
2.9 Incomplete Elliptic Integrals

A. Purpose

An integral of the form∫
R
(
t, P (t)1/2

)
dt (1)

in which P(t) is a polynomial of the third or fourth de-
gree that has no multiple roots, and R is a rational func-
tion of t and P(t)1/2, is either elementary, or is an el-
liptic integral. It is always possible to express integrals
of the form of Eq. (1) linearly in terms of elementary
functions and three elliptic integrals of canonical form.
These functions are described more completely in [1] and
[2]. Several canonical forms have been proposed, but the
most widely used are due to Jacobi, Legendre and Carl-
son. In each of Eqs. (2)–(4) we present first Jacobi’s and
then Legendre’s form of the canonical elliptic integrals:

F (ϕ, k) =

∫ y

0

(
1− t2

)−1/2 (
1− k2t2

)−1/2
dt

=

∫ ϕ

0

(
1− k2 sin2 θ

)−1/2
dθ

(2)

E(ϕ, k) =

∫ y

0

(
1− t2

)−1/2 (
1− k2t2

)1/2
dt

=

∫ ϕ

0

(
1− k2 sin2 θ

)1/2
dθ

(3)

Π(ϕ, α, k)

=

∫ y

0

(
1− α2t2

)−1 (
1− t2

)−1/2 (
1− k2t2

)−1/2
dt

=

∫ ϕ

0

(
1− α2 sin2 θ

)−1 (
1− k2 sin2 θ

)−1/2
dθ (4)

in which y = sinϕ. If ϕ is equal to π/2, the integrals
are said to be complete, otherwise they are incomplete.
Carlson’s forms of the canonical elliptic integrals are

RD(a, b, c) =
3

2

∫ ∞
0

(t+ a)
−1/2

(t+ b)
−1/2

(t+ c)
−3/2

dt

(5)

in which a and b are nonnegative such that a + b > 0
and c is positive; if either a or b is zero, the integral is
complete, otherwise it is incomplete,

RF (a, b, c) =
1

2

∫ ∞
0

(t+ a)
−1/2

(t+ b)
−1/2

(t+ c)
−1/2

dt

(6)

in which a, b and c are nonnegative and at most one of
them is zero; if one of a, b or c is zero, the integral is
complete, otherwise it is incomplete, and

RJ(a, b, c, r)

=
3

2

∫ ∞
0

(t+ r)
−1

(t+ a)
−1/2

(t+ b)
−1/2

(t+ c)
−1/2

dt

(7)

in which a, b and c are nonnegative, and at most one
of them is zero, and r is nonzero; if one of a, b or c is
zero, the integral is complete, otherwise it is incomplete.
Notice that RD(a, b, c) = RJ(a, b, c, c). But the neces-
sity to compute RD(a, b, c) arises frequently in practice,
and a procedure especially tailored to compute RD(a, b,
c) is more efficient than computing RJ(a, b, c, c). The
function RC(a, b) = RF (a, b, b) is elementary, but also
appears frequently. A procedure is provided to compute
RC(a, b).

Identify a, b and c such that a ≤ b ≤ c, and assume
a < c. Then

c3/2RD(a, b, c) =
3

k2 sin3 ϕ
[F (ϕ, k)− E(ϕ, k)] (8)

c1/2RF (a, b, c) =
F (ϕ, k)

sinϕ
(9)

c3/2RJ(a, b, c, r) =
3

α2 sin3 ϕ
[Π(ϕ, α, k)− F (ϕ, k)]

(10)

where cos2 ϕ = a/c, k2 = (c − b)/(c − a) and α2 =
(c− r)/(c− a).

The subprograms described in this chapter evaluate the
canonical forms of incomplete elliptic integrals, using ei-
ther the Legendre or the Carlson parameterization.

B. Usage

B.1 Program Prototype, Single Precision, Leg-
endre’s Form, E and F

REAL PHI, K, F, E

INTEGER IERR

Assign values to PHI and K.

CALL SELEFI (PHI, K, F, E, IERR)

B.1.a Argument Definitions

PHI [in] Argument, ϕ, of the elliptic integral. Require
|PHI| ≤ π/2.

K [in] Modulus, k. Require |K| ≤ 1.0.
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F [out] F(ϕ, k) with ϕ given by PHI and k given by K.

E [out] E(ϕ, k) with ϕ given by PHI and k given by K.

IERR [out] status indicator:

0 = no errors

1 = Magnitude of argument too large, |PHI| > π/2.

2 = Magnitude of Modulus too large, |K| > 1.0.

3 = |PHI| = π/2 and |K| = 1, F is infinite.

B.2 Program Prototype, Single Precision, Leg-
endre’s Form, Π

REAL PHI, K2, ALPHA2, PI

INTEGER IERR

Assign values to PHI, K2 and ALPHA2.

CALL SELPII (PHI, K2, ALPHA2, PI, IERR)

B.2.a Argument Definitions

PHI [in] Argument, ϕ, of the elliptic integral. Require
|PHI| ≤ π/2.

K2 [in] Square of the modulus, k2. Require k2 sin2 ϕ ≤
1.0. See Section E.

ALPHA2 [in] Characteristic, α2. Require α2 sin2 ϕ ≤
1.0. See Section E.

PI [out] Π(ϕ, α, k), with ϕ given by PHI, α2 given by
ALPHA2 and k2 given by K2.

IERR [out] status indicator. If IERR = 0, there were
no errors. Other values are produced by procedures
SRFVAL and SRJVAL (see Sections B.5 and B.6)
which are used in computing Π(φ, α, k).

B.3 Program Prototype, Single Precision, Carl-
son’s Form, RC

REAL X, Y, RC

INTEGER IERR

Assign values to X and Y.

CALL SRCVAL (X, Y, RC, IERR)

B.3.a Argument Definitions

X, Y [in] Arguments of the elliptic integral. Require X
≥ 0, Y 6= 0. See Section E.

RC [out] The computed value of RC(X, Y).

IERR [out] Status indicator:

0 = no errors

1 = X < 0.0 or Y = 0.0.

2 = X + |Y| too small (See Section E).

3 = X or |Y| or X + |Y| too large (See Section E).

4 = Y < 0 and |Y| too large and X too small (See
Section E).

B.4 Program Prototype, Single Precision, Carl-
son’s Form, RD

REAL X, Y, Z, RD

INTEGER IERR

Assign values to X, Y and Z.

CALL SRDVAL (X, Y, Z, RD, IERR)

B.4.a Argument Definitions

X, Y, Z [in] Arguments of the elliptic integral. Re-
quire X ≥ 0, Y ≥ 0, X + Y > 0, Z > 0. See Section
E.

RD [out] The computed value of RD(X, Y, Z).

IERR [out] Status indicator:

0 = no errors

1 = X < 0.0 or Y < 0.0 or Z < 0.0.

2 = X + Y too small or Z too small (See Section E).

3 = X or Y or Z too large (See Section E).

B.5 Program Prototype, Single Precision, Carl-
son’s Form, RF

REAL X, Y, Z, RF

INTEGER IERR

Assign values to X, Y and Z.

CALL SRFVAL (X, Y, Z, RF, IERR)

B.5.a Argument Definitions

X, Y, Z [in] Arguments of the elliptic integral. Re-
quire X ≥ 0, Y ≥ 0, Z ≥ 0, at most one of X, Y or Z
equal zero. See Section E.

RF [out] The computed value of RF (X, Y, Z).

IERR [out] Status indicator:

0 = no errors

1 = X < 0.0 or Y < 0.0 or Z < 0.0.

2 = X + Y or X + Z or Y + Z too small (See Section
E).

3 = X or Y or Z too large (See Section E).

B.6 Program Prototype, Single Precision, Carl-
son’s Form, RJ

REAL X, Y, Z, R, RJ

INTEGER IERR

Assign values to X, Y, Z and R.

CALL SRJVAL (X, Y, Z, R, RJ, IERR)
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B.6.a Argument Definitions

X, Y, Z, R [in] Arguments of the elliptic integral. Re-
quire X ≥ 0, Y ≥ 0, Z ≥ 0, at most one of X, Y or Z
equal zero, R 6= 0. See Section E.

RJ [out] The computed value of RJ(X, Y, Z, R).

IERR [out] Status indicator:

0 = no errors

1 = X < 0.0 or Y < 0.0 or Z < 0.0 or R = 0.0.

2 = X + Y or X + Z or Y + Z or |R| too small (See
Section E).

3 = X or Y or Z or |R| too large (See Section E).

B.7 Modifications for Double Precision

For double precision usage, change the REAL type state-
ments to DOUBLE PRECISION and change the sub-
program names SELEFI, SELPII, SRCVAL, SRDVAL,
SRFVAL and SRJVAL to DELEFI, DELPII, DRCVAL,
DRDVAL, DRFVAL and DRJVAL, respectively.

C. Examples and Remarks

C.1 Related Functions

Logarithms, inverse circular functions and inverse hy-
perbolic functions can be expressed in terms of RC , see
[9, pp. 163, 186]:

(lnx)/(x− 1) = RC(( 1
2 + 1

2x)2, x), x > 0;
(sin−1 x)/x = RC(1− x2, 1), −1 ≤ x ≤ 1;

(sinh−1 x)/x = RC(1 + x2, 1), −∞ < x <∞;

(cos−1 x)/(1− x2)
1
2 = RC(x2, 1), 0 ≤ x ≤ 1;

(cosh−1 x)/(x2 − 1)
1
2 = RC(x2, 1), x ≥ 1;

(tan−1 x)/x = RC(1, 1 + x2), −∞ < x <∞;

(tanh−1 x)/x = RC(1, 1− x2), −1 < x < 1;
cot−1 x = RC(x2, x2 + 1), 0 ≤ x <∞;

coth−1 x = RC(x2, x2 − 1), x > 1.

The first seven of these allow computing nearly indeter-
minate forms with more accuracy than would be possible
using the näıve formulation.

Heuman’s lambda function [3] is a variant of Legendre’s
third integral:

(
1− cos2 α sin2 β

)1/2
cos2 α sinβ cosβ

Λ(α, β, ϕ)

= sinϕRF (cos2 ϕ, 1− sin2 α sin2 ϕ, 1)

+
sin2 α sin3 ϕ

3
(
1− cos2 α sin2 β

) ×RJ

(
cos2 ϕ,

1− sin2 α sin2 ϕ, 1, 1− sin2 α sin2 ϕ

1− cos2 α sin2 β

)
(11)

π

2
Λ0(α, β) = Λ(α, β, π/2)

= sinβ

[
RF (0, cos2 α, 1)− 1

3
sin2 αRD(0, cos2 α, 1)

]
×RF

(
cos2 β, 1− cos2 α sin2 β, 1

)
− 1

3
cos2 α sin3 β

×RF (0, cos2 α, 1)×RD(cos2 β, 1− cos2 α sin2 β, 1)
(12)

The variants of Legendre’s integrals used by Bulirsch in
[4] and [5] are

el1(x, kc) = xRF

(
1, 1 + k2cx

2, 1 + x2
)
, (13)

el2(x, kc, a, b) = axRF

(
1, 1 + k2cx

2, 1 + x2
)

+
1

3
(b− a)x3RD

(
1, 1 + k2cx

2, 1 + x2
)

(14)

ele3(x, kc, p) = xRF

(
1, 1 + k2cx

2, 1 + x2
)

+
1

3
(1− p)x3RJ

(
1, 1 + k2cx

2, 1 + x2, 1 + px2
)

(15)

cel(kc, p, a, b) = aRF (0, k2c , 1) =
1

3
(b− pa)RJ

(
0, k2c , 1, p

)
(16)

C.2 Which Procedure Should Be Used?

Several factors influence the choice of procedure. If one
needs to write a simple program and use it once, one
should probably choose the procedure that evaluates the
functions in the form most similar to the way the prob-
lem is posed. If one needs to write a program that
will have substantial use, one should usually prefer SE-
LEFI to SRDVAL and SRFVAL, as the former is up
to 30 times faster than the latter two. An exception to
this rule occurs if one needs to compute RD(a, b, c) with
c < max(a, b), in which case the parameters for SELEFI
will be out of range. If accuracy is an issue but speed is
not, one may prefer SRDVAL and SRFVAL to SELEFI,
at least for computing F(ϕ, k). (See testing in Section D
below).

SRCVAL is somewhat slower, on an IBM PC/AT with a
numeric data processor, than using the equivalent For-
tran intrinsic functions. This is no surprise, as most
of the intrinsic functions are implemented by hardware.
But the inverse hyperbolic functions are not. SRCVAL
is roughly the same speed as the procedures in Chap-
ter 2.1. As mentioned above, it may be advantageous to
use SRCVAL to compute nearly indeterminate forms.

SELPII is implemented by using SRJVAL and SRFVAL
(see Eqs. (9) and (10) above). Thus, there is no special
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advantage in speed or accuracy to one or the other. The
sole criterion is how closely the forms of the functions
evaluated directly by the procedures match the forms of
the functions the user needs to evaluate.

D. Functional Description

D.1 Properties of the Functions

The first form given in Eqs. (2)–(4) is the Jacobi or alge-
braic form. When expressed in this form Eq. (2) is finite
for all real and complex y, including ∞, has a simple
pole of order 1 for y =∞, and is logarithmically infinite
for y = 1/α2.

D.2 Method of Computation

The procedure SELEFI is based upon a procedure
ELLPI developed by Allan V. Hershey and modified by
Alfred H. Morris, described in [6]. The procedure uses se-
ries expansions due to DiDonato and Hershey, described
in [7]. The procedure SELPII is based upon a proce-
dure EPI developed by Alfred H. Morris, described in
[5]. It computes Π(ϕ, k2, α2) using Eqs. (9) and (10),
as computed by SRFVAL and SRJVAL. The procedures
SRCVAL, SRDVAL, SRFVAL and SRJVAL are based
on procedures developed by B. C. Carlson and Elaine
M. Notis, described in [8] and [9]. All of the referenced
procedures were revised to be consistent with low level
modules and naming conventions of MATH77.

D.3 Testing

The single precision programs for E(ϕ, k), F(ϕ, k),
RD(a, b, c) and RF (a, b, c) were tested on an IBM
PC/AT (using IEEE arithmetic) by comparison to dou-
ble precision results, as described below. The relative
precision of IEEE single precision arithmetic is ρ =
2−23 ≈ 0.119× 10−6.

The accuracy of procedure SELEFI was assessed by
comparing its results to double precision results ob-
tained by applying Eqs. (8) and (9), with RD(a, b, c)
and RF (a, b, c) evaluated by DRDVAL and DRFVAL,
respectively. The accuracy of procedures SRDVAL and
SRFVAL was assessed by comparing their results to dou-
ble precision results obtained by applying Eqs. (8) and
(9), with E(ϕ, k) and F(ϕ, k) evaluated by DELEFI.

To test SELEFI, the rectangular region 0 ≤ ϕ ≤ π/2 ×
0 ≤ k ≤ 1 of the ϕ × k plane was divided into 2000 re-
gions, and a point was randomly selected in each region.
To test SRDVAL and SRFVAL, the argument c was set
to 1.0, the rectangular region 0 ≤ a < 1 × 0 ≤ b < 1
of the a × b plane was divided into 2000 regions, and a
point was randomly selected in each region. The maxi-
mum relative and absolute errors are summarized in the
following table.

Max. Rel. Max. Abs.
Function Error Error
E(ϕ, k) .82ρ .98ρ
F(ϕ, k) 5.24ρ 15.91ρ
RD(a, b, 1) 1.20ρ 3.01ρ
RF (a, b, 1) 1.35ρ 2.55ρ

Errors in F(ϕ, k) increase as the arguments approach the
infinite singularity at ϕ = π/2 and k = 1.
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E. Error Procedures and Restrictions

The procedure SELEFI requires |ϕ| ≤ π/2, and |k| ≤ 1.

Procedure SELPII computes Π(ϕ, k2, α2) from
RJ(a, b, c, r) and RF (a, b, c) using Eqs. (9) and (10).
The initial values for the arguments are a = cos2 ϕ,
b = 1− k2 sin2 ϕ, r = 1−α2 sin2 ϕ, and c = max(a, b, r).
Then a, b and r are replaced by a × c, b × c and r × c,
respectively. SELPII requires |ϕ| ≤ π/2. Restrictions
on k2 and α2 are enforced indirectly by restrictions on
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a, b and c imposed by SRFVAL and SRJVAL, described
below.

The ranges for ϕ and k2 can be extended using formu-
lae 113.01, 113.02, 114.01, 115.01, 115.02, 160.02, 161.02
and 162.02 from [2], or formulae 17.4.1 through 17.4.18
from [1].

Denote the largest representable magnitude by Ω, and
the smallest nonzero representable magnitude by ω.
General restrictions on the arguments to procedures SR-
CVAL, SRDVAL, SRFVAL and SRJVAL were described
above in Section B.

SRCVAL requires X + |Y| ≥ 5ω, X ≤ Ω/5, |Y| ≤ Ω/5,
and, if Y < −2.236/

√
ω it requires X ≥ (ωΩ)2/25.

Denote the machine round-off level by ρ, that is, ρ is
the smallest positive number such that the representa-
tion of 1 + ρ is different from 1. Let ε be the solution
of the equation ρ = 3ε6(1 − ε)−3/2, ΩD = 2Ω−2/3 and
ωD = εω−2/3/10. SRDVAL requires X + Y ≥ ωD and
Z ≥ ωD, X ≤ ΩD, Y ≤ ΩD and Z ≤ ΩD.

SRFVAL requires X + Y ≥ 5ω, X + Z ≥ 5ω, Y + Z ≥
5ω, X ≤ Ω/5, Y ≤ Ω/5 and Z ≤ Ω/5.

Let ΩJ = (Ω/5)1/3/5 and ωJ = (5ω)1/3. SRJVAL
requires X + Y ≥ ωJ , Y + Z ≥ ωJ , X + Z ≥ ωJ ,
|R| ≥ ωJ , X ≤ ΩJ , Y ≤ ΩJ , Z ≤ ΩJ and |R| ≤ ΩJ .

The accessible ranges of the arguments may be extended
beyond the ranges admissible in the procedures by using
the homogeneity of the functions:

RF (ka, kb, kc) = k−1/2RF (a, b, c), and

RJ(ka, kb, kc, kr) = k−3/2RJ(a, b, c, r).

If any of the restrictions above is violated, all proce-
dures return an error indicator in the argument named
IERR, and invoke the error message processor (see Chap-
ter 19.2) with LEVEL = 0. The procedure ERMSET
(see Chapter 19.2) may be used to affect the default er-
ror processing action.

F. Supporting Information

The source language for these subroutines is ANSI For-
tran 77.

The procedures SELEFI and SELPII were written by
W. V. Snyder in December 1990, based on earlier pro-
cedures described by Alfred H. Morris, Naval Surface
Warfare Center, Dahlgren, VA in [5]. The procedures
SRCVAL, SRDVAL, SRFVAL and SRJVAL were writ-
ten by W. V. Snyder in December 1990, based on earlier
procedures described by Carlson and Notis in [9].

Entry Required Files

DELEFI AMACH, DELEFI, DERM1, DERV1,
DLNREL, ERFIN, ERMSG

DELPII AMACH, DELPII, DERM1, DERV1,
DRCVAL, DRFVAL, DRJVAL, ERFIN,
ERMSG

DRCVAL AMACH, DERM1, DERV1, DRCVAL,
ERFIN, ERMSG

DRDVAL AMACH, DERM1, DERV1, DRDVAL,
ERFIN, ERMSG

DRFVAL AMACH, DERM1, DERV1, DRFVAL,
ERFIN, ERMSG

DRJVAL AMACH, DERM1, DERV1, DRCVAL,
DRFVAL, DRJVAL, ERFIN, ERMSG

SELEFI AMACH, ERFIN, ERMSG, SELEFI,
SERM1, SERV1, SLNREL

SELPII AMACH, ERFIN, ERMSG, SELPII,
SERM1, SERV1, SRCVAL, SRFVAL,
SRJVAL

SRCVAL AMACH, ERFIN, ERMSG, SERM1,
SERV1, SRCVAL

SRDVAL AMACH, ERFIN, ERMSG, SERM1,
SERV1, SRDVAL

SRFVAL AMACH, ERFIN, ERMSG, SERM1,
SERV1, SRFVAL

SRJVAL AMACH, ERFIN, ERMSG, SERM1,
SERV1, SRCVAL, SRFVAL, SRJVAL
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DRSELI

program DRSELI
c>>1994−10−19 DRSELI Krogh Changes to use M77CON
c>>1992−03−09 DRSELI WV Snyder Create s epara t e s i n g l e and doub le demos .
c>>1991−10−04 DRSELI WV Snyder JPL Or i g ina l code .
c−−S r ep l a c e s ”?”: DR?ELI ,?RCVAL,?ELEFI,?ELPII ,?RDVAL,?RFVAL,?RJVAL
c
c Demonstration d r i v e r f o r incomple te e l l i p t i c i n t e g r a l procedures .
c

real ALPHA2, E, F , K, K2, PHI , PI , R, RC, RD, RF, RJ
real SINPHI , T, U, X, Y, Z
integer IERR

c
c Compute arc s ine x us ing ASIN and RC, f o r x = 0.5
c

print ∗ , ’ I d e n t i t i e s from write−up : ’
x = 0 .5 e0
ca l l s r c v a l ( 1 . 0 e0−x∗x , 1 . 0 e0 , rc , i e r r )
i f ( i e r r . eq . 0 ) then

t = as in (x ) − x ∗ rc
print ’ ( ’ ’ ASIN ( 0 . 5 ) − 0 .5∗RC(1−0.5∗∗2 ,1) =’ ’ , g15 . 8 ) ’ , t

else
print ’ ( ’ ’ SRCVAL re tu rn s e r r o r s i g n a l ’ ’ , i 1 ) ’ , i e r r

end i f
c
c Eva luate i d e n t i t i e s g i ven by equa t i ons (8−10) in the wri te−up
c wi th k∗∗2 = 1/2 , s in ( phi )∗∗2 = 1/4 , a lpha ∗∗2 = 1/2 , c = 1.
c From th i s , we have a = 3/4 , b = r = 7/8.
c

alpha2 = 0 .5 e0
k = sq r t ( 0 . 5 e0 )
k2 = 0 .5 e0
s i nph i = 0 .5 e0
phi = as in ( s i nph i )
r = 0.875 e0
x = 0.75 e0
y = 0.875 e0
z = 1 .0 e0
ca l l s e l e f i ( phi , k , f , e , i e r r )
i f ( i e r r . ne . 0 ) then

print ’ ( ’ ’ SELEFI r e tu rn s e r r o r s i g n a l ’ ’ , i 1 ) ’ , i e r r
go to 99

end i f
ca l l s e l p i i ( phi , k2 , alpha2 , pi , i e r r )
i f ( i e r r . ne . 0 ) then

print ’ ( ’ ’ SELPII r e tu rn s e r r o r s i g n a l ’ ’ , i 1 ) ’ , i e r r
go to 99

end i f
ca l l s rdva l (x , y , z , rd , i e r r )
i f ( i e r r . ne . 0 ) then

print ’ ( ’ ’ SRDVAL re tu rn s e r r o r s i g n a l ’ ’ , i 1 ) ’ , i e r r
go to 99

end i f
ca l l s r f v a l (x , y , z , r f , i e r r )
i f ( i e r r . ne . 0 ) then

print ’ ( ’ ’ SRFVAL re tu rn s e r r o r s i g n a l ’ ’ , i 1 ) ’ , i e r r
go to 99

2.9–6 Incomplete Elliptic Integrals June 17, 2010



end i f
ca l l s r j v a l (x , y , z , r , r j , i e r r )
i f ( i e r r . ne . 0 ) then

print ’ ( ’ ’ SRJVAL re tu rn s e r r o r s i g n a l ’ ’ , i 1 ) ’ , i e r r
go to 99

end i f
u = sq r t ( z ∗∗3) ∗ rd
t = 3 .0 e0 / ( k2 ∗ s i nph i ∗∗3) ∗ ( f−e )
r = (u−t ) / u
print ’ ( ’ ’ Equation (8 ) , (LHS − RHS)/LHS =’ ’ , g15 . 8 ) ’ , r
u = sq r t ( z ) ∗ r f
t = f / s i nph i
r = (u−t ) / u
print ’ ( ’ ’ Equation (9 ) , (LHS − RHS)/LHS =’ ’ , g15 . 8 ) ’ , r
u = sq r t ( z ∗∗3) ∗ r j
t = 3 / ( alpha2 ∗ s i nph i ∗∗3) ∗ ( p i − f )
r = (u−t ) / u
print ’ ( ’ ’ Equation (10 ) , (LHS − RHS)/LHS =’ ’ , g15 . 8 ) ’ , r

c
99 stop

end

ODSELI

I d e n t i t i e s from write−up :
ASIN ( 0 . 5 ) − 0 .5∗RC(1−0.5∗∗2 ,1) = 0.59604645E−07
Equation (8 ) , (LHS − RHS)/LHS =−0.18963517E−05
Equation (9 ) , (LHS − RHS)/LHS = 0.0000000
Equation (10 ) , (LHS − RHS)/LHS = 0.23314153E−05
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