*> \brief \b DSTEDC * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DSTEDC + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, * LIWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER COMPZ * INTEGER INFO, LDZ, LIWORK, LWORK, N * .. * .. Array Arguments .. * INTEGER IWORK( * ) * DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DSTEDC computes all eigenvalues and, optionally, eigenvectors of a *> symmetric tridiagonal matrix using the divide and conquer method. *> The eigenvectors of a full or band real symmetric matrix can also be *> found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this *> matrix to tridiagonal form. *> *> This code makes very mild assumptions about floating point *> arithmetic. It will work on machines with a guard digit in *> add/subtract, or on those binary machines without guard digits *> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. *> It could conceivably fail on hexadecimal or decimal machines *> without guard digits, but we know of none. See DLAED3 for details. *> \endverbatim * * Arguments: * ========== * *> \param[in] COMPZ *> \verbatim *> COMPZ is CHARACTER*1 *> = 'N': Compute eigenvalues only. *> = 'I': Compute eigenvectors of tridiagonal matrix also. *> = 'V': Compute eigenvectors of original dense symmetric *> matrix also. On entry, Z contains the orthogonal *> matrix used to reduce the original matrix to *> tridiagonal form. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The dimension of the symmetric tridiagonal matrix. N >= 0. *> \endverbatim *> *> \param[in,out] D *> \verbatim *> D is DOUBLE PRECISION array, dimension (N) *> On entry, the diagonal elements of the tridiagonal matrix. *> On exit, if INFO = 0, the eigenvalues in ascending order. *> \endverbatim *> *> \param[in,out] E *> \verbatim *> E is DOUBLE PRECISION array, dimension (N-1) *> On entry, the subdiagonal elements of the tridiagonal matrix. *> On exit, E has been destroyed. *> \endverbatim *> *> \param[in,out] Z *> \verbatim *> Z is DOUBLE PRECISION array, dimension (LDZ,N) *> On entry, if COMPZ = 'V', then Z contains the orthogonal *> matrix used in the reduction to tridiagonal form. *> On exit, if INFO = 0, then if COMPZ = 'V', Z contains the *> orthonormal eigenvectors of the original symmetric matrix, *> and if COMPZ = 'I', Z contains the orthonormal eigenvectors *> of the symmetric tridiagonal matrix. *> If COMPZ = 'N', then Z is not referenced. *> \endverbatim *> *> \param[in] LDZ *> \verbatim *> LDZ is INTEGER *> The leading dimension of the array Z. LDZ >= 1. *> If eigenvectors are desired, then LDZ >= max(1,N). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. *> If COMPZ = 'N' or N <= 1 then LWORK must be at least 1. *> If COMPZ = 'V' and N > 1 then LWORK must be at least *> ( 1 + 3*N + 2*N*lg N + 4*N**2 ), *> where lg( N ) = smallest integer k such *> that 2**k >= N. *> If COMPZ = 'I' and N > 1 then LWORK must be at least *> ( 1 + 4*N + N**2 ). *> Note that for COMPZ = 'I' or 'V', then if N is less than or *> equal to the minimum divide size, usually 25, then LWORK need *> only be max(1,2*(N-1)). *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. *> \endverbatim *> *> \param[in] LIWORK *> \verbatim *> LIWORK is INTEGER *> The dimension of the array IWORK. *> If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1. *> If COMPZ = 'V' and N > 1 then LIWORK must be at least *> ( 6 + 6*N + 5*N*lg N ). *> If COMPZ = 'I' and N > 1 then LIWORK must be at least *> ( 3 + 5*N ). *> Note that for COMPZ = 'I' or 'V', then if N is less than or *> equal to the minimum divide size, usually 25, then LIWORK *> need only be 1. *> *> If LIWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal size of the IWORK array, *> returns this value as the first entry of the IWORK array, and *> no error message related to LIWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: The algorithm failed to compute an eigenvalue while *> working on the submatrix lying in rows and columns *> INFO/(N+1) through mod(INFO,N+1). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date June 2017 * *> \ingroup auxOTHERcomputational * *> \par Contributors: * ================== *> *> Jeff Rutter, Computer Science Division, University of California *> at Berkeley, USA \n *> Modified by Francoise Tisseur, University of Tennessee *> * ===================================================================== SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, $ LIWORK, INFO ) * * -- LAPACK computational routine (version 3.7.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * June 2017 * * .. Scalar Arguments .. CHARACTER COMPZ INTEGER INFO, LDZ, LIWORK, LWORK, N * .. * .. Array Arguments .. INTEGER IWORK( * ) DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TWO PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 ) * .. * .. Local Scalars .. LOGICAL LQUERY INTEGER FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN, $ LWMIN, M, SMLSIZ, START, STOREZ, STRTRW DOUBLE PRECISION EPS, ORGNRM, P, TINY * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV DOUBLE PRECISION DLAMCH, DLANST EXTERNAL LSAME, ILAENV, DLAMCH, DLANST * .. * .. External Subroutines .. EXTERNAL DGEMM, DLACPY, DLAED0, DLASCL, DLASET, DLASRT, $ DSTEQR, DSTERF, DSWAP, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, INT, LOG, MAX, MOD, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 ) * IF( LSAME( COMPZ, 'N' ) ) THEN ICOMPZ = 0 ELSE IF( LSAME( COMPZ, 'V' ) ) THEN ICOMPZ = 1 ELSE IF( LSAME( COMPZ, 'I' ) ) THEN ICOMPZ = 2 ELSE ICOMPZ = -1 END IF IF( ICOMPZ.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( ( LDZ.LT.1 ) .OR. $ ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN INFO = -6 END IF * IF( INFO.EQ.0 ) THEN * * Compute the workspace requirements * SMLSIZ = ILAENV( 9, 'DSTEDC', ' ', 0, 0, 0, 0 ) IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN LIWMIN = 1 LWMIN = 1 ELSE IF( N.LE.SMLSIZ ) THEN LIWMIN = 1 LWMIN = 2*( N - 1 ) ELSE LGN = INT( LOG( DBLE( N ) )/LOG( TWO ) ) IF( 2**LGN.LT.N ) $ LGN = LGN + 1 IF( 2**LGN.LT.N ) $ LGN = LGN + 1 IF( ICOMPZ.EQ.1 ) THEN LWMIN = 1 + 3*N + 2*N*LGN + 4*N**2 LIWMIN = 6 + 6*N + 5*N*LGN ELSE IF( ICOMPZ.EQ.2 ) THEN LWMIN = 1 + 4*N + N**2 LIWMIN = 3 + 5*N END IF END IF WORK( 1 ) = LWMIN IWORK( 1 ) = LIWMIN * IF( LWORK.LT.LWMIN .AND. .NOT. LQUERY ) THEN INFO = -8 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT. LQUERY ) THEN INFO = -10 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DSTEDC', -INFO ) RETURN ELSE IF (LQUERY) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN IF( N.EQ.1 ) THEN IF( ICOMPZ.NE.0 ) $ Z( 1, 1 ) = ONE RETURN END IF * * If the following conditional clause is removed, then the routine * will use the Divide and Conquer routine to compute only the * eigenvalues, which requires (3N + 3N**2) real workspace and * (2 + 5N + 2N lg(N)) integer workspace. * Since on many architectures DSTERF is much faster than any other * algorithm for finding eigenvalues only, it is used here * as the default. If the conditional clause is removed, then * information on the size of workspace needs to be changed. * * If COMPZ = 'N', use DSTERF to compute the eigenvalues. * IF( ICOMPZ.EQ.0 ) THEN CALL DSTERF( N, D, E, INFO ) GO TO 50 END IF * * If N is smaller than the minimum divide size (SMLSIZ+1), then * solve the problem with another solver. * IF( N.LE.SMLSIZ ) THEN * CALL DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO ) * ELSE * * If COMPZ = 'V', the Z matrix must be stored elsewhere for later * use. * IF( ICOMPZ.EQ.1 ) THEN STOREZ = 1 + N*N ELSE STOREZ = 1 END IF * IF( ICOMPZ.EQ.2 ) THEN CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ ) END IF * * Scale. * ORGNRM = DLANST( 'M', N, D, E ) IF( ORGNRM.EQ.ZERO ) $ GO TO 50 * EPS = DLAMCH( 'Epsilon' ) * START = 1 * * while ( START <= N ) * 10 CONTINUE IF( START.LE.N ) THEN * * Let FINISH be the position of the next subdiagonal entry * such that E( FINISH ) <= TINY or FINISH = N if no such * subdiagonal exists. The matrix identified by the elements * between START and FINISH constitutes an independent * sub-problem. * FINISH = START 20 CONTINUE IF( FINISH.LT.N ) THEN TINY = EPS*SQRT( ABS( D( FINISH ) ) )* $ SQRT( ABS( D( FINISH+1 ) ) ) IF( ABS( E( FINISH ) ).GT.TINY ) THEN FINISH = FINISH + 1 GO TO 20 END IF END IF * * (Sub) Problem determined. Compute its size and solve it. * M = FINISH - START + 1 IF( M.EQ.1 ) THEN START = FINISH + 1 GO TO 10 END IF IF( M.GT.SMLSIZ ) THEN * * Scale. * ORGNRM = DLANST( 'M', M, D( START ), E( START ) ) CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M, $ INFO ) CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ), $ M-1, INFO ) * IF( ICOMPZ.EQ.1 ) THEN STRTRW = 1 ELSE STRTRW = START END IF CALL DLAED0( ICOMPZ, N, M, D( START ), E( START ), $ Z( STRTRW, START ), LDZ, WORK( 1 ), N, $ WORK( STOREZ ), IWORK, INFO ) IF( INFO.NE.0 ) THEN INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) + $ MOD( INFO, ( M+1 ) ) + START - 1 GO TO 50 END IF * * Scale back. * CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M, $ INFO ) * ELSE IF( ICOMPZ.EQ.1 ) THEN * * Since QR won't update a Z matrix which is larger than * the length of D, we must solve the sub-problem in a * workspace and then multiply back into Z. * CALL DSTEQR( 'I', M, D( START ), E( START ), WORK, M, $ WORK( M*M+1 ), INFO ) CALL DLACPY( 'A', N, M, Z( 1, START ), LDZ, $ WORK( STOREZ ), N ) CALL DGEMM( 'N', 'N', N, M, M, ONE, $ WORK( STOREZ ), N, WORK, M, ZERO, $ Z( 1, START ), LDZ ) ELSE IF( ICOMPZ.EQ.2 ) THEN CALL DSTEQR( 'I', M, D( START ), E( START ), $ Z( START, START ), LDZ, WORK, INFO ) ELSE CALL DSTERF( M, D( START ), E( START ), INFO ) END IF IF( INFO.NE.0 ) THEN INFO = START*( N+1 ) + FINISH GO TO 50 END IF END IF * START = FINISH + 1 GO TO 10 END IF * * endwhile * IF( ICOMPZ.EQ.0 ) THEN * * Use Quick Sort * CALL DLASRT( 'I', N, D, INFO ) * ELSE * * Use Selection Sort to minimize swaps of eigenvectors * DO 40 II = 2, N I = II - 1 K = I P = D( I ) DO 30 J = II, N IF( D( J ).LT.P ) THEN K = J P = D( J ) END IF 30 CONTINUE IF( K.NE.I ) THEN D( K ) = D( I ) D( I ) = P CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 ) END IF 40 CONTINUE END IF END IF * 50 CONTINUE WORK( 1 ) = LWMIN IWORK( 1 ) = LIWMIN * RETURN * * End of DSTEDC * END