modeling,
Proc. 1994 IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), April 19–22, Adeläıde, Australia, Vol. 4, pp. 25–28, 1994.

[46] D.J. Pierce and J.G. Lewis, Sparse Multifrontal Rank Revealing QR Factorization, SIAM
J. Matrix Anal. Appl., 18 (1997), pp. 159–180.

[47] M.A. Rahman and K. Yu, Total Least Squares Approach for Frequency Estimation Using
Linear Prediction, IEEE Trans. ASSP, 35 (1987), pp. 1442-54.

[48] L.L. Scharf, The SVD and Reduced Rank Signal Processing, Signal Proc., 25 (1991), pp.
113–133.

[49] M. Stewart and P. Van Dooren, Updating a Generalized URV Decomposition, SIAM J.
Matrix Anal. Appl., to appear.

[50] G.W. Stewart, Rank Degeneracy, SIAM J. Sci. Stat. Comput., 5 (1984), pp. 403-413.

[51] G.W. Stewart, An Updating Algorithm for Subspace Tracking, IEEE Trans. Signal Pro-
cessing, 40 (1992), pp. 1535-1541.

[52] G.W. Stewart, Updating a Rank-Revealing ULV Decomposition, SIAM J. matrix Anal.
Appl., 14 (1993), pp. 494-499.

[53] G.W. Stewart, Determining Rank in the Presence of Error ; in M.S. Moonen, G.H. Golub,
and B.L.R. DeMoor (Eds.), Linear Algebra for Large Scale and Real-Time Applications,
Kluwer Academic Publishers, 1993, pp. 275–292.

[54] G.W. Stewart, UTV Decompositions; in D.F. Griffith and G.A. Watson (Eds), Numerical
Analysis, 1993, Pitman Research Notes in Mathematical Sciences, New York, 1994.

[55] G.W. Stewart, A Gap-Revealing Matrix Decomposition, Report TR-3771, Dept. of Com-
puter Science, University of Maryland, 1997.

[56] G.W. Stewart, Matrix Algorithms. Volume I: Basic Decompositions, SIAM, Philadelphia,
1998.

[57] D.W. Tufts and R. Kumaresan, Estimation of Frequencies of Multiple Sinusoids: Making
Linear Prediction Perform Like Maximum Likelihood, Proc. IEEE, 70 (1982), pp. 975–
989.

[58] R. Vaccaro, SVD and Signal Processing, II, Algorithms, Analysis and Applications, El-
sevier, Amsterdam, 1991.

[59] R.J. Vaccaro, D.W. Tufts, and G.F. Boudreaux-Bartels, Advances in Principal Compo-
nent Signal Processing ; pp. 115–146 in [16]

[60] A. van der Veen and E.F. Deprettere, SVD-Based Low-Rank Approximations of Rational
Models; pp. 431–454 in [58].



BIBLIOGRAPHY 101

[61] S. Van Huffel and H. Zha, An Efficient Total Least Squares Algorithm Based on a
Rank Revealing Two-Sided Orthogonal Decomposition, Numerical Algorithms, 4 (1993),
pp. 101–133.

[62] G. Xu and T. Kailath, Fast Estimation of Principle Eigenspace Using Lanczos Algorithm,
SIAM J. Matrix Anal. Appl., 15 (1994), pp. 974–994.

[63] G. Xu, H. Zha, G.H. Golub, and T. Kailath, Fast and Robust Algorithms for Updating
Signal Subspaces, IEEE Trans. Circuits and Systems, 41 (1994), pp. 537–549.

[64] P.A. Yoon and J.L. Barlow, An Efficient Rank Detection Procedure for Modifying the
ULV Decomposition, BIT, 38 (1998), pp. 781–801.


