*> \brief \b ZLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZLANTP + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * DOUBLE PRECISION FUNCTION ZLANTP( NORM, UPLO, DIAG, N, AP, WORK ) * * .. Scalar Arguments .. * CHARACTER DIAG, NORM, UPLO * INTEGER N * .. * .. Array Arguments .. * DOUBLE PRECISION WORK( * ) * COMPLEX*16 AP( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZLANTP returns the value of the one norm, or the Frobenius norm, or *> the infinity norm, or the element of largest absolute value of a *> triangular matrix A, supplied in packed form. *> \endverbatim *> *> \return ZLANTP *> \verbatim *> *> ZLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm' *> ( *> ( norm1(A), NORM = '1', 'O' or 'o' *> ( *> ( normI(A), NORM = 'I' or 'i' *> ( *> ( normF(A), NORM = 'F', 'f', 'E' or 'e' *> *> where norm1 denotes the one norm of a matrix (maximum column sum), *> normI denotes the infinity norm of a matrix (maximum row sum) and *> normF denotes the Frobenius norm of a matrix (square root of sum of *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. *> \endverbatim * * Arguments: * ========== * *> \param[in] NORM *> \verbatim *> NORM is CHARACTER*1 *> Specifies the value to be returned in ZLANTP as described *> above. *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the matrix A is upper or lower triangular. *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] DIAG *> \verbatim *> DIAG is CHARACTER*1 *> Specifies whether or not the matrix A is unit triangular. *> = 'N': Non-unit triangular *> = 'U': Unit triangular *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. When N = 0, ZLANTP is *> set to zero. *> \endverbatim *> *> \param[in] AP *> \verbatim *> AP is COMPLEX*16 array, dimension (N*(N+1)/2) *> The upper or lower triangular matrix A, packed columnwise in *> a linear array. The j-th column of A is stored in the array *> AP as follows: *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. *> Note that when DIAG = 'U', the elements of the array AP *> corresponding to the diagonal elements of the matrix A are *> not referenced, but are assumed to be one. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not *> referenced. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date December 2016 * *> \ingroup complex16OTHERauxiliary * * ===================================================================== DOUBLE PRECISION FUNCTION ZLANTP( NORM, UPLO, DIAG, N, AP, WORK ) * * -- LAPACK auxiliary routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * December 2016 * IMPLICIT NONE * .. Scalar Arguments .. CHARACTER DIAG, NORM, UPLO INTEGER N * .. * .. Array Arguments .. DOUBLE PRECISION WORK( * ) COMPLEX*16 AP( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. LOGICAL UDIAG INTEGER I, J, K DOUBLE PRECISION SUM, VALUE * .. * .. Local Arrays .. DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 ) * .. * .. External Functions .. LOGICAL LSAME, DISNAN EXTERNAL LSAME, DISNAN * .. * .. External Subroutines .. EXTERNAL ZLASSQ, DCOMBSSQ * .. * .. Intrinsic Functions .. INTRINSIC ABS, SQRT * .. * .. Executable Statements .. * IF( N.EQ.0 ) THEN VALUE = ZERO ELSE IF( LSAME( NORM, 'M' ) ) THEN * * Find max(abs(A(i,j))). * K = 1 IF( LSAME( DIAG, 'U' ) ) THEN VALUE = ONE IF( LSAME( UPLO, 'U' ) ) THEN DO 20 J = 1, N DO 10 I = K, K + J - 2 SUM = ABS( AP( I ) ) IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 10 CONTINUE K = K + J 20 CONTINUE ELSE DO 40 J = 1, N DO 30 I = K + 1, K + N - J SUM = ABS( AP( I ) ) IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 30 CONTINUE K = K + N - J + 1 40 CONTINUE END IF ELSE VALUE = ZERO IF( LSAME( UPLO, 'U' ) ) THEN DO 60 J = 1, N DO 50 I = K, K + J - 1 SUM = ABS( AP( I ) ) IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 50 CONTINUE K = K + J 60 CONTINUE ELSE DO 80 J = 1, N DO 70 I = K, K + N - J SUM = ABS( AP( I ) ) IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 70 CONTINUE K = K + N - J + 1 80 CONTINUE END IF END IF ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN * * Find norm1(A). * VALUE = ZERO K = 1 UDIAG = LSAME( DIAG, 'U' ) IF( LSAME( UPLO, 'U' ) ) THEN DO 110 J = 1, N IF( UDIAG ) THEN SUM = ONE DO 90 I = K, K + J - 2 SUM = SUM + ABS( AP( I ) ) 90 CONTINUE ELSE SUM = ZERO DO 100 I = K, K + J - 1 SUM = SUM + ABS( AP( I ) ) 100 CONTINUE END IF K = K + J IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 110 CONTINUE ELSE DO 140 J = 1, N IF( UDIAG ) THEN SUM = ONE DO 120 I = K + 1, K + N - J SUM = SUM + ABS( AP( I ) ) 120 CONTINUE ELSE SUM = ZERO DO 130 I = K, K + N - J SUM = SUM + ABS( AP( I ) ) 130 CONTINUE END IF K = K + N - J + 1 IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 140 CONTINUE END IF ELSE IF( LSAME( NORM, 'I' ) ) THEN * * Find normI(A). * K = 1 IF( LSAME( UPLO, 'U' ) ) THEN IF( LSAME( DIAG, 'U' ) ) THEN DO 150 I = 1, N WORK( I ) = ONE 150 CONTINUE DO 170 J = 1, N DO 160 I = 1, J - 1 WORK( I ) = WORK( I ) + ABS( AP( K ) ) K = K + 1 160 CONTINUE K = K + 1 170 CONTINUE ELSE DO 180 I = 1, N WORK( I ) = ZERO 180 CONTINUE DO 200 J = 1, N DO 190 I = 1, J WORK( I ) = WORK( I ) + ABS( AP( K ) ) K = K + 1 190 CONTINUE 200 CONTINUE END IF ELSE IF( LSAME( DIAG, 'U' ) ) THEN DO 210 I = 1, N WORK( I ) = ONE 210 CONTINUE DO 230 J = 1, N K = K + 1 DO 220 I = J + 1, N WORK( I ) = WORK( I ) + ABS( AP( K ) ) K = K + 1 220 CONTINUE 230 CONTINUE ELSE DO 240 I = 1, N WORK( I ) = ZERO 240 CONTINUE DO 260 J = 1, N DO 250 I = J, N WORK( I ) = WORK( I ) + ABS( AP( K ) ) K = K + 1 250 CONTINUE 260 CONTINUE END IF END IF VALUE = ZERO DO 270 I = 1, N SUM = WORK( I ) IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 270 CONTINUE ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). * SSQ(1) is scale * SSQ(2) is sum-of-squares * For better accuracy, sum each column separately. * IF( LSAME( UPLO, 'U' ) ) THEN IF( LSAME( DIAG, 'U' ) ) THEN SSQ( 1 ) = ONE SSQ( 2 ) = N K = 2 DO 280 J = 2, N COLSSQ( 1 ) = ZERO COLSSQ( 2 ) = ONE CALL ZLASSQ( J-1, AP( K ), 1, $ COLSSQ( 1 ), COLSSQ( 2 ) ) CALL DCOMBSSQ( SSQ, COLSSQ ) K = K + J 280 CONTINUE ELSE SSQ( 1 ) = ZERO SSQ( 2 ) = ONE K = 1 DO 290 J = 1, N COLSSQ( 1 ) = ZERO COLSSQ( 2 ) = ONE CALL ZLASSQ( J, AP( K ), 1, $ COLSSQ( 1 ), COLSSQ( 2 ) ) CALL DCOMBSSQ( SSQ, COLSSQ ) K = K + J 290 CONTINUE END IF ELSE IF( LSAME( DIAG, 'U' ) ) THEN SSQ( 1 ) = ONE SSQ( 2 ) = N K = 2 DO 300 J = 1, N - 1 COLSSQ( 1 ) = ZERO COLSSQ( 2 ) = ONE CALL ZLASSQ( N-J, AP( K ), 1, $ COLSSQ( 1 ), COLSSQ( 2 ) ) CALL DCOMBSSQ( SSQ, COLSSQ ) K = K + N - J + 1 300 CONTINUE ELSE SSQ( 1 ) = ZERO SSQ( 2 ) = ONE K = 1 DO 310 J = 1, N COLSSQ( 1 ) = ZERO COLSSQ( 2 ) = ONE CALL ZLASSQ( N-J+1, AP( K ), 1, $ COLSSQ( 1 ), COLSSQ( 2 ) ) CALL DCOMBSSQ( SSQ, COLSSQ ) K = K + N - J + 1 310 CONTINUE END IF END IF VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) ) END IF * ZLANTP = VALUE RETURN * * End of ZLANTP * END