*> \brief \b ZPBSTF * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZPBSTF + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZPBSTF( UPLO, N, KD, AB, LDAB, INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, KD, LDAB, N * .. * .. Array Arguments .. * COMPLEX*16 AB( LDAB, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZPBSTF computes a split Cholesky factorization of a complex *> Hermitian positive definite band matrix A. *> *> This routine is designed to be used in conjunction with ZHBGST. *> *> The factorization has the form A = S**H*S where S is a band matrix *> of the same bandwidth as A and the following structure: *> *> S = ( U ) *> ( M L ) *> *> where U is upper triangular of order m = (n+kd)/2, and L is lower *> triangular of order n-m. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': Upper triangle of A is stored; *> = 'L': Lower triangle of A is stored. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] KD *> \verbatim *> KD is INTEGER *> The number of superdiagonals of the matrix A if UPLO = 'U', *> or the number of subdiagonals if UPLO = 'L'. KD >= 0. *> \endverbatim *> *> \param[in,out] AB *> \verbatim *> AB is COMPLEX*16 array, dimension (LDAB,N) *> On entry, the upper or lower triangle of the Hermitian band *> matrix A, stored in the first kd+1 rows of the array. The *> j-th column of A is stored in the j-th column of the array AB *> as follows: *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). *> *> On exit, if INFO = 0, the factor S from the split Cholesky *> factorization A = S**H*S. See Further Details. *> \endverbatim *> *> \param[in] LDAB *> \verbatim *> LDAB is INTEGER *> The leading dimension of the array AB. LDAB >= KD+1. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: if INFO = i, the factorization could not be completed, *> because the updated element a(i,i) was negative; the *> matrix A is not positive definite. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date December 2016 * *> \ingroup complex16OTHERcomputational * *> \par Further Details: * ===================== *> *> \verbatim *> *> The band storage scheme is illustrated by the following example, when *> N = 7, KD = 2: *> *> S = ( s11 s12 s13 ) *> ( s22 s23 s24 ) *> ( s33 s34 ) *> ( s44 ) *> ( s53 s54 s55 ) *> ( s64 s65 s66 ) *> ( s75 s76 s77 ) *> *> If UPLO = 'U', the array AB holds: *> *> on entry: on exit: *> *> * * a13 a24 a35 a46 a57 * * s13 s24 s53**H s64**H s75**H *> * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54**H s65**H s76**H *> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77 *> *> If UPLO = 'L', the array AB holds: *> *> on entry: on exit: *> *> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77 *> a21 a32 a43 a54 a65 a76 * s12**H s23**H s34**H s54 s65 s76 * *> a31 a42 a53 a64 a64 * * s13**H s24**H s53 s64 s75 * * *> *> Array elements marked * are not used by the routine; s12**H denotes *> conjg(s12); the diagonal elements of S are real. *> \endverbatim *> * ===================================================================== SUBROUTINE ZPBSTF( UPLO, N, KD, AB, LDAB, INFO ) * * -- LAPACK computational routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * December 2016 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, KD, LDAB, N * .. * .. Array Arguments .. COMPLEX*16 AB( LDAB, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER J, KLD, KM, M DOUBLE PRECISION AJJ * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA, ZDSCAL, ZHER, ZLACGV * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( KD.LT.0 ) THEN INFO = -3 ELSE IF( LDAB.LT.KD+1 ) THEN INFO = -5 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZPBSTF', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * KLD = MAX( 1, LDAB-1 ) * * Set the splitting point m. * M = ( N+KD ) / 2 * IF( UPPER ) THEN * * Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m). * DO 10 J = N, M + 1, -1 * * Compute s(j,j) and test for non-positive-definiteness. * AJJ = DBLE( AB( KD+1, J ) ) IF( AJJ.LE.ZERO ) THEN AB( KD+1, J ) = AJJ GO TO 50 END IF AJJ = SQRT( AJJ ) AB( KD+1, J ) = AJJ KM = MIN( J-1, KD ) * * Compute elements j-km:j-1 of the j-th column and update the * the leading submatrix within the band. * CALL ZDSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 ) CALL ZHER( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1, $ AB( KD+1, J-KM ), KLD ) 10 CONTINUE * * Factorize the updated submatrix A(1:m,1:m) as U**H*U. * DO 20 J = 1, M * * Compute s(j,j) and test for non-positive-definiteness. * AJJ = DBLE( AB( KD+1, J ) ) IF( AJJ.LE.ZERO ) THEN AB( KD+1, J ) = AJJ GO TO 50 END IF AJJ = SQRT( AJJ ) AB( KD+1, J ) = AJJ KM = MIN( KD, M-J ) * * Compute elements j+1:j+km of the j-th row and update the * trailing submatrix within the band. * IF( KM.GT.0 ) THEN CALL ZDSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD ) CALL ZLACGV( KM, AB( KD, J+1 ), KLD ) CALL ZHER( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD, $ AB( KD+1, J+1 ), KLD ) CALL ZLACGV( KM, AB( KD, J+1 ), KLD ) END IF 20 CONTINUE ELSE * * Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m). * DO 30 J = N, M + 1, -1 * * Compute s(j,j) and test for non-positive-definiteness. * AJJ = DBLE( AB( 1, J ) ) IF( AJJ.LE.ZERO ) THEN AB( 1, J ) = AJJ GO TO 50 END IF AJJ = SQRT( AJJ ) AB( 1, J ) = AJJ KM = MIN( J-1, KD ) * * Compute elements j-km:j-1 of the j-th row and update the * trailing submatrix within the band. * CALL ZDSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD ) CALL ZLACGV( KM, AB( KM+1, J-KM ), KLD ) CALL ZHER( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD, $ AB( 1, J-KM ), KLD ) CALL ZLACGV( KM, AB( KM+1, J-KM ), KLD ) 30 CONTINUE * * Factorize the updated submatrix A(1:m,1:m) as U**H*U. * DO 40 J = 1, M * * Compute s(j,j) and test for non-positive-definiteness. * AJJ = DBLE( AB( 1, J ) ) IF( AJJ.LE.ZERO ) THEN AB( 1, J ) = AJJ GO TO 50 END IF AJJ = SQRT( AJJ ) AB( 1, J ) = AJJ KM = MIN( KD, M-J ) * * Compute elements j+1:j+km of the j-th column and update the * trailing submatrix within the band. * IF( KM.GT.0 ) THEN CALL ZDSCAL( KM, ONE / AJJ, AB( 2, J ), 1 ) CALL ZHER( 'Lower', KM, -ONE, AB( 2, J ), 1, $ AB( 1, J+1 ), KLD ) END IF 40 CONTINUE END IF RETURN * 50 CONTINUE INFO = J RETURN * * End of ZPBSTF * END