SUBROUTINE DGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB, $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO, $ IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, $ RCONDV, WORK, LWORK, IWORK, BWORK, INFO ) * * -- LAPACK driver routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER BALANC, JOBVL, JOBVR, SENSE INTEGER IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N DOUBLE PRECISION ABNRM, BBNRM * .. * .. Array Arguments .. LOGICAL BWORK( * ) INTEGER IWORK( * ) DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), $ B( LDB, * ), BETA( * ), LSCALE( * ), $ RCONDE( * ), RCONDV( * ), RSCALE( * ), $ VL( LDVL, * ), VR( LDVR, * ), WORK( * ) * .. * * Purpose * ======= * * DGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B) * the generalized eigenvalues, and optionally, the left and/or right * generalized eigenvectors. * * Optionally also, it computes a balancing transformation to improve * the conditioning of the eigenvalues and eigenvectors (ILO, IHI, * LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for * the eigenvalues (RCONDE), and reciprocal condition numbers for the * right eigenvectors (RCONDV). * * A generalized eigenvalue for a pair of matrices (A,B) is a scalar * lambda or a ratio alpha/beta = lambda, such that A - lambda*B is * singular. It is usually represented as the pair (alpha,beta), as * there is a reasonable interpretation for beta=0, and even for both * being zero. * * The right eigenvector v(j) corresponding to the eigenvalue lambda(j) * of (A,B) satisfies * * A * v(j) = lambda(j) * B * v(j) . * * The left eigenvector u(j) corresponding to the eigenvalue lambda(j) * of (A,B) satisfies * * u(j)**H * A = lambda(j) * u(j)**H * B. * * where u(j)**H is the conjugate-transpose of u(j). * * * Arguments * ========= * * BALANC (input) CHARACTER*1 * Specifies the balance option to be performed. * = 'N': do not diagonally scale or permute; * = 'P': permute only; * = 'S': scale only; * = 'B': both permute and scale. * Computed reciprocal condition numbers will be for the * matrices after permuting and/or balancing. Permuting does * not change condition numbers (in exact arithmetic), but * balancing does. * * JOBVL (input) CHARACTER*1 * = 'N': do not compute the left generalized eigenvectors; * = 'V': compute the left generalized eigenvectors. * * JOBVR (input) CHARACTER*1 * = 'N': do not compute the right generalized eigenvectors; * = 'V': compute the right generalized eigenvectors. * * SENSE (input) CHARACTER*1 * Determines which reciprocal condition numbers are computed. * = 'N': none are computed; * = 'E': computed for eigenvalues only; * = 'V': computed for eigenvectors only; * = 'B': computed for eigenvalues and eigenvectors. * * N (input) INTEGER * The order of the matrices A, B, VL, and VR. N >= 0. * * A (input/output) DOUBLE PRECISION array, dimension (LDA, N) * On entry, the matrix A in the pair (A,B). * On exit, A has been overwritten. If JOBVL='V' or JOBVR='V' * or both, then A contains the first part of the real Schur * form of the "balanced" versions of the input A and B. * * LDA (input) INTEGER * The leading dimension of A. LDA >= max(1,N). * * B (input/output) DOUBLE PRECISION array, dimension (LDB, N) * On entry, the matrix B in the pair (A,B). * On exit, B has been overwritten. If JOBVL='V' or JOBVR='V' * or both, then B contains the second part of the real Schur * form of the "balanced" versions of the input A and B. * * LDB (input) INTEGER * The leading dimension of B. LDB >= max(1,N). * * ALPHAR (output) DOUBLE PRECISION array, dimension (N) * ALPHAI (output) DOUBLE PRECISION array, dimension (N) * BETA (output) DOUBLE PRECISION array, dimension (N) * On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will * be the generalized eigenvalues. If ALPHAI(j) is zero, then * the j-th eigenvalue is real; if positive, then the j-th and * (j+1)-st eigenvalues are a complex conjugate pair, with * ALPHAI(j+1) negative. * * Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) * may easily over- or underflow, and BETA(j) may even be zero. * Thus, the user should avoid naively computing the ratio * ALPHA/BETA. However, ALPHAR and ALPHAI will be always less * than and usually comparable with norm(A) in magnitude, and * BETA always less than and usually comparable with norm(B). * * VL (output) DOUBLE PRECISION array, dimension (LDVL,N) * If JOBVL = 'V', the left eigenvectors u(j) are stored one * after another in the columns of VL, in the same order as * their eigenvalues. If the j-th eigenvalue is real, then * u(j) = VL(:,j), the j-th column of VL. If the j-th and * (j+1)-th eigenvalues form a complex conjugate pair, then * u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). * Each eigenvector will be scaled so the largest component have * abs(real part) + abs(imag. part) = 1. * Not referenced if JOBVL = 'N'. * * LDVL (input) INTEGER * The leading dimension of the matrix VL. LDVL >= 1, and * if JOBVL = 'V', LDVL >= N. * * VR (output) DOUBLE PRECISION array, dimension (LDVR,N) * If JOBVR = 'V', the right eigenvectors v(j) are stored one * after another in the columns of VR, in the same order as * their eigenvalues. If the j-th eigenvalue is real, then * v(j) = VR(:,j), the j-th column of VR. If the j-th and * (j+1)-th eigenvalues form a complex conjugate pair, then * v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). * Each eigenvector will be scaled so the largest component have * abs(real part) + abs(imag. part) = 1. * Not referenced if JOBVR = 'N'. * * LDVR (input) INTEGER * The leading dimension of the matrix VR. LDVR >= 1, and * if JOBVR = 'V', LDVR >= N. * * ILO (output) INTEGER * IHI (output) INTEGER * ILO and IHI are integer values such that on exit * A(i,j) = 0 and B(i,j) = 0 if i > j and * j = 1,...,ILO-1 or i = IHI+1,...,N. * If BALANC = 'N' or 'S', ILO = 1 and IHI = N. * * LSCALE (output) DOUBLE PRECISION array, dimension (N) * Details of the permutations and scaling factors applied * to the left side of A and B. If PL(j) is the index of the * row interchanged with row j, and DL(j) is the scaling * factor applied to row j, then * LSCALE(j) = PL(j) for j = 1,...,ILO-1 * = DL(j) for j = ILO,...,IHI * = PL(j) for j = IHI+1,...,N. * The order in which the interchanges are made is N to IHI+1, * then 1 to ILO-1. * * RSCALE (output) DOUBLE PRECISION array, dimension (N) * Details of the permutations and scaling factors applied * to the right side of A and B. If PR(j) is the index of the * column interchanged with column j, and DR(j) is the scaling * factor applied to column j, then * RSCALE(j) = PR(j) for j = 1,...,ILO-1 * = DR(j) for j = ILO,...,IHI * = PR(j) for j = IHI+1,...,N * The order in which the interchanges are made is N to IHI+1, * then 1 to ILO-1. * * ABNRM (output) DOUBLE PRECISION * The one-norm of the balanced matrix A. * * BBNRM (output) DOUBLE PRECISION * The one-norm of the balanced matrix B. * * RCONDE (output) DOUBLE PRECISION array, dimension (N) * If SENSE = 'E' or 'B', the reciprocal condition numbers of * the eigenvalues, stored in consecutive elements of the array. * For a complex conjugate pair of eigenvalues two consecutive * elements of RCONDE are set to the same value. Thus RCONDE(j), * RCONDV(j), and the j-th columns of VL and VR all correspond * to the j-th eigenpair. * If SENSE = 'N or 'V', RCONDE is not referenced. * * RCONDV (output) DOUBLE PRECISION array, dimension (N) * If SENSE = 'V' or 'B', the estimated reciprocal condition * numbers of the eigenvectors, stored in consecutive elements * of the array. For a complex eigenvector two consecutive * elements of RCONDV are set to the same value. If the * eigenvalues cannot be reordered to compute RCONDV(j), * RCONDV(j) is set to 0; this can only occur when the true * value would be very small anyway. * If SENSE = 'N' or 'E', RCONDV is not referenced. * * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= max(1,2*N). * If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V', * LWORK >= max(1,6*N). * If SENSE = 'E' or 'B', LWORK >= max(1,10*N). * If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * IWORK (workspace) INTEGER array, dimension (N+6) * If SENSE = 'E', IWORK is not referenced. * * BWORK (workspace) LOGICAL array, dimension (N) * If SENSE = 'N', BWORK is not referenced. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value. * = 1,...,N: * The QZ iteration failed. No eigenvectors have been * calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) * should be correct for j=INFO+1,...,N. * > N: =N+1: other than QZ iteration failed in DHGEQZ. * =N+2: error return from DTGEVC. * * Further Details * =============== * * Balancing a matrix pair (A,B) includes, first, permuting rows and * columns to isolate eigenvalues, second, applying diagonal similarity * transformation to the rows and columns to make the rows and columns * as close in norm as possible. The computed reciprocal condition * numbers correspond to the balanced matrix. Permuting rows and columns * will not change the condition numbers (in exact arithmetic) but * diagonal scaling will. For further explanation of balancing, see * section 4.11.1.2 of LAPACK Users' Guide. * * An approximate error bound on the chordal distance between the i-th * computed generalized eigenvalue w and the corresponding exact * eigenvalue lambda is * * chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I) * * An approximate error bound for the angle between the i-th computed * eigenvector VL(i) or VR(i) is given by * * EPS * norm(ABNRM, BBNRM) / DIF(i). * * For further explanation of the reciprocal condition numbers RCONDE * and RCONDV, see section 4.11 of LAPACK User's Guide. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY, NOSCL, $ PAIR, WANTSB, WANTSE, WANTSN, WANTSV CHARACTER CHTEMP INTEGER I, ICOLS, IERR, IJOBVL, IJOBVR, IN, IROWS, $ ITAU, IWRK, IWRK1, J, JC, JR, M, MAXWRK, $ MINWRK, MM DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, $ SMLNUM, TEMP * .. * .. Local Arrays .. LOGICAL LDUMMA( 1 ) * .. * .. External Subroutines .. EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD, $ DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGEVC, $ DTGSNA, XERBLA * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV DOUBLE PRECISION DLAMCH, DLANGE EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, SQRT * .. * .. Executable Statements .. * * Decode the input arguments * IF( LSAME( JOBVL, 'N' ) ) THEN IJOBVL = 1 ILVL = .FALSE. ELSE IF( LSAME( JOBVL, 'V' ) ) THEN IJOBVL = 2 ILVL = .TRUE. ELSE IJOBVL = -1 ILVL = .FALSE. END IF * IF( LSAME( JOBVR, 'N' ) ) THEN IJOBVR = 1 ILVR = .FALSE. ELSE IF( LSAME( JOBVR, 'V' ) ) THEN IJOBVR = 2 ILVR = .TRUE. ELSE IJOBVR = -1 ILVR = .FALSE. END IF ILV = ILVL .OR. ILVR * NOSCL = LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'P' ) WANTSN = LSAME( SENSE, 'N' ) WANTSE = LSAME( SENSE, 'E' ) WANTSV = LSAME( SENSE, 'V' ) WANTSB = LSAME( SENSE, 'B' ) * * Test the input arguments * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, $ 'S' ) .OR. LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) ) $ THEN INFO = -1 ELSE IF( IJOBVL.LE.0 ) THEN INFO = -2 ELSE IF( IJOBVR.LE.0 ) THEN INFO = -3 ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSB .OR. WANTSV ) ) $ THEN INFO = -4 ELSE IF( N.LT.0 ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -7 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -9 ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN INFO = -14 ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN INFO = -16 END IF * * Compute workspace * (Note: Comments in the code beginning "Workspace:" describe the * minimal amount of workspace needed at that point in the code, * as well as the preferred amount for good performance. * NB refers to the optimal block size for the immediately * following subroutine, as returned by ILAENV. The workspace is * computed assuming ILO = 1 and IHI = N, the worst case.) * IF( INFO.EQ.0 ) THEN IF( N.EQ.0 ) THEN MINWRK = 1 MAXWRK = 1 ELSE IF( NOSCL .AND. .NOT.ILV ) THEN MINWRK = 2*N ELSE MINWRK = 6*N END IF IF( WANTSE .OR. WANTSB ) THEN MINWRK = 10*N END IF IF( WANTSV .OR. WANTSB ) THEN MINWRK = MAX( MINWRK, 2*N*( N + 4 ) + 16 ) END IF MAXWRK = MINWRK MAXWRK = MAX( MAXWRK, $ N + N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 ) ) MAXWRK = MAX( MAXWRK, $ N + N*ILAENV( 1, 'DORMQR', ' ', N, 1, N, 0 ) ) IF( ILVL ) THEN MAXWRK = MAX( MAXWRK, N + $ N*ILAENV( 1, 'DORGQR', ' ', N, 1, N, 0 ) ) END IF END IF WORK( 1 ) = MAXWRK * IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN INFO = -26 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DGGEVX', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * * Get machine constants * EPS = DLAMCH( 'P' ) SMLNUM = DLAMCH( 'S' ) BIGNUM = ONE / SMLNUM CALL DLABAD( SMLNUM, BIGNUM ) SMLNUM = SQRT( SMLNUM ) / EPS BIGNUM = ONE / SMLNUM * * Scale A if max element outside range [SMLNUM,BIGNUM] * ANRM = DLANGE( 'M', N, N, A, LDA, WORK ) ILASCL = .FALSE. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN ANRMTO = SMLNUM ILASCL = .TRUE. ELSE IF( ANRM.GT.BIGNUM ) THEN ANRMTO = BIGNUM ILASCL = .TRUE. END IF IF( ILASCL ) $ CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR ) * * Scale B if max element outside range [SMLNUM,BIGNUM] * BNRM = DLANGE( 'M', N, N, B, LDB, WORK ) ILBSCL = .FALSE. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN BNRMTO = SMLNUM ILBSCL = .TRUE. ELSE IF( BNRM.GT.BIGNUM ) THEN BNRMTO = BIGNUM ILBSCL = .TRUE. END IF IF( ILBSCL ) $ CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR ) * * Permute and/or balance the matrix pair (A,B) * (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise) * CALL DGGBAL( BALANC, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE, $ WORK, IERR ) * * Compute ABNRM and BBNRM * ABNRM = DLANGE( '1', N, N, A, LDA, WORK( 1 ) ) IF( ILASCL ) THEN WORK( 1 ) = ABNRM CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, 1, 1, WORK( 1 ), 1, $ IERR ) ABNRM = WORK( 1 ) END IF * BBNRM = DLANGE( '1', N, N, B, LDB, WORK( 1 ) ) IF( ILBSCL ) THEN WORK( 1 ) = BBNRM CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, 1, 1, WORK( 1 ), 1, $ IERR ) BBNRM = WORK( 1 ) END IF * * Reduce B to triangular form (QR decomposition of B) * (Workspace: need N, prefer N*NB ) * IROWS = IHI + 1 - ILO IF( ILV .OR. .NOT.WANTSN ) THEN ICOLS = N + 1 - ILO ELSE ICOLS = IROWS END IF ITAU = 1 IWRK = ITAU + IROWS CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ), $ WORK( IWRK ), LWORK+1-IWRK, IERR ) * * Apply the orthogonal transformation to A * (Workspace: need N, prefer N*NB) * CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB, $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ), $ LWORK+1-IWRK, IERR ) * * Initialize VL and/or VR * (Workspace: need N, prefer N*NB) * IF( ILVL ) THEN CALL DLASET( 'Full', N, N, ZERO, ONE, VL, LDVL ) IF( IROWS.GT.1 ) THEN CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB, $ VL( ILO+1, ILO ), LDVL ) END IF CALL DORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL, $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR ) END IF * IF( ILVR ) $ CALL DLASET( 'Full', N, N, ZERO, ONE, VR, LDVR ) * * Reduce to generalized Hessenberg form * (Workspace: none needed) * IF( ILV .OR. .NOT.WANTSN ) THEN * * Eigenvectors requested -- work on whole matrix. * CALL DGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL, $ LDVL, VR, LDVR, IERR ) ELSE CALL DGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA, $ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR ) END IF * * Perform QZ algorithm (Compute eigenvalues, and optionally, the * Schur forms and Schur vectors) * (Workspace: need N) * IF( ILV .OR. .NOT.WANTSN ) THEN CHTEMP = 'S' ELSE CHTEMP = 'E' END IF * CALL DHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, $ LWORK, IERR ) IF( IERR.NE.0 ) THEN IF( IERR.GT.0 .AND. IERR.LE.N ) THEN INFO = IERR ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN INFO = IERR - N ELSE INFO = N + 1 END IF GO TO 130 END IF * * Compute Eigenvectors and estimate condition numbers if desired * (Workspace: DTGEVC: need 6*N * DTGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B', * need N otherwise ) * IF( ILV .OR. .NOT.WANTSN ) THEN IF( ILV ) THEN IF( ILVL ) THEN IF( ILVR ) THEN CHTEMP = 'B' ELSE CHTEMP = 'L' END IF ELSE CHTEMP = 'R' END IF * CALL DTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, $ LDVL, VR, LDVR, N, IN, WORK, IERR ) IF( IERR.NE.0 ) THEN INFO = N + 2 GO TO 130 END IF END IF * IF( .NOT.WANTSN ) THEN * * compute eigenvectors (DTGEVC) and estimate condition * numbers (DTGSNA). Note that the definition of the condition * number is not invariant under transformation (u,v) to * (Q*u, Z*v), where (u,v) are eigenvectors of the generalized * Schur form (S,T), Q and Z are orthogonal matrices. In order * to avoid using extra 2*N*N workspace, we have to recalculate * eigenvectors and estimate one condition numbers at a time. * PAIR = .FALSE. DO 20 I = 1, N * IF( PAIR ) THEN PAIR = .FALSE. GO TO 20 END IF MM = 1 IF( I.LT.N ) THEN IF( A( I+1, I ).NE.ZERO ) THEN PAIR = .TRUE. MM = 2 END IF END IF * DO 10 J = 1, N BWORK( J ) = .FALSE. 10 CONTINUE IF( MM.EQ.1 ) THEN BWORK( I ) = .TRUE. ELSE IF( MM.EQ.2 ) THEN BWORK( I ) = .TRUE. BWORK( I+1 ) = .TRUE. END IF * IWRK = MM*N + 1 IWRK1 = IWRK + MM*N * * Compute a pair of left and right eigenvectors. * (compute workspace: need up to 4*N + 6*N) * IF( WANTSE .OR. WANTSB ) THEN CALL DTGEVC( 'B', 'S', BWORK, N, A, LDA, B, LDB, $ WORK( 1 ), N, WORK( IWRK ), N, MM, M, $ WORK( IWRK1 ), IERR ) IF( IERR.NE.0 ) THEN INFO = N + 2 GO TO 130 END IF END IF * CALL DTGSNA( SENSE, 'S', BWORK, N, A, LDA, B, LDB, $ WORK( 1 ), N, WORK( IWRK ), N, RCONDE( I ), $ RCONDV( I ), MM, M, WORK( IWRK1 ), $ LWORK-IWRK1+1, IWORK, IERR ) * 20 CONTINUE END IF END IF * * Undo balancing on VL and VR and normalization * (Workspace: none needed) * IF( ILVL ) THEN CALL DGGBAK( BALANC, 'L', N, ILO, IHI, LSCALE, RSCALE, N, VL, $ LDVL, IERR ) * DO 70 JC = 1, N IF( ALPHAI( JC ).LT.ZERO ) $ GO TO 70 TEMP = ZERO IF( ALPHAI( JC ).EQ.ZERO ) THEN DO 30 JR = 1, N TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) ) 30 CONTINUE ELSE DO 40 JR = 1, N TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+ $ ABS( VL( JR, JC+1 ) ) ) 40 CONTINUE END IF IF( TEMP.LT.SMLNUM ) $ GO TO 70 TEMP = ONE / TEMP IF( ALPHAI( JC ).EQ.ZERO ) THEN DO 50 JR = 1, N VL( JR, JC ) = VL( JR, JC )*TEMP 50 CONTINUE ELSE DO 60 JR = 1, N VL( JR, JC ) = VL( JR, JC )*TEMP VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP 60 CONTINUE END IF 70 CONTINUE END IF IF( ILVR ) THEN CALL DGGBAK( BALANC, 'R', N, ILO, IHI, LSCALE, RSCALE, N, VR, $ LDVR, IERR ) DO 120 JC = 1, N IF( ALPHAI( JC ).LT.ZERO ) $ GO TO 120 TEMP = ZERO IF( ALPHAI( JC ).EQ.ZERO ) THEN DO 80 JR = 1, N TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) ) 80 CONTINUE ELSE DO 90 JR = 1, N TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+ $ ABS( VR( JR, JC+1 ) ) ) 90 CONTINUE END IF IF( TEMP.LT.SMLNUM ) $ GO TO 120 TEMP = ONE / TEMP IF( ALPHAI( JC ).EQ.ZERO ) THEN DO 100 JR = 1, N VR( JR, JC ) = VR( JR, JC )*TEMP 100 CONTINUE ELSE DO 110 JR = 1, N VR( JR, JC ) = VR( JR, JC )*TEMP VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP 110 CONTINUE END IF 120 CONTINUE END IF * * Undo scaling if necessary * IF( ILASCL ) THEN CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR ) CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR ) END IF * IF( ILBSCL ) THEN CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR ) END IF * 130 CONTINUE WORK( 1 ) = MAXWRK * RETURN * * End of DGGEVX * END