
4.1 Square Nonsingular Systems of Equations

A. Purpose

For a square nonsingular matrix, A, of order N, subrou-
tines are provided for solving systems of equations in-
volving the matrix A or At(Ah in the complex case), and
for computing the inverse, determinant, or (reciprocal)
condition number of A. Versions are provided for REAL,
DOUBLE PRECISION and COMPLEX data types.

B. Usage

The individual subroutines are described as follows:

B.1 SGEFS Factor and solve.

B.2 SGEFSC Factor, solve, and reciprocal condition
number.

B.3 SGEFA Factor.

B.4 SGECO Factor and reciprocal condition number.

B.5 SGESLD Solve Ax = c.

B.6 SGESLT Solve Atx = c. (Ahx = c for the com-
plex case.)

B.7 SGED Determinant.

B.8 SGEI Inverse.

B.9 Modifications for double-precision and complex.

Subroutine SGEFA is the fundamental subroutine of this
set. It does the forward pass of Gaussian elimination
with partial pivoting, replacing the matrix A, given in
the array A(,), with two triangular matrices represent-
ing its LU factorization and storing a record in IPVT()
of the row interchanges done during the factorization.
The other subroutines of this set either call SGEFA to
accomplish this factorization, or else must be used after
the factorization has already been computed by SGEFA.

This code is all derived from LINPACK [1], but the or-
ganization of the code into separate subroutines differs
from LINPACK.

B.1 Usage to factor and solve

Use SGEFS to factor A and solve the system, AX = B,
where A is an N×N square nonsingular matrix and B is
an N×NB matrix. The N×NB solution matrix, X, will
overwrite the given matrix, B, and the factors of A will
overwrite A. SGEFS calls SGEFA to factor A, and calls
SGESLD, NB times, to compute the columns of X.

B.1.a Program Prototype, Single Precision

INTEGER LDA, N, LDB, NB, IPVT(≥N),
INFO

REAL A(LDA, ≥N), B(LDB, ≥NB)

Assign values to A(,), LDA, N, B(,), LDB, and NB.

CALL SGEFS (A, LDA, N, B,
LDB, NB, IPVT, INFO)

Computed quantities are returned in A(,), B(,), IPVT(),
and INFO.

B.1.b Argument Definitions

A(,) [inout] On entry contains the N×N matrix A. On
return contains the LU factorization of A as com-
puted by SGEFA.

LDA [in] Leading dimensioning parameter for the ar-
ray A(,). Require LDA ≥ N.

N [in] The order of the matrix A and number of rows
in the matrices B and X.

B(,) [inout] On entry contains the N×NB matrix, B.
On return contains the N×NB solution matrix, X.
The array B(,) can be declared as singly subscripted
if NB = 1. No solution will be computed if the re-
turned value of INFO is nonzero.

LDB [in] Leading dimensioning parameter for the ar-
ray B(,). Require LDB ≥ N.

NB [in] Number of columns in the matrices B and X.
If NB < 1, the matrix, A, will be factored but no
reference will be made to the array B(,).

IPVT() [out] Integer array of length at least N. On
return will contain a record of the row interchanges
done during factorization of A.

INFO [out] Set to zero if all diagonal elements in the
U matrix of the LU factorization are nonzero. If
nonzero, INFO is the index of the first diagonal ele-
ment of U that is zero. In this latter case the solution
X will not be computed.

B.2 Usage to factor, solve, and compute recip-
rocal condition number

Use SGEFSC to factor A and solve the system, AX = B,
where A is an N×N nonsingular matrix and B is an
N×NB matrix. The N×NB solution matrix, X, will
overwrite the given matrix, B, and the factors of A will
overwrite A. In addition SGEFSC sets RCOND to the
reciprocal condition number of A.

SGEFSC calls SGECO to factor A and compute
RCOND, and then calls SGESLD, NB times, to com-
pute the columns of X.

c©1997 Calif. Inst. of Technology, 2010 Math à la Carte, Inc.

June 17, 2010 Square Nonsingular Systems of Equations 4.1–1

B.2.a Program Prototype, Single Precision

INTEGER LDA, N, LDB, NB, IPVT(≥N)

REAL A(LDA, ≥N), B(LDB, ≥NB), RCOND,
Z(≥N)

Assign values to A(,), LDA, N, B(,), LDB, and NB.

CALL SGEFSC(A, LDA, N, B, LDB,
NB, IPVT, RCOND, Z)

Computed quantities are returned in A(,), B(,), IPVT(),
RCOND, and Z().

B.2.b Argument Definitions

The first seven arguments for SGEFSC have the same
meaning as for SGEFS. The final two arguments are de-
fined as follows:

RCOND [out] An estimate for the reciprocal condition
number of A. Will satisfy 0.0 ≤ RCOND ≤ 1.0. A
zero value indicates a singular matrix. Larger values
indicate a better conditioned matrix.

Z() [scratch] An array of length N used as working
space in SGEFSC. The contents on return will gen-
erally not be of interest to the user. It will be an
N-vector, z, that satisfies

‖Az‖ = RCOND · ‖A‖ · ‖z‖

If A is nearly singular then z will be an approximate
null vector.

B.3 Usage to factor only

Use SGEFA to factor a given N×N matrix, A, obtaining
matrices, L and U , satisfying LU = A, where U is upper
triangular and L is a permutation of a lower triangular
matrix. U and a representation of L−1 will be returned
in the array A(,), and a record of the permutations will
be returned in IPVT().

B.3.a Program Prototype, Single Precision

INTEGER LDA, N, IPVT(≥N), INFO

REAL A(LDA, ≥N)

Assign values to A(,), LDA, and N.

CALL SGEFA(A, LDA, N, IPVT, INFO)

Computed quantities are returned in A(,), IPVT(), and
INFO.

B.3.b Argument Definitions

The arguments have the same meaning as the arguments
of the same names for the subroutine SGEFS described
above in Section B.1.

B.4 Usage to factor and compute reciprocal
condition number

SGECO calls SGEFA to factor the given matrix, A, and
then computes RCOND as an estimate of the reciprocal
condition number of A.

B.4.a Program Prototype, Single Precision

INTEGER LDA, N, IPVT(≥N)

REAL A(LDA, ≥N), RCOND, Z(≥N)

Assign values to A(,), LDA, and N.

CALL SGECO(A, LDA, N, IPVT, RCOND, Z)

Computed quantities are returned in A(,), IPVT(),
RCOND, and Z().

B.4.b Argument Definitions

A(,), LDA, N, IPVT() See description in Sec-
tion B.1 above.

RCOND, Z() See description in Section B.2 above.

B.5 Usage to solve the direct system, Ax = c

Given A(,) and IPVT() containing factorization results
produced by SGEFA for a matrix, A, use SGESLD to
solve the direct system, Ax = c.

B.5.a Program Prototype, Single Precision

INTEGER LDA, N, IPVT(≥N)

REAL A(LDA, ≥N), C(≥N)

Values must initially be present in A(,), LDA, N,
IPVT(), and C().

CALL SGESLD(A, LDA, N, IPVT, C)

Computed quantities are returned in C().

B.5.b Argument Definitions

A(,) [in] On entry contains the N×N set of numbers
representing the LU decomposition of a matrix A as
computed by SGEFA. The contents of A(,) are not
altered by this subroutine.

LDA [in] Leading dimensioning parameter for the ar-
ray A(,). Require LDA ≥ N.

N [in] The order of the original matrix A.

IPVT() [in] Integer array of length at least N. On en-
try contains a record of the row interchanges done
during factorization of A.

C() [inout] On entry must contain the right-side N-
vector for the problem, Ax = c. On return, if A is
nonsingular, C() will contain the solution N-vector,
x. See Section E for discussion of singularity.

4.1–2 Square Nonsingular Systems of Equations June 17, 2010

B.6 Usage to solve the transposed system,
Atx = c

Given A(,) and IPVT() containing factorization results
produced by SGEFA for a matrix, A, use SGESLT to
solve the transposed system, Atx = c. In the complex
case, i.e. using CGEFA rather than SGEFA, the prob-
lem solved is Ahx = c, where Ah denotes the conjugate
transpose of A.

B.6.a Program Prototype, Single Precision

INTEGER LDA, N, IPVT(≥N)

REAL A(LDA, ≥N), C(≥N)

Values must initially be present in A(,), LDA, N,
IPVT(), and C().

CALL SGESLT(A, LDA, N, IPVT, C)

Computed quantities are returned in C().

B.6.b Argument Definitions

A(,), LDA, N, IPVT() [in] See description in Sec-
tion B.5 above.

C() [inout] On entry must contain the right-side N-
vector for the problem, Atx = c. On return, if A is
nonsingular, C() will contain the solution N-vector,
x. See Section E for discussion of singularity.

B.7 Usage to compute the determinant of A

Given A(,) and IPVT() containing factorization results
produced by SGEFA for a matrix, A, use SGED to com-
pute the determinant of A.

B.7.a Program Prototype, Single Precision

INTEGER LDA, N, IPVT(≥N)

REAL A(LDA, ≥N), DET(2)

Values must initially be present in A(,), LDA, N, and
IPVT().

CALL SGED(A, LDA, N, IPVT, DET)

Computed quantities are returned in DET(1) and
DET(2).

B.7.b Argument Definitions

A(,), LDA, N, IPVT() [in] See description in Sec-
tion B.5 above.

DET() [out] DET(1) and DET(2) will be set to values
representing the determinant of A in the form:

Determinant = DET(1)× 10DET(2)

DET(2) will contain an integer value, which may be
positive, negative, or zero.

If the determinant is zero, both DET(1) and DET(2)
will be zero.

If the determinant is nonzero, DET(1) and DET(2)
will be some choice among the many pairs of val-
ues that could be used to represent the value of the
determinant. The algorithm tends to produce a rep-
resentation with DET(2) = 0 if the magnitude of the
determinant is not extremely large or small, however
it is not designed to select this representation in all
possible cases. See Section D for further explanation.

B.8 Usage to compute the inverse matrix of A

Given A(,) and IPVT() containing factorization results
produced by SGEFA for a matrix, A, use SGEI to com-
pute the inverse matrix of A.

B.8.a Program Prototype, Single Precision

INTEGER LDA, N, IPVT(≥N)

REAL A(LDA, ≥N), WORK(≥N)

Values must initially be present in A(,), LDA, N, and
IPVT().

CALL SGEI(A, LDA, N, IPVT, WORK)

Computed quantities are returned in A(,).

B.8.b Argument Definitions

A(,) [inout] On entry contains an N×N set of numbers
representing the LU decomposition of a matrix A as
computed by SGEFA. On return, if A is nonsingular,
contains the inverse matrix of A. See Section E for
discussion of singularity.

LDA, N, IPVT() [in] See description in Section B.5
above.

WORK() [scratch] An array of at least N locations
used as internal work space.

B.9 Modifications for Double Precision or Com-
plex

For double-precision usage change the initial letter of
each subroutine name from S to D, and change the REAL
declarations to DOUBLE PRECISION.

For complex usage change the initial letter of each sub-
routine name from S to C, and change the REAL decla-
rations to COMPLEX, with the exception that the ar-
gument, RCOND, must remain REAL.

Note that the COMPLEX subroutine CGESLT solves
Ahx = c, where Ah denotes the conjugate transpose of
A.

June 17, 2010 Square Nonsingular Systems of Equations 4.1–3

C. Examples and Remarks

Program DRSGEFSC illustrates the use of subroutine
SGEFSC to solve a system of linear equations and com-
pute the reciprocal condition number of the matrix of
the system. Output is shown in ODSGEFSC. The data
for this problem were chosen so the exact solution has
components 2, −5, and 3.

Avoiding computation of the inverse

If A is a nonsingular matrix, the relations AX = B and
X = A−1B are mathematically equivalent. Thus, given
A and B, where B and thus X may be either a matrix
or a vector, one could either solve the system AX = B
for X, or one could compute A−1 and then multiply A−1

times B to obtain X. The former approach will be faster
as it requires fewer arithmetic operations. It will also
generally be slightly more accurate. Thus wherever an
inverse matrix appears in an expression to be computed,
it is preferable to formulate the computation in terms of
solving systems rather than computing inverses, unless
the inverse matrix is needed for another reason.

D. Functional Description

This code is all derived from LINPACK [1]. Reference
[1] gives complete descriptions of the algorithms imple-
mented.

SGEFA and SGECO are the same in name, argument
list, and functionality in Fortran 77 as the LINPACK
subroutines of the same name. SGESLD and SGESLT
provide the two distinct functionalities provided by the
LINPACK subroutine, SGESL. SGED and SGEI pro-
vide the two distinct functionalities provided by the LIN-
PACK subroutine, SGEDI. SGEFS and SGEFSC are
shell subroutines added to package certain convenient
sequences of calls to the other subroutines.

D.1 Factorization

The fundamental subroutine of this set is SGEFA.
SGEFA performs the forward pass of Gaussian elimina-
tion with partial pivoting. Partial pivoting means row in-
terchanges are used to bring the element of largest mag-
nitude, at or below the diagonal position in the pivot
column, to the diagonal position at each stage of the
elimination process. A record of the row interchanges
is kept in IPVT(). This algorithm has very good nu-
merical stability and efficiency, the count of arithmetic
operations being n3/3 +O(n2) additions and multiplica-
tions.

The result of this process is a factorization of the given
matrix, A, of the form

A = LU = P1K1P2K2 · · ·Pn−1Kn−1U

where U is an upper triangular matrix, each Pi is a per-
mutation matrix representing the permutation of the in-
dex i with an index ≥ i, and each Ki differs from the
identity only by having nonzero elements below the diag-
onal in column i. SGEFA stores a convenient representa-
tion of this factorization in the arrays A(,) and IPVT().
Each of the subroutines SGESLD, SGESLT, SGED, and
SGEI is designed to use this factorization as the starting
point for its computation.

D.2 Scaling

Even with partial pivoting, the accuracy of the solu-
tion can be adversely affected if the scaling is extremely
bad. There is no universally applicable algorithmic crite-
rion for determining a “good” scaling, and consequently
the LINPACK subroutines do not introduce any scaling.
The user should assure that the scaling is reasonable for
his or her application. One reasonable approach is to
scale the rows and columns of A so that, if possible, the
absolute size of the uncertainty in each element of the
matrix, A, is nearly the same for all elements.

D.3 Solving equations using SGESLD or
SGESLT

SGESLD completes the solution of the problem, Ax = b.
Given the factorization, A = LU , this is done by first
solving Ly = b, and then solving Ux = y.

SGESLT completes the solution of the problem, Atx =
b. Given the factorization, A = LU , this is done by first
solving U ty = b, and then solving Ltx = y.

Each of these two subroutines has an operation count of
n2 +O(n) additions and multiplications.

D.4 Computing A−1

SGEI completes the computation of A−1. Given the fac-
torization, A = LU , A−1 can be expressed as A−1 =
U−1L−1. SGEI first computes the triangular matrix
U−1, overwriting U . It then does the two steps of form-
ing L−1 and multiplying U−1 times L−1 in an interleaved
manner to conserve storage. The algorithm uses n2 lo-
cations in A(,) and n locations in WORK(). Operations
required are (2/3)n3 + O(n2) additions and multiplica-
tions.

D.5 Estimating the reciprocal condition num-
ber

The condition number of an n×n nonsingular matrix, A,
is defined as κ = ‖A‖ × ‖A−1‖, a quantity that is never
less than unity. This is the largest factor by which the
relative error in a vector, y, can be amplified as a result
of multiplication by A or by A−1. Roughly speaking,
if κ = 10k and the components of the vector b in the
problem, Ax = b, are known to d decimal digits, and
the components of A are known to more than d decimal

4.1–4 Square Nonsingular Systems of Equations June 17, 2010

digits, and the problem is solved using precision greater
than d decimal digits, then the solution will be known
to about d−k decimal digits. In particular, if k ≥ d, the
solution may have no reliable digits at all. (See [1] for
a more precise discussion of the relation between κ and
the accuracy of x.)

Any method of computing κ beginning with A appears
to require at least n3 additions and multiplications. The
authors of LINPACK, in collaboration with J. H. Wilkin-
son, developed an algorithm for estimating κ (actu-
ally κ−1) that requires only 3n2 + O(n) additions and
multiplications following the factorization produced by
SGEFA.

Subroutine SGECO first computes ‖A‖ as a maximum
of the absolute sum norms of the columns of A. It
then calls SGEFA to factorize A, and finally executes
the LINPACK algorithm for condition number estima-
tion, returning RCOND as its estimate of κ−1. Let
C = RCOND−1. The hope is that C/κ will always
be close to unity. It can be shown that with exact arith-
metic one would always have C/κ ≤ 1, but no theoretical
lower bound is known. In a test with 1250 cases reported
in [1], the lowest value that C/κ attained was 0.062, i.e.
the condition number was slightly more than 16 times
what was estimated.

D.6 Computing the determinant of A

SGED completes the computation of the determinant of
A. In the factorization, A = LU , we have Det(L) = ±1
and U is triangular. Thus SGED computes Det(A) by
forming the product of the diagonal elements of U , and
attaching a sign determined by analysis of the permuta-
tion record in IPVT(). This process may be represented
as

d0 = 1

di = ±ui,idi−1, i = 1, . . . , n

determinant = dn

For a matrix of large order it is not uncommon for the
determinant to be of extremely large or small magni-
tude. Consequently the LINPACK approach computes
and stores the determinant as a pair of numbers, per-
mitting a very large exponent range.

SGED differs, however, from the LINPACK subroutine
SGEDI in the two-number representation selected. If all
of the quantities, |ui,i| and |di|, in the above equations
lie between the square roots of the underflow and over-
flow limits of the host computer system, the returned
value of DET(2) will be zero. Thus in many problems of
moderate order and having moderate scaling, DET(1) by
itself will be the determinant value. Besides increasing
the likelihood of DET(2) being zero, this modification

reduces significantly the number of multiplications used
for scaling.

D.7 Other types of matrices and problems han-
dled in LINPACK

The subroutines described here represent only a small
part of the full LINPACK collection. It is thus desir-
able to have LINPACK as well as the MATH 77 library.
LINPACK provides functionalities analogous to those
described here for the following special types of matrices:

General band Hermitian indefinite
Positive definite Hermitian indefinite packed
Positive definite packed Triangular
Positive definite band General tridiagonal
Symmetric indefinite Positive definite tridiagonal
Symmetric indefinite packed

LINPACK also provides subroutines for least-squares
problems.

References

1. J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W.
Stewart, LINPACK Users’ Guide, Society for In-
dustrial and Applied Mathematics, Philadelphia (1979)
320 pages.

E. Error Procedures and Restrictions

The LU factorization can be completed for a singular
matrix, however the subroutines of this set are not ca-
pable of solving equations using a singular matrix. The
inverse matrix does not exist for a singular matrix.

A singular matrix is indicated by the returned value of
INFO being nonzero or RCOND being zero. In either
of these cases the subroutines SGESLD, SGESLT, and
SGEI cannot compute their usual outputs. If any of
these latter three subroutines encounters a zero diagonal
element in the U matrix, it will issue an error message
using the subroutines of Chapter 19.2 with an error level
of zero and return with incomplete results.

These subroutines all require N ≥ 1 and LDA ≥ N.
Subroutines SGEFS and SGEFSC also require LDB ≥
N. These conditions are not checked and their violation
causes unpredictable effects.

F. Supporting Information

The source language is ANSI Fortran 77.

LINPACK was developed as an NSF funded project
from 1974 through 1976. This library of high-quality
public-domain portable Fortran linear algebra software
is widely used in the U.S. and throughout the world.

The subroutines described here were adapted from LIN-
PACK to Fortran 77 for the JPL MATH77 library by C.
L. Lawson and S. Y. Chiu, JPL, August 1987.

June 17, 2010 Square Nonsingular Systems of Equations 4.1–5

Entry Required Files

CGECO CAXPY, CDOTC, CGECO, CGEFA,
CSCAL, CSSCAL, ICAMAX, SCASUM

CGED AMACH, CGED

CGEFA CAXPY, CGEFA, CSCAL, ICAMAX

CGEFS CAXPY, CGEFA, CGEFS, CGESLD,
CSCAL, ERFIN, ERMSG, ICAMAX

CGEFSC CAXPY, CDOTC, CGECO, CGEFA,
CGEFSC, CGESLD, CSCAL, CSSCAL,
ERFIN, ERMSG, ICAMAX, SCASUM

CGEI CAXPY, CGEI, CSCAL, CSWAP, ERFIN,
ERMSG

CGESLD CAXPY, CGESLD, ERFIN, ERMSG

CGESLT CDOTC, CGESLT, ERFIN, ERMSG

DGECO DASUM, DAXPY, DDOT, DGECO,
DGEFA, DSCAL, IDAMAX

DGED AMACH, DGED

DGEFA DAXPY, DGEFA, DSCAL, IDAMAX

DGEFS DAXPY, DGEFA, DGEFS, DGESLD,
DSCAL, ERFIN, ERMSG, IDAMAX

Entry Required Files

DGEFSC DASUM, DAXPY, DDOT, DGECO,
DGEFA, DGEFSC, DGESLD, DSCAL,
ERFIN, ERMSG, IDAMAX

DGEI DAXPY, DGEI, DSCAL, DSWAP, ERFIN,
ERMSG

DGESLD DAXPY, DGESLD, ERFIN, ERMSG

DGESLT DDOT, DGESLT, ERFIN, ERMSG

SGECO ISAMAX, SASUM, SAXPY, SDOT,
SGECO, SGEFA, SSCAL

SGED AMACH, SGED

SGEFA ISAMAX, SAXPY, SGEFA, SSCAL

SGEFS ERFIN, ERMSG, ISAMAX, SAXPY,
SGEFA, SGEFS, SGESLD, SSCAL

SGEFSC ERFIN, ERMSG, ISAMAX, SASUM,
SAXPY, SDOT, SGECO, SGEFA,
SGEFSC, SGESLD, SSCAL

SGEI ERFIN, ERMSG, SAXPY, SGEI, SSCAL,
SSWAP

SGESLD ERFIN, ERMSG, SAXPY, SGESLD

SGESLT ERFIN, ERMSG, SDOT, SGESLT

4.1–6 Square Nonsingular Systems of Equations June 17, 2010

DRSGEFSC

c program DRSGEFSC
c>> 2001−05−22 DRSGEFSC Krogh Minor change f o r making . f90 ve r s i on .
c>> 1996−05−28 DRSGEFSC Krogh Moved format up .
c>> 1994−10−19 DRSGEFSC Krogh Changes to use M77CON
c>> 1994−08−09 DRSGEFSC WVS removed ’0 ’ from format
c>> 1992−03−18 DRSGEFSC CLL Added ”c” to ”program” l i n e above .
c>> 1987−12−09 DRSGEFSC Lawson I n i t i a l Code .
c−−S r ep l a c e s ”?”: DR?GEFSC, ?GEFSC, ?GEFS, ?MATP
c
c Demo dr i v e r f o r SGEFSC
c −−

integer NMAX
parameter (NMAX = 3)
real A(3 , 3) , B(3 , 1) , Z(NMAX) , RCOND1
integer I , J , IPVT(NMAX)

c
data (A(1 , J) , J=1 ,3) / 0 .579E0 , −.394E0 , 0 .915E0 /
data (A(2 , J) , J=1 ,3) / −0.795E0 , 0 .226E0 , −0.868E0 /
data (A(3 , J) , J=1 ,3) / 0 .141E0 , −0.329E0 , −0.286E0 /

c
data (B(I , 1) , I =1 ,3) / 5 .873E0 , −5.324E0 , 1 .069E0 /

c
100 format (/ ’ RCOND1 =’ ,F7 . 4)

c −−
ca l l SMATP(A,NMAX,NMAX,NMAX, ’ 0 A(,) =’)
ca l l SMATP(B,NMAX,NMAX,1 , ’ 0 B(,) =’)

c
ca l l SGEFSC(A,NMAX,NMAX,B,NMAX,1 , IPVT,RCOND1,Z)

c c a l l SGEFS(A,NMAX,NMAX,B,NMAX,1 ,IPVT,INFO)
c

ca l l SMATP(B,NMAX,NMAX,1 , ’ 0 SOLN(,) =’)
print 100 , RCOND1

c
end

ODSGEFSC

A(,) =

COL 1 COL 2 COL 3
ROW 1 0.5790000 −0.3940000 0.9150000
ROW 2 −0.7950000 0.2260000 −0.8680000
ROW 3 0.1410000 −0.3290000 −0.2860000

B(,) =

COL 1
ROW 1 5.873000
ROW 2 −5.324000
ROW 3 1.069000

SOLN(,) =

COL 1
ROW 1 1.999999
ROW 2 −5.000001
ROW 3 3.000000

June 17, 2010 Square Nonsingular Systems of Equations 4.1–7

RCOND1 = 0.0827

4.1–8 Square Nonsingular Systems of Equations June 17, 2010

	Square Nonsingular Systems of Equations
	Purpose
	Usage
	Usage to factor and solve
	Usage to factor, solve, and compute reciprocal condition number
	Usage to factor only
	Usage to factor and compute reciprocal condition number
	Usage to solve the direct system, Ax = c
	Usage to solve the transposed system, Atx = c
	Usage to compute the determinant of A
	Usage to compute the inverse matrix of A
	Modifications for Double Precision or Complex

	Examples and Remarks
	Functional Description
	Factorization
	Scaling
	Solving equations using SGESLD or SGESLT
	Computing A-1
	Estimating the reciprocal condition number
	Computing the determinant of A
	Other types of matrices and problems handled in LINPACK

	Error Procedures and Restrictions
	Supporting Information

