REAL FUNCTION CLA_HERCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV, C, $ CAPPLY, INFO, WORK, RWORK ) * * -- LAPACK routine (version 3.2.1) -- * -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- * -- Jason Riedy of Univ. of California Berkeley. -- * -- April 2009 -- * * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley and NAG Ltd. -- * IMPLICIT NONE * .. * .. Scalar Arguments .. CHARACTER UPLO LOGICAL CAPPLY INTEGER N, LDA, LDAF, INFO * .. * .. Array Arguments .. INTEGER IPIV( * ) COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * ) REAL C ( * ), RWORK( * ) * .. * * Purpose * ======= * * CLA_HERCOND_C computes the infinity norm condition number of * op(A) * inv(diag(C)) where C is a REAL vector. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The number of linear equations, i.e., the order of the * matrix A. N >= 0. * * A (input) COMPLEX array, dimension (LDA,N) * On entry, the N-by-N matrix A * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * AF (input) COMPLEX array, dimension (LDAF,N) * The block diagonal matrix D and the multipliers used to * obtain the factor U or L as computed by CHETRF. * * LDAF (input) INTEGER * The leading dimension of the array AF. LDAF >= max(1,N). * * IPIV (input) INTEGER array, dimension (N) * Details of the interchanges and the block structure of D * as determined by CHETRF. * * C (input) REAL array, dimension (N) * The vector C in the formula op(A) * inv(diag(C)). * * CAPPLY (input) LOGICAL * If .TRUE. then access the vector C in the formula above. * * INFO (output) INTEGER * = 0: Successful exit. * i > 0: The ith argument is invalid. * * WORK (input) COMPLEX array, dimension (2*N). * Workspace. * * RWORK (input) REAL array, dimension (N). * Workspace. * * ===================================================================== * * .. Local Scalars .. INTEGER KASE, I, J REAL AINVNM, ANORM, TMP LOGICAL UP COMPLEX ZDUM * .. * .. Local Arrays .. INTEGER ISAVE( 3 ) * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL CLACN2, CHETRS, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. * .. Statement Functions .. REAL CABS1 * .. * .. Statement Function Definitions .. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) ) * .. * .. Executable Statements .. * CLA_HERCOND_C = 0.0E+0 * INFO = 0 IF( N.LT.0 ) THEN INFO = -2 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CLA_HERCOND_C', -INFO ) RETURN END IF UP = .FALSE. IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE. * * Compute norm of op(A)*op2(C). * ANORM = 0.0E+0 IF ( UP ) THEN DO I = 1, N TMP = 0.0E+0 IF ( CAPPLY ) THEN DO J = 1, I TMP = TMP + CABS1( A( J, I ) ) / C( J ) END DO DO J = I+1, N TMP = TMP + CABS1( A( I, J ) ) / C( J ) END DO ELSE DO J = 1, I TMP = TMP + CABS1( A( J, I ) ) END DO DO J = I+1, N TMP = TMP + CABS1( A( I, J ) ) END DO END IF RWORK( I ) = TMP ANORM = MAX( ANORM, TMP ) END DO ELSE DO I = 1, N TMP = 0.0E+0 IF ( CAPPLY ) THEN DO J = 1, I TMP = TMP + CABS1( A( I, J ) ) / C( J ) END DO DO J = I+1, N TMP = TMP + CABS1( A( J, I ) ) / C( J ) END DO ELSE DO J = 1, I TMP = TMP + CABS1( A( I, J ) ) END DO DO J = I+1, N TMP = TMP + CABS1( A( J, I ) ) END DO END IF RWORK( I ) = TMP ANORM = MAX( ANORM, TMP ) END DO END IF * * Quick return if possible. * IF( N.EQ.0 ) THEN CLA_HERCOND_C = 1.0E+0 RETURN ELSE IF( ANORM .EQ. 0.0E+0 ) THEN RETURN END IF * * Estimate the norm of inv(op(A)). * AINVNM = 0.0E+0 * KASE = 0 10 CONTINUE CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE ) IF( KASE.NE.0 ) THEN IF( KASE.EQ.2 ) THEN * * Multiply by R. * DO I = 1, N WORK( I ) = WORK( I ) * RWORK( I ) END DO * IF ( UP ) THEN CALL CHETRS( 'U', N, 1, AF, LDAF, IPIV, $ WORK, N, INFO ) ELSE CALL CHETRS( 'L', N, 1, AF, LDAF, IPIV, $ WORK, N, INFO ) ENDIF * * Multiply by inv(C). * IF ( CAPPLY ) THEN DO I = 1, N WORK( I ) = WORK( I ) * C( I ) END DO END IF ELSE * * Multiply by inv(C'). * IF ( CAPPLY ) THEN DO I = 1, N WORK( I ) = WORK( I ) * C( I ) END DO END IF * IF ( UP ) THEN CALL CHETRS( 'U', N, 1, AF, LDAF, IPIV, $ WORK, N, INFO ) ELSE CALL CHETRS( 'L', N, 1, AF, LDAF, IPIV, $ WORK, N, INFO ) END IF * * Multiply by R. * DO I = 1, N WORK( I ) = WORK( I ) * RWORK( I ) END DO END IF GO TO 10 END IF * * Compute the estimate of the reciprocal condition number. * IF( AINVNM .NE. 0.0E+0 ) $ CLA_HERCOND_C = 1.0E+0 / AINVNM * RETURN * END