SUBROUTINE CTIMTB( LINE, NN, NVAL, NK, KVAL, NNS, NSVAL, NLDA, $ LDAVAL, TIMMIN, A, B, RESLTS, LDR1, LDR2, LDR3, $ NOUT ) * * -- LAPACK timing routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * March 31, 1993 * * .. Scalar Arguments .. CHARACTER*80 LINE INTEGER LDR1, LDR2, LDR3, NK, NLDA, NN, NNS, NOUT REAL TIMMIN * .. * .. Array Arguments .. INTEGER KVAL( * ), LDAVAL( * ), NSVAL( * ), NVAL( * ) REAL RESLTS( LDR1, LDR2, LDR3, * ) COMPLEX A( * ), B( * ) * .. * * Purpose * ======= * * CTIMTB times CTBTRS. * * Arguments * ========= * * LINE (input) CHARACTER*80 * The input line that requested this routine. The first six * characters contain either the name of a subroutine or a * generic path name. The remaining characters may be used to * specify the individual routines to be timed. See ATIMIN for * a full description of the format of the input line. * * NN (input) INTEGER * The number of values of N contained in the vector NVAL. * * NVAL (input) INTEGER array, dimension (NN) * The values of the matrix size N. * * NK (input) INTEGER * The number of values of K contained in the vector KVAL. * * KVAL (input) INTEGER array, dimension (NK) * The values of the band width K. * * NNS (input) INTEGER * The number of values of NRHS contained in the vector NSVAL. * * NSVAL (input) INTEGER array, dimension (NNS) * The values of the number of right hand sides NRHS. * * NLDA (input) INTEGER * The number of values of LDA contained in the vector LDAVAL. * * LDAVAL (input) INTEGER array, dimension (NLDA) * The values of the leading dimension of the array A. * * TIMMIN (input) REAL * The minimum time a subroutine will be timed. * * A (workspace) COMPLEX array, dimension (LDAMAX*NMAX) * where LDAMAX and NMAX are the maximum values permitted * for LDA and N. * * B (workspace) COMPLEX array, dimension (LDAMAX*NMAX) * * RESLTS (output) REAL array, dimension * (LDR1,LDR2,LDR3,NSUBS) * The timing results for each subroutine over the relevant * values of N, NB, and LDA. * * LDR1 (input) INTEGER * The first dimension of RESLTS. LDR1 >= max(1,NNB). * * LDR2 (input) INTEGER * The second dimension of RESLTS. LDR2 >= max(1,NN). * * LDR3 (input) INTEGER * The third dimension of RESLTS. LDR3 >= max(1,2*NLDA). * * NOUT (input) INTEGER * The unit number for output. * * ===================================================================== * * .. Parameters .. INTEGER NSUBS PARAMETER ( NSUBS = 1 ) * .. * .. Local Scalars .. CHARACTER UPLO CHARACTER*3 PATH CHARACTER*6 CNAME INTEGER I, I3, IC, ICL, IK, ILDA, IN, INFO, ISUB, $ IUPLO, K, LDA, LDB, MAT, N, NRHS REAL OPS, S1, S2, TIME, UNTIME * .. * .. Local Arrays .. LOGICAL TIMSUB( NSUBS ) CHARACTER UPLOS( 2 ) CHARACTER*6 SUBNAM( NSUBS ) * .. * .. External Functions .. LOGICAL LSAME REAL SECOND, SMFLOP, SOPLA EXTERNAL LSAME, SECOND, SMFLOP, SOPLA * .. * .. External Subroutines .. EXTERNAL ATIMCK, ATIMIN, CTBTRS, CTIMMG, SPRTBL * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, REAL * .. * .. Data statements .. DATA SUBNAM / 'CTBTRS' / DATA UPLOS / 'U', 'L' / * .. * .. Executable Statements .. * * Extract the timing request from the input line. * PATH( 1: 1 ) = 'Complex precision' PATH( 2: 3 ) = 'TB' CALL ATIMIN( PATH, LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO ) IF( INFO.NE.0 ) $ GO TO 110 * * Check that K+1 <= LDA for the input values. * CNAME = LINE( 1: 6 ) CALL ATIMCK( 0, CNAME, NK, KVAL, NLDA, LDAVAL, NOUT, INFO ) IF( INFO.GT.0 ) THEN WRITE( NOUT, FMT = 9999 )CNAME GO TO 110 END IF * * Do for each value of N: * DO 100 IN = 1, NN N = NVAL( IN ) LDB = N * * Do first for UPLO = 'U', then for UPLO = 'L' * DO 60 IUPLO = 1, 2 UPLO = UPLOS( IUPLO ) IF( LSAME( UPLO, 'U' ) ) THEN MAT = 13 ELSE MAT = -13 END IF * * Do for each value of LDA: * DO 50 ILDA = 1, NLDA LDA = LDAVAL( ILDA ) I3 = ( IUPLO-1 )*NLDA + ILDA * * Do for each value of the band width K: * DO 40 IK = 1, NK K = KVAL( IK ) K = MAX( 0, MIN( K, N-1 ) ) * * Time CTBTRS * IF( TIMSUB( 1 ) ) THEN CALL CTIMMG( MAT, N, N, A, LDA, K, K ) DO 30 I = 1, NNS NRHS = NSVAL( I ) CALL CTIMMG( 0, N, NRHS, B, LDB, 0, 0 ) IC = 0 S1 = SECOND( ) 10 CONTINUE CALL CTBTRS( UPLO, 'No transpose', 'Non-unit', $ N, K, NRHS, A, LDA, B, LDB, INFO ) S2 = SECOND( ) TIME = S2 - S1 IC = IC + 1 IF( TIME.LT.TIMMIN ) THEN CALL CTIMMG( 0, N, NRHS, B, LDB, 0, 0 ) GO TO 10 END IF * * Subtract the time used in CTIMMG. * ICL = 1 S1 = SECOND( ) 20 CONTINUE S2 = SECOND( ) UNTIME = S2 - S1 ICL = ICL + 1 IF( ICL.LE.IC ) THEN CALL CTIMMG( 0, N, NRHS, B, LDB, 0, 0 ) GO TO 20 END IF * TIME = ( TIME-UNTIME ) / REAL( IC ) OPS = SOPLA( 'CTBTRS', N, NRHS, K, K, 0 ) RESLTS( I, IK, I3, 1 ) = SMFLOP( OPS, TIME, $ INFO ) 30 CONTINUE END IF 40 CONTINUE 50 CONTINUE 60 CONTINUE * * Print a table of results. * DO 90 ISUB = 1, NSUBS IF( .NOT.TIMSUB( ISUB ) ) $ GO TO 90 * * Print header for routine names. * IF( IN.EQ.1 .OR. CNAME.EQ.'CTB ' ) THEN WRITE( NOUT, FMT = 9998 )SUBNAM( ISUB ) IF( NLDA.EQ.1 ) THEN WRITE( NOUT, FMT = 9997 )LDAVAL( 1 ) ELSE DO 70 I = 1, NLDA WRITE( NOUT, FMT = 9996 )I, LDAVAL( I ) 70 CONTINUE END IF END IF * DO 80 IUPLO = 1, 2 WRITE( NOUT, FMT = 9995 )SUBNAM( ISUB ), N, $ UPLOS( IUPLO ) I3 = ( IUPLO-1 )*NLDA + 1 IF( ISUB.EQ.1 ) THEN CALL SPRTBL( 'NRHS', 'K', NNS, NSVAL, NK, KVAL, NLDA, $ RESLTS( 1, 1, I3, 1 ), LDR1, LDR2, NOUT ) END IF 80 CONTINUE 90 CONTINUE 100 CONTINUE * 110 CONTINUE 9999 FORMAT( 1X, A6, ' timing run not attempted', / ) 9998 FORMAT( / ' *** Speed of ', A6, ' in megaflops ***' ) 9997 FORMAT( 5X, 'with LDA = ', I5 ) 9996 FORMAT( 5X, 'line ', I2, ' with LDA = ', I5 ) 9995 FORMAT( / 5X, A6, ' with M =', I6, ', UPLO = ''', A1, '''', / ) RETURN * * End of CTIMTB * END