*> \brief \b SDRVST2STG * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SDRVST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, * NOUNIT, A, LDA, D1, D2, D3, D4, EVEIGS, WA1, * WA2, WA3, U, LDU, V, TAU, Z, WORK, LWORK, * IWORK, LIWORK, RESULT, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, LDU, LIWORK, LWORK, NOUNIT, NSIZES, * $ NTYPES * REAL THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER ISEED( 4 ), IWORK( * ), NN( * ) * REAL A( LDA, * ), D1( * ), D2( * ), D3( * ), * $ D4( * ), EVEIGS( * ), RESULT( * ), TAU( * ), * $ U( LDU, * ), V( LDU, * ), WA1( * ), WA2( * ), * $ WA3( * ), WORK( * ), Z( LDU, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SDRVST2STG checks the symmetric eigenvalue problem drivers. *> *> SSTEV computes all eigenvalues and, optionally, *> eigenvectors of a real symmetric tridiagonal matrix. *> *> SSTEVX computes selected eigenvalues and, optionally, *> eigenvectors of a real symmetric tridiagonal matrix. *> *> SSTEVR computes selected eigenvalues and, optionally, *> eigenvectors of a real symmetric tridiagonal matrix *> using the Relatively Robust Representation where it can. *> *> SSYEV computes all eigenvalues and, optionally, *> eigenvectors of a real symmetric matrix. *> *> SSYEVX computes selected eigenvalues and, optionally, *> eigenvectors of a real symmetric matrix. *> *> SSYEVR computes selected eigenvalues and, optionally, *> eigenvectors of a real symmetric matrix *> using the Relatively Robust Representation where it can. *> *> SSPEV computes all eigenvalues and, optionally, *> eigenvectors of a real symmetric matrix in packed *> storage. *> *> SSPEVX computes selected eigenvalues and, optionally, *> eigenvectors of a real symmetric matrix in packed *> storage. *> *> SSBEV computes all eigenvalues and, optionally, *> eigenvectors of a real symmetric band matrix. *> *> SSBEVX computes selected eigenvalues and, optionally, *> eigenvectors of a real symmetric band matrix. *> *> SSYEVD computes all eigenvalues and, optionally, *> eigenvectors of a real symmetric matrix using *> a divide and conquer algorithm. *> *> SSPEVD computes all eigenvalues and, optionally, *> eigenvectors of a real symmetric matrix in packed *> storage, using a divide and conquer algorithm. *> *> SSBEVD computes all eigenvalues and, optionally, *> eigenvectors of a real symmetric band matrix, *> using a divide and conquer algorithm. *> *> When SDRVST2STG is called, a number of matrix "sizes" ("n's") and a *> number of matrix "types" are specified. For each size ("n") *> and each type of matrix, one matrix will be generated and used *> to test the appropriate drivers. For each matrix and each *> driver routine called, the following tests will be performed: *> *> (1) | A - Z D Z' | / ( |A| n ulp ) *> *> (2) | I - Z Z' | / ( n ulp ) *> *> (3) | D1 - D2 | / ( |D1| ulp ) *> *> where Z is the matrix of eigenvectors returned when the *> eigenvector option is given and D1 and D2 are the eigenvalues *> returned with and without the eigenvector option. *> *> The "sizes" are specified by an array NN(1:NSIZES); the value of *> each element NN(j) specifies one size. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. *> Currently, the list of possible types is: *> *> (1) The zero matrix. *> (2) The identity matrix. *> *> (3) A diagonal matrix with evenly spaced eigenvalues *> 1, ..., ULP and random signs. *> (ULP = (first number larger than 1) - 1 ) *> (4) A diagonal matrix with geometrically spaced eigenvalues *> 1, ..., ULP and random signs. *> (5) A diagonal matrix with "clustered" eigenvalues *> 1, ULP, ..., ULP and random signs. *> *> (6) Same as (4), but multiplied by SQRT( overflow threshold ) *> (7) Same as (4), but multiplied by SQRT( underflow threshold ) *> *> (8) A matrix of the form U' D U, where U is orthogonal and *> D has evenly spaced entries 1, ..., ULP with random signs *> on the diagonal. *> *> (9) A matrix of the form U' D U, where U is orthogonal and *> D has geometrically spaced entries 1, ..., ULP with random *> signs on the diagonal. *> *> (10) A matrix of the form U' D U, where U is orthogonal and *> D has "clustered" entries 1, ULP,..., ULP with random *> signs on the diagonal. *> *> (11) Same as (8), but multiplied by SQRT( overflow threshold ) *> (12) Same as (8), but multiplied by SQRT( underflow threshold ) *> *> (13) Symmetric matrix with random entries chosen from (-1,1). *> (14) Same as (13), but multiplied by SQRT( overflow threshold ) *> (15) Same as (13), but multiplied by SQRT( underflow threshold ) *> (16) A band matrix with half bandwidth randomly chosen between *> 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP *> with random signs. *> (17) Same as (16), but multiplied by SQRT( overflow threshold ) *> (18) Same as (16), but multiplied by SQRT( underflow threshold ) *> \endverbatim * * Arguments: * ========== * *> \verbatim *> NSIZES INTEGER *> The number of sizes of matrices to use. If it is zero, *> SDRVST2STG does nothing. It must be at least zero. *> Not modified. *> *> NN INTEGER array, dimension (NSIZES) *> An array containing the sizes to be used for the matrices. *> Zero values will be skipped. The values must be at least *> zero. *> Not modified. *> *> NTYPES INTEGER *> The number of elements in DOTYPE. If it is zero, SDRVST2STG *> does nothing. It must be at least zero. If it is MAXTYP+1 *> and NSIZES is 1, then an additional type, MAXTYP+1 is *> defined, which is to use whatever matrix is in A. This *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and *> DOTYPE(MAXTYP+1) is .TRUE. . *> Not modified. *> *> DOTYPE LOGICAL array, dimension (NTYPES) *> If DOTYPE(j) is .TRUE., then for each size in NN a *> matrix of that size and of type j will be generated. *> If NTYPES is smaller than the maximum number of types *> defined (PARAMETER MAXTYP), then types NTYPES+1 through *> MAXTYP will not be generated. If NTYPES is larger *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) *> will be ignored. *> Not modified. *> *> ISEED INTEGER array, dimension (4) *> On entry ISEED specifies the seed of the random number *> generator. The array elements should be between 0 and 4095; *> if not they will be reduced mod 4096. Also, ISEED(4) must *> be odd. The random number generator uses a linear *> congruential sequence limited to small integers, and so *> should produce machine independent random numbers. The *> values of ISEED are changed on exit, and can be used in the *> next call to SDRVST2STG to continue the same random number *> sequence. *> Modified. *> *> THRESH REAL *> A test will count as "failed" if the "error", computed as *> described above, exceeds THRESH. Note that the error *> is scaled to be O(1), so THRESH should be a reasonably *> small multiple of 1, e.g., 10 or 100. In particular, *> it should not depend on the precision (single vs. double) *> or the size of the matrix. It must be at least zero. *> Not modified. *> *> NOUNIT INTEGER *> The FORTRAN unit number for printing out error messages *> (e.g., if a routine returns IINFO not equal to 0.) *> Not modified. *> *> A REAL array, dimension (LDA , max(NN)) *> Used to hold the matrix whose eigenvalues are to be *> computed. On exit, A contains the last matrix actually *> used. *> Modified. *> *> LDA INTEGER *> The leading dimension of A. It must be at *> least 1 and at least max( NN ). *> Not modified. *> *> D1 REAL array, dimension (max(NN)) *> The eigenvalues of A, as computed by SSTEQR simlutaneously *> with Z. On exit, the eigenvalues in D1 correspond with the *> matrix in A. *> Modified. *> *> D2 REAL array, dimension (max(NN)) *> The eigenvalues of A, as computed by SSTEQR if Z is not *> computed. On exit, the eigenvalues in D2 correspond with *> the matrix in A. *> Modified. *> *> D3 REAL array, dimension (max(NN)) *> The eigenvalues of A, as computed by SSTERF. On exit, the *> eigenvalues in D3 correspond with the matrix in A. *> Modified. *> *> D4 REAL array, dimension *> *> EVEIGS REAL array, dimension (max(NN)) *> The eigenvalues as computed by SSTEV('N', ... ) *> (I reserve the right to change this to the output of *> whichever algorithm computes the most accurate eigenvalues). *> *> WA1 REAL array, dimension *> *> WA2 REAL array, dimension *> *> WA3 REAL array, dimension *> *> U REAL array, dimension (LDU, max(NN)) *> The orthogonal matrix computed by SSYTRD + SORGTR. *> Modified. *> *> LDU INTEGER *> The leading dimension of U, Z, and V. It must be at *> least 1 and at least max( NN ). *> Not modified. *> *> V REAL array, dimension (LDU, max(NN)) *> The Housholder vectors computed by SSYTRD in reducing A to *> tridiagonal form. *> Modified. *> *> TAU REAL array, dimension (max(NN)) *> The Householder factors computed by SSYTRD in reducing A *> to tridiagonal form. *> Modified. *> *> Z REAL array, dimension (LDU, max(NN)) *> The orthogonal matrix of eigenvectors computed by SSTEQR, *> SPTEQR, and SSTEIN. *> Modified. *> *> WORK REAL array, dimension (LWORK) *> Workspace. *> Modified. *> *> LWORK INTEGER *> The number of entries in WORK. This must be at least *> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 4 * Nmax**2 *> where Nmax = max( NN(j), 2 ) and lg = log base 2. *> Not modified. *> *> IWORK INTEGER array, *> dimension (6 + 6*Nmax + 5 * Nmax * lg Nmax ) *> where Nmax = max( NN(j), 2 ) and lg = log base 2. *> Workspace. *> Modified. *> *> RESULT REAL array, dimension (105) *> The values computed by the tests described above. *> The values are currently limited to 1/ulp, to avoid *> overflow. *> Modified. *> *> INFO INTEGER *> If 0, then everything ran OK. *> -1: NSIZES < 0 *> -2: Some NN(j) < 0 *> -3: NTYPES < 0 *> -5: THRESH < 0 *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). *> -16: LDU < 1 or LDU < NMAX. *> -21: LWORK too small. *> If SLATMR, SLATMS, SSYTRD, SORGTR, SSTEQR, SSTERF, *> or SORMTR returns an error code, the *> absolute value of it is returned. *> Modified. *> *>----------------------------------------------------------------------- *> *> Some Local Variables and Parameters: *> ---- ----- --------- --- ---------- *> ZERO, ONE Real 0 and 1. *> MAXTYP The number of types defined. *> NTEST The number of tests performed, or which can *> be performed so far, for the current matrix. *> NTESTT The total number of tests performed so far. *> NMAX Largest value in NN. *> NMATS The number of matrices generated so far. *> NERRS The number of tests which have exceeded THRESH *> so far (computed by SLAFTS). *> COND, IMODE Values to be passed to the matrix generators. *> ANORM Norm of A; passed to matrix generators. *> *> OVFL, UNFL Overflow and underflow thresholds. *> ULP, ULPINV Finest relative precision and its inverse. *> RTOVFL, RTUNFL Square roots of the previous 2 values. *> The following four arrays decode JTYPE: *> KTYPE(j) The general type (1-10) for type "j". *> KMODE(j) The MODE value to be passed to the matrix *> generator for type "j". *> KMAGN(j) The order of magnitude ( O(1), *> O(overflow^(1/2) ), O(underflow^(1/2) ) *> *> The tests performed are: Routine tested *> 1= | A - U S U' | / ( |A| n ulp ) SSTEV('V', ... ) *> 2= | I - U U' | / ( n ulp ) SSTEV('V', ... ) *> 3= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEV('N', ... ) *> 4= | A - U S U' | / ( |A| n ulp ) SSTEVX('V','A', ... ) *> 5= | I - U U' | / ( n ulp ) SSTEVX('V','A', ... ) *> 6= |D(with Z) - EVEIGS| / (|D| ulp) SSTEVX('N','A', ... ) *> 7= | A - U S U' | / ( |A| n ulp ) SSTEVR('V','A', ... ) *> 8= | I - U U' | / ( n ulp ) SSTEVR('V','A', ... ) *> 9= |D(with Z) - EVEIGS| / (|D| ulp) SSTEVR('N','A', ... ) *> 10= | A - U S U' | / ( |A| n ulp ) SSTEVX('V','I', ... ) *> 11= | I - U U' | / ( n ulp ) SSTEVX('V','I', ... ) *> 12= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEVX('N','I', ... ) *> 13= | A - U S U' | / ( |A| n ulp ) SSTEVX('V','V', ... ) *> 14= | I - U U' | / ( n ulp ) SSTEVX('V','V', ... ) *> 15= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEVX('N','V', ... ) *> 16= | A - U S U' | / ( |A| n ulp ) SSTEVD('V', ... ) *> 17= | I - U U' | / ( n ulp ) SSTEVD('V', ... ) *> 18= |D(with Z) - EVEIGS| / (|D| ulp) SSTEVD('N', ... ) *> 19= | A - U S U' | / ( |A| n ulp ) SSTEVR('V','I', ... ) *> 20= | I - U U' | / ( n ulp ) SSTEVR('V','I', ... ) *> 21= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEVR('N','I', ... ) *> 22= | A - U S U' | / ( |A| n ulp ) SSTEVR('V','V', ... ) *> 23= | I - U U' | / ( n ulp ) SSTEVR('V','V', ... ) *> 24= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEVR('N','V', ... ) *> *> 25= | A - U S U' | / ( |A| n ulp ) SSYEV('L','V', ... ) *> 26= | I - U U' | / ( n ulp ) SSYEV('L','V', ... ) *> 27= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEV_2STAGE('L','N', ... ) *> 28= | A - U S U' | / ( |A| n ulp ) SSYEVX('L','V','A', ... ) *> 29= | I - U U' | / ( n ulp ) SSYEVX('L','V','A', ... ) *> 30= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVX_2STAGE('L','N','A', ... ) *> 31= | A - U S U' | / ( |A| n ulp ) SSYEVX('L','V','I', ... ) *> 32= | I - U U' | / ( n ulp ) SSYEVX('L','V','I', ... ) *> 33= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVX_2STAGE('L','N','I', ... ) *> 34= | A - U S U' | / ( |A| n ulp ) SSYEVX('L','V','V', ... ) *> 35= | I - U U' | / ( n ulp ) SSYEVX('L','V','V', ... ) *> 36= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVX_2STAGE('L','N','V', ... ) *> 37= | A - U S U' | / ( |A| n ulp ) SSPEV('L','V', ... ) *> 38= | I - U U' | / ( n ulp ) SSPEV('L','V', ... ) *> 39= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEV('L','N', ... ) *> 40= | A - U S U' | / ( |A| n ulp ) SSPEVX('L','V','A', ... ) *> 41= | I - U U' | / ( n ulp ) SSPEVX('L','V','A', ... ) *> 42= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVX('L','N','A', ... ) *> 43= | A - U S U' | / ( |A| n ulp ) SSPEVX('L','V','I', ... ) *> 44= | I - U U' | / ( n ulp ) SSPEVX('L','V','I', ... ) *> 45= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVX('L','N','I', ... ) *> 46= | A - U S U' | / ( |A| n ulp ) SSPEVX('L','V','V', ... ) *> 47= | I - U U' | / ( n ulp ) SSPEVX('L','V','V', ... ) *> 48= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVX('L','N','V', ... ) *> 49= | A - U S U' | / ( |A| n ulp ) SSBEV('L','V', ... ) *> 50= | I - U U' | / ( n ulp ) SSBEV('L','V', ... ) *> 51= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEV_2STAGE('L','N', ... ) *> 52= | A - U S U' | / ( |A| n ulp ) SSBEVX('L','V','A', ... ) *> 53= | I - U U' | / ( n ulp ) SSBEVX('L','V','A', ... ) *> 54= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVX_2STAGE('L','N','A', ... ) *> 55= | A - U S U' | / ( |A| n ulp ) SSBEVX('L','V','I', ... ) *> 56= | I - U U' | / ( n ulp ) SSBEVX('L','V','I', ... ) *> 57= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVX_2STAGE('L','N','I', ... ) *> 58= | A - U S U' | / ( |A| n ulp ) SSBEVX('L','V','V', ... ) *> 59= | I - U U' | / ( n ulp ) SSBEVX('L','V','V', ... ) *> 60= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVX_2STAGE('L','N','V', ... ) *> 61= | A - U S U' | / ( |A| n ulp ) SSYEVD('L','V', ... ) *> 62= | I - U U' | / ( n ulp ) SSYEVD('L','V', ... ) *> 63= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVD_2STAGE('L','N', ... ) *> 64= | A - U S U' | / ( |A| n ulp ) SSPEVD('L','V', ... ) *> 65= | I - U U' | / ( n ulp ) SSPEVD('L','V', ... ) *> 66= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVD('L','N', ... ) *> 67= | A - U S U' | / ( |A| n ulp ) SSBEVD('L','V', ... ) *> 68= | I - U U' | / ( n ulp ) SSBEVD('L','V', ... ) *> 69= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVD_2STAGE('L','N', ... ) *> 70= | A - U S U' | / ( |A| n ulp ) SSYEVR('L','V','A', ... ) *> 71= | I - U U' | / ( n ulp ) SSYEVR('L','V','A', ... ) *> 72= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVR_2STAGE('L','N','A', ... ) *> 73= | A - U S U' | / ( |A| n ulp ) SSYEVR('L','V','I', ... ) *> 74= | I - U U' | / ( n ulp ) SSYEVR('L','V','I', ... ) *> 75= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVR_2STAGE('L','N','I', ... ) *> 76= | A - U S U' | / ( |A| n ulp ) SSYEVR('L','V','V', ... ) *> 77= | I - U U' | / ( n ulp ) SSYEVR('L','V','V', ... ) *> 78= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVR_2STAGE('L','N','V', ... ) *> *> Tests 25 through 78 are repeated (as tests 79 through 132) *> with UPLO='U' *> *> To be added in 1999 *> *> 79= | A - U S U' | / ( |A| n ulp ) SSPEVR('L','V','A', ... ) *> 80= | I - U U' | / ( n ulp ) SSPEVR('L','V','A', ... ) *> 81= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVR('L','N','A', ... ) *> 82= | A - U S U' | / ( |A| n ulp ) SSPEVR('L','V','I', ... ) *> 83= | I - U U' | / ( n ulp ) SSPEVR('L','V','I', ... ) *> 84= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVR('L','N','I', ... ) *> 85= | A - U S U' | / ( |A| n ulp ) SSPEVR('L','V','V', ... ) *> 86= | I - U U' | / ( n ulp ) SSPEVR('L','V','V', ... ) *> 87= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVR('L','N','V', ... ) *> 88= | A - U S U' | / ( |A| n ulp ) SSBEVR('L','V','A', ... ) *> 89= | I - U U' | / ( n ulp ) SSBEVR('L','V','A', ... ) *> 90= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVR('L','N','A', ... ) *> 91= | A - U S U' | / ( |A| n ulp ) SSBEVR('L','V','I', ... ) *> 92= | I - U U' | / ( n ulp ) SSBEVR('L','V','I', ... ) *> 93= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVR('L','N','I', ... ) *> 94= | A - U S U' | / ( |A| n ulp ) SSBEVR('L','V','V', ... ) *> 95= | I - U U' | / ( n ulp ) SSBEVR('L','V','V', ... ) *> 96= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVR('L','N','V', ... ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup single_eig * * ===================================================================== SUBROUTINE SDRVST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, $ NOUNIT, A, LDA, D1, D2, D3, D4, EVEIGS, WA1, $ WA2, WA3, U, LDU, V, TAU, Z, WORK, LWORK, $ IWORK, LIWORK, RESULT, INFO ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDU, LIWORK, LWORK, NOUNIT, NSIZES, $ NTYPES REAL THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER ISEED( 4 ), IWORK( * ), NN( * ) REAL A( LDA, * ), D1( * ), D2( * ), D3( * ), $ D4( * ), EVEIGS( * ), RESULT( * ), TAU( * ), $ U( LDU, * ), V( LDU, * ), WA1( * ), WA2( * ), $ WA3( * ), WORK( * ), Z( LDU, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE, TWO, TEN PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0, $ TEN = 10.0E0 ) REAL HALF PARAMETER ( HALF = 0.5E+0 ) INTEGER MAXTYP PARAMETER ( MAXTYP = 18 ) * .. * .. Local Scalars .. LOGICAL BADNN CHARACTER UPLO INTEGER I, IDIAG, IHBW, IINFO, IL, IMODE, INDX, IROW, $ ITEMP, ITYPE, IU, IUPLO, J, J1, J2, JCOL, $ JSIZE, JTYPE, KD, LGN, LIWEDC, LWEDC, M, M2, $ M3, MTYPES, N, NERRS, NMATS, NMAX, NTEST, $ NTESTT REAL ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL, $ RTUNFL, TEMP1, TEMP2, TEMP3, ULP, ULPINV, UNFL, $ VL, VU * .. * .. Local Arrays .. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ), $ ISEED3( 4 ), KMAGN( MAXTYP ), KMODE( MAXTYP ), $ KTYPE( MAXTYP ) * .. * .. External Functions .. REAL SLAMCH, SLARND, SSXT1 EXTERNAL SLAMCH, SLARND, SSXT1 * .. * .. External Subroutines .. EXTERNAL ALASVM, SLABAD, SLACPY, SLAFTS, SLASET, SLATMR, $ SLATMS, SSBEV, SSBEVD, SSBEVX, SSPEV, SSPEVD, $ SSPEVX, SSTEV, SSTEVD, SSTEVR, SSTEVX, SSTT21, $ SSTT22, SSYEV, SSYEVD, SSYEVR, SSYEVX, SSYT21, $ SSYEVD_2STAGE, SSYEVR_2STAGE, SSYEVX_2STAGE, $ SSYEV_2STAGE, SSBEV_2STAGE, SSBEVD_2STAGE, $ SSBEVX_2STAGE, SSYTRD_2STAGE, SSYTRD_SY2SB, $ SSYTRD_SB2ST, SSYT22, XERBLA * .. * .. Scalars in Common .. CHARACTER*32 SRNAMT * .. * .. Common blocks .. COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC ABS, REAL, INT, LOG, MAX, MIN, SQRT * .. * .. Data statements .. DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 3*9 / DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1, $ 2, 3, 1, 2, 3 / DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0, $ 0, 0, 4, 4, 4 / * .. * .. Executable Statements .. * * Keep ftrnchek happy * VL = ZERO VU = ZERO * * 1) Check for errors * NTESTT = 0 INFO = 0 * BADNN = .FALSE. NMAX = 1 DO 10 J = 1, NSIZES NMAX = MAX( NMAX, NN( J ) ) IF( NN( J ).LT.0 ) $ BADNN = .TRUE. 10 CONTINUE * * Check for errors * IF( NSIZES.LT.0 ) THEN INFO = -1 ELSE IF( BADNN ) THEN INFO = -2 ELSE IF( NTYPES.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.NMAX ) THEN INFO = -9 ELSE IF( LDU.LT.NMAX ) THEN INFO = -16 ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN INFO = -21 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SDRVST2STG', -INFO ) RETURN END IF * * Quick return if nothing to do * IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 ) $ RETURN * * More Important constants * UNFL = SLAMCH( 'Safe minimum' ) OVFL = SLAMCH( 'Overflow' ) CALL SLABAD( UNFL, OVFL ) ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' ) ULPINV = ONE / ULP RTUNFL = SQRT( UNFL ) RTOVFL = SQRT( OVFL ) * * Loop over sizes, types * DO 20 I = 1, 4 ISEED2( I ) = ISEED( I ) ISEED3( I ) = ISEED( I ) 20 CONTINUE * NERRS = 0 NMATS = 0 * * DO 1740 JSIZE = 1, NSIZES N = NN( JSIZE ) IF( N.GT.0 ) THEN LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) ) IF( 2**LGN.LT.N ) $ LGN = LGN + 1 IF( 2**LGN.LT.N ) $ LGN = LGN + 1 LWEDC = 1 + 4*N + 2*N*LGN + 4*N**2 c LIWEDC = 6 + 6*N + 5*N*LGN LIWEDC = 3 + 5*N ELSE LWEDC = 9 c LIWEDC = 12 LIWEDC = 8 END IF ANINV = ONE / REAL( MAX( 1, N ) ) * IF( NSIZES.NE.1 ) THEN MTYPES = MIN( MAXTYP, NTYPES ) ELSE MTYPES = MIN( MAXTYP+1, NTYPES ) END IF * DO 1730 JTYPE = 1, MTYPES * IF( .NOT.DOTYPE( JTYPE ) ) $ GO TO 1730 NMATS = NMATS + 1 NTEST = 0 * DO 30 J = 1, 4 IOLDSD( J ) = ISEED( J ) 30 CONTINUE * * 2) Compute "A" * * Control parameters: * * KMAGN KMODE KTYPE * =1 O(1) clustered 1 zero * =2 large clustered 2 identity * =3 small exponential (none) * =4 arithmetic diagonal, (w/ eigenvalues) * =5 random log symmetric, w/ eigenvalues * =6 random (none) * =7 random diagonal * =8 random symmetric * =9 band symmetric, w/ eigenvalues * IF( MTYPES.GT.MAXTYP ) $ GO TO 110 * ITYPE = KTYPE( JTYPE ) IMODE = KMODE( JTYPE ) * * Compute norm * GO TO ( 40, 50, 60 )KMAGN( JTYPE ) * 40 CONTINUE ANORM = ONE GO TO 70 * 50 CONTINUE ANORM = ( RTOVFL*ULP )*ANINV GO TO 70 * 60 CONTINUE ANORM = RTUNFL*N*ULPINV GO TO 70 * 70 CONTINUE * CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA ) IINFO = 0 COND = ULPINV * * Special Matrices -- Identity & Jordan block * * Zero * IF( ITYPE.EQ.1 ) THEN IINFO = 0 * ELSE IF( ITYPE.EQ.2 ) THEN * * Identity * DO 80 JCOL = 1, N A( JCOL, JCOL ) = ANORM 80 CONTINUE * ELSE IF( ITYPE.EQ.4 ) THEN * * Diagonal Matrix, [Eigen]values Specified * CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND, $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.5 ) THEN * * Symmetric, eigenvalues specified * CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND, $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.7 ) THEN * * Diagonal, random eigenvalues * IDUMMA( 1 ) = 1 CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.8 ) THEN * * Symmetric, random eigenvalues * IDUMMA( 1 ) = 1 CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.9 ) THEN * * Symmetric banded, eigenvalues specified * IHBW = INT( ( N-1 )*SLARND( 1, ISEED3 ) ) CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND, $ ANORM, IHBW, IHBW, 'Z', U, LDU, WORK( N+1 ), $ IINFO ) * * Store as dense matrix for most routines. * CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA ) DO 100 IDIAG = -IHBW, IHBW IROW = IHBW - IDIAG + 1 J1 = MAX( 1, IDIAG+1 ) J2 = MIN( N, N+IDIAG ) DO 90 J = J1, J2 I = J - IDIAG A( I, J ) = U( IROW, J ) 90 CONTINUE 100 CONTINUE ELSE IINFO = 1 END IF * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) RETURN END IF * 110 CONTINUE * ABSTOL = UNFL + UNFL IF( N.LE.1 ) THEN IL = 1 IU = N ELSE IL = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) ) IU = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) ) IF( IL.GT.IU ) THEN ITEMP = IL IL = IU IU = ITEMP END IF END IF * * 3) If matrix is tridiagonal, call SSTEV and SSTEVX. * IF( JTYPE.LE.7 ) THEN NTEST = 1 DO 120 I = 1, N D1( I ) = REAL( A( I, I ) ) 120 CONTINUE DO 130 I = 1, N - 1 D2( I ) = REAL( A( I+1, I ) ) 130 CONTINUE SRNAMT = 'SSTEV' CALL SSTEV( 'V', N, D1, D2, Z, LDU, WORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSTEV(V)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 1 ) = ULPINV RESULT( 2 ) = ULPINV RESULT( 3 ) = ULPINV GO TO 180 END IF END IF * * Do tests 1 and 2. * DO 140 I = 1, N D3( I ) = REAL( A( I, I ) ) 140 CONTINUE DO 150 I = 1, N - 1 D4( I ) = REAL( A( I+1, I ) ) 150 CONTINUE CALL SSTT21( N, 0, D3, D4, D1, D2, Z, LDU, WORK, $ RESULT( 1 ) ) * NTEST = 3 DO 160 I = 1, N - 1 D4( I ) = REAL( A( I+1, I ) ) 160 CONTINUE SRNAMT = 'SSTEV' CALL SSTEV( 'N', N, D3, D4, Z, LDU, WORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSTEV(N)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 3 ) = ULPINV GO TO 180 END IF END IF * * Do test 3. * TEMP1 = ZERO TEMP2 = ZERO DO 170 J = 1, N TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) ) 170 CONTINUE RESULT( 3 ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * 180 CONTINUE * NTEST = 4 DO 190 I = 1, N EVEIGS( I ) = D3( I ) D1( I ) = REAL( A( I, I ) ) 190 CONTINUE DO 200 I = 1, N - 1 D2( I ) = REAL( A( I+1, I ) ) 200 CONTINUE SRNAMT = 'SSTEVX' CALL SSTEVX( 'V', 'A', N, D1, D2, VL, VU, IL, IU, ABSTOL, $ M, WA1, Z, LDU, WORK, IWORK, IWORK( 5*N+1 ), $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSTEVX(V,A)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 4 ) = ULPINV RESULT( 5 ) = ULPINV RESULT( 6 ) = ULPINV GO TO 250 END IF END IF IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) ) ELSE TEMP3 = ZERO END IF * * Do tests 4 and 5. * DO 210 I = 1, N D3( I ) = REAL( A( I, I ) ) 210 CONTINUE DO 220 I = 1, N - 1 D4( I ) = REAL( A( I+1, I ) ) 220 CONTINUE CALL SSTT21( N, 0, D3, D4, WA1, D2, Z, LDU, WORK, $ RESULT( 4 ) ) * NTEST = 6 DO 230 I = 1, N - 1 D4( I ) = REAL( A( I+1, I ) ) 230 CONTINUE SRNAMT = 'SSTEVX' CALL SSTEVX( 'N', 'A', N, D3, D4, VL, VU, IL, IU, ABSTOL, $ M2, WA2, Z, LDU, WORK, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSTEVX(N,A)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 6 ) = ULPINV GO TO 250 END IF END IF * * Do test 6. * TEMP1 = ZERO TEMP2 = ZERO DO 240 J = 1, N TEMP1 = MAX( TEMP1, ABS( WA2( J ) ), $ ABS( EVEIGS( J ) ) ) TEMP2 = MAX( TEMP2, ABS( WA2( J )-EVEIGS( J ) ) ) 240 CONTINUE RESULT( 6 ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * 250 CONTINUE * NTEST = 7 DO 260 I = 1, N D1( I ) = REAL( A( I, I ) ) 260 CONTINUE DO 270 I = 1, N - 1 D2( I ) = REAL( A( I+1, I ) ) 270 CONTINUE SRNAMT = 'SSTEVR' CALL SSTEVR( 'V', 'A', N, D1, D2, VL, VU, IL, IU, ABSTOL, $ M, WA1, Z, LDU, IWORK, WORK, LWORK, $ IWORK(2*N+1), LIWORK-2*N, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSTEVR(V,A)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 7 ) = ULPINV RESULT( 8 ) = ULPINV GO TO 320 END IF END IF IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) ) ELSE TEMP3 = ZERO END IF * * Do tests 7 and 8. * DO 280 I = 1, N D3( I ) = REAL( A( I, I ) ) 280 CONTINUE DO 290 I = 1, N - 1 D4( I ) = REAL( A( I+1, I ) ) 290 CONTINUE CALL SSTT21( N, 0, D3, D4, WA1, D2, Z, LDU, WORK, $ RESULT( 7 ) ) * NTEST = 9 DO 300 I = 1, N - 1 D4( I ) = REAL( A( I+1, I ) ) 300 CONTINUE SRNAMT = 'SSTEVR' CALL SSTEVR( 'N', 'A', N, D3, D4, VL, VU, IL, IU, ABSTOL, $ M2, WA2, Z, LDU, IWORK, WORK, LWORK, $ IWORK(2*N+1), LIWORK-2*N, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSTEVR(N,A)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 9 ) = ULPINV GO TO 320 END IF END IF * * Do test 9. * TEMP1 = ZERO TEMP2 = ZERO DO 310 J = 1, N TEMP1 = MAX( TEMP1, ABS( WA2( J ) ), $ ABS( EVEIGS( J ) ) ) TEMP2 = MAX( TEMP2, ABS( WA2( J )-EVEIGS( J ) ) ) 310 CONTINUE RESULT( 9 ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * 320 CONTINUE * * NTEST = 10 DO 330 I = 1, N D1( I ) = REAL( A( I, I ) ) 330 CONTINUE DO 340 I = 1, N - 1 D2( I ) = REAL( A( I+1, I ) ) 340 CONTINUE SRNAMT = 'SSTEVX' CALL SSTEVX( 'V', 'I', N, D1, D2, VL, VU, IL, IU, ABSTOL, $ M2, WA2, Z, LDU, WORK, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSTEVX(V,I)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 10 ) = ULPINV RESULT( 11 ) = ULPINV RESULT( 12 ) = ULPINV GO TO 380 END IF END IF * * Do tests 10 and 11. * DO 350 I = 1, N D3( I ) = REAL( A( I, I ) ) 350 CONTINUE DO 360 I = 1, N - 1 D4( I ) = REAL( A( I+1, I ) ) 360 CONTINUE CALL SSTT22( N, M2, 0, D3, D4, WA2, D2, Z, LDU, WORK, $ MAX( 1, M2 ), RESULT( 10 ) ) * * NTEST = 12 DO 370 I = 1, N - 1 D4( I ) = REAL( A( I+1, I ) ) 370 CONTINUE SRNAMT = 'SSTEVX' CALL SSTEVX( 'N', 'I', N, D3, D4, VL, VU, IL, IU, ABSTOL, $ M3, WA3, Z, LDU, WORK, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSTEVX(N,I)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 12 ) = ULPINV GO TO 380 END IF END IF * * Do test 12. * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) RESULT( 12 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, ULP*TEMP3 ) * 380 CONTINUE * NTEST = 12 IF( N.GT.0 ) THEN IF( IL.NE.1 ) THEN VL = WA1( IL ) - MAX( HALF* $ ( WA1( IL )-WA1( IL-1 ) ), TEN*ULP*TEMP3, $ TEN*RTUNFL ) ELSE VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) END IF IF( IU.NE.N ) THEN VU = WA1( IU ) + MAX( HALF* $ ( WA1( IU+1 )-WA1( IU ) ), TEN*ULP*TEMP3, $ TEN*RTUNFL ) ELSE VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) END IF ELSE VL = ZERO VU = ONE END IF * DO 390 I = 1, N D1( I ) = REAL( A( I, I ) ) 390 CONTINUE DO 400 I = 1, N - 1 D2( I ) = REAL( A( I+1, I ) ) 400 CONTINUE SRNAMT = 'SSTEVX' CALL SSTEVX( 'V', 'V', N, D1, D2, VL, VU, IL, IU, ABSTOL, $ M2, WA2, Z, LDU, WORK, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSTEVX(V,V)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 13 ) = ULPINV RESULT( 14 ) = ULPINV RESULT( 15 ) = ULPINV GO TO 440 END IF END IF * IF( M2.EQ.0 .AND. N.GT.0 ) THEN RESULT( 13 ) = ULPINV RESULT( 14 ) = ULPINV RESULT( 15 ) = ULPINV GO TO 440 END IF * * Do tests 13 and 14. * DO 410 I = 1, N D3( I ) = REAL( A( I, I ) ) 410 CONTINUE DO 420 I = 1, N - 1 D4( I ) = REAL( A( I+1, I ) ) 420 CONTINUE CALL SSTT22( N, M2, 0, D3, D4, WA2, D2, Z, LDU, WORK, $ MAX( 1, M2 ), RESULT( 13 ) ) * NTEST = 15 DO 430 I = 1, N - 1 D4( I ) = REAL( A( I+1, I ) ) 430 CONTINUE SRNAMT = 'SSTEVX' CALL SSTEVX( 'N', 'V', N, D3, D4, VL, VU, IL, IU, ABSTOL, $ M3, WA3, Z, LDU, WORK, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSTEVX(N,V)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 15 ) = ULPINV GO TO 440 END IF END IF * * Do test 15. * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) RESULT( 15 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP ) * 440 CONTINUE * NTEST = 16 DO 450 I = 1, N D1( I ) = REAL( A( I, I ) ) 450 CONTINUE DO 460 I = 1, N - 1 D2( I ) = REAL( A( I+1, I ) ) 460 CONTINUE SRNAMT = 'SSTEVD' CALL SSTEVD( 'V', N, D1, D2, Z, LDU, WORK, LWEDC, IWORK, $ LIWEDC, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSTEVD(V)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 16 ) = ULPINV RESULT( 17 ) = ULPINV RESULT( 18 ) = ULPINV GO TO 510 END IF END IF * * Do tests 16 and 17. * DO 470 I = 1, N D3( I ) = REAL( A( I, I ) ) 470 CONTINUE DO 480 I = 1, N - 1 D4( I ) = REAL( A( I+1, I ) ) 480 CONTINUE CALL SSTT21( N, 0, D3, D4, D1, D2, Z, LDU, WORK, $ RESULT( 16 ) ) * NTEST = 18 DO 490 I = 1, N - 1 D4( I ) = REAL( A( I+1, I ) ) 490 CONTINUE SRNAMT = 'SSTEVD' CALL SSTEVD( 'N', N, D3, D4, Z, LDU, WORK, LWEDC, IWORK, $ LIWEDC, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSTEVD(N)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 18 ) = ULPINV GO TO 510 END IF END IF * * Do test 18. * TEMP1 = ZERO TEMP2 = ZERO DO 500 J = 1, N TEMP1 = MAX( TEMP1, ABS( EVEIGS( J ) ), $ ABS( D3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( EVEIGS( J )-D3( J ) ) ) 500 CONTINUE RESULT( 18 ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * 510 CONTINUE * NTEST = 19 DO 520 I = 1, N D1( I ) = REAL( A( I, I ) ) 520 CONTINUE DO 530 I = 1, N - 1 D2( I ) = REAL( A( I+1, I ) ) 530 CONTINUE SRNAMT = 'SSTEVR' CALL SSTEVR( 'V', 'I', N, D1, D2, VL, VU, IL, IU, ABSTOL, $ M2, WA2, Z, LDU, IWORK, WORK, LWORK, $ IWORK(2*N+1), LIWORK-2*N, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSTEVR(V,I)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 19 ) = ULPINV RESULT( 20 ) = ULPINV RESULT( 21 ) = ULPINV GO TO 570 END IF END IF * * DO tests 19 and 20. * DO 540 I = 1, N D3( I ) = REAL( A( I, I ) ) 540 CONTINUE DO 550 I = 1, N - 1 D4( I ) = REAL( A( I+1, I ) ) 550 CONTINUE CALL SSTT22( N, M2, 0, D3, D4, WA2, D2, Z, LDU, WORK, $ MAX( 1, M2 ), RESULT( 19 ) ) * * NTEST = 21 DO 560 I = 1, N - 1 D4( I ) = REAL( A( I+1, I ) ) 560 CONTINUE SRNAMT = 'SSTEVR' CALL SSTEVR( 'N', 'I', N, D3, D4, VL, VU, IL, IU, ABSTOL, $ M3, WA3, Z, LDU, IWORK, WORK, LWORK, $ IWORK(2*N+1), LIWORK-2*N, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSTEVR(N,I)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 21 ) = ULPINV GO TO 570 END IF END IF * * Do test 21. * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) RESULT( 21 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, ULP*TEMP3 ) * 570 CONTINUE * NTEST = 21 IF( N.GT.0 ) THEN IF( IL.NE.1 ) THEN VL = WA1( IL ) - MAX( HALF* $ ( WA1( IL )-WA1( IL-1 ) ), TEN*ULP*TEMP3, $ TEN*RTUNFL ) ELSE VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) END IF IF( IU.NE.N ) THEN VU = WA1( IU ) + MAX( HALF* $ ( WA1( IU+1 )-WA1( IU ) ), TEN*ULP*TEMP3, $ TEN*RTUNFL ) ELSE VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) END IF ELSE VL = ZERO VU = ONE END IF * DO 580 I = 1, N D1( I ) = REAL( A( I, I ) ) 580 CONTINUE DO 590 I = 1, N - 1 D2( I ) = REAL( A( I+1, I ) ) 590 CONTINUE SRNAMT = 'SSTEVR' CALL SSTEVR( 'V', 'V', N, D1, D2, VL, VU, IL, IU, ABSTOL, $ M2, WA2, Z, LDU, IWORK, WORK, LWORK, $ IWORK(2*N+1), LIWORK-2*N, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSTEVR(V,V)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 22 ) = ULPINV RESULT( 23 ) = ULPINV RESULT( 24 ) = ULPINV GO TO 630 END IF END IF * IF( M2.EQ.0 .AND. N.GT.0 ) THEN RESULT( 22 ) = ULPINV RESULT( 23 ) = ULPINV RESULT( 24 ) = ULPINV GO TO 630 END IF * * Do tests 22 and 23. * DO 600 I = 1, N D3( I ) = REAL( A( I, I ) ) 600 CONTINUE DO 610 I = 1, N - 1 D4( I ) = REAL( A( I+1, I ) ) 610 CONTINUE CALL SSTT22( N, M2, 0, D3, D4, WA2, D2, Z, LDU, WORK, $ MAX( 1, M2 ), RESULT( 22 ) ) * NTEST = 24 DO 620 I = 1, N - 1 D4( I ) = REAL( A( I+1, I ) ) 620 CONTINUE SRNAMT = 'SSTEVR' CALL SSTEVR( 'N', 'V', N, D3, D4, VL, VU, IL, IU, ABSTOL, $ M3, WA3, Z, LDU, IWORK, WORK, LWORK, $ IWORK(2*N+1), LIWORK-2*N, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSTEVR(N,V)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 24 ) = ULPINV GO TO 630 END IF END IF * * Do test 24. * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) RESULT( 24 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP ) * 630 CONTINUE * * * ELSE * DO 640 I = 1, 24 RESULT( I ) = ZERO 640 CONTINUE NTEST = 24 END IF * * Perform remaining tests storing upper or lower triangular * part of matrix. * DO 1720 IUPLO = 0, 1 IF( IUPLO.EQ.0 ) THEN UPLO = 'L' ELSE UPLO = 'U' END IF * * 4) Call SSYEV and SSYEVX. * CALL SLACPY( ' ', N, N, A, LDA, V, LDU ) * NTEST = NTEST + 1 SRNAMT = 'SSYEV' CALL SSYEV( 'V', UPLO, N, A, LDU, D1, WORK, LWORK, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSYEV(V,' // UPLO // ')', $ IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 660 END IF END IF * * Do tests 25 and 26 (or +54) * CALL SSYT21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z, $ LDU, TAU, WORK, RESULT( NTEST ) ) * CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) * NTEST = NTEST + 2 SRNAMT = 'SSYEV_2STAGE' CALL SSYEV_2STAGE( 'N', UPLO, N, A, LDU, D3, WORK, LWORK, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 ) $ 'SSYEV_2STAGE(N,' // UPLO // ')', $ IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 660 END IF END IF * * Do test 27 (or +54) * TEMP1 = ZERO TEMP2 = ZERO DO 650 J = 1, N TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) ) 650 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * 660 CONTINUE CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) * NTEST = NTEST + 1 * IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) ) IF( IL.NE.1 ) THEN VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) ELSE IF( N.GT.0 ) THEN VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) END IF IF( IU.NE.N ) THEN VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) ELSE IF( N.GT.0 ) THEN VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) END IF ELSE TEMP3 = ZERO VL = ZERO VU = ONE END IF * SRNAMT = 'SSYEVX' CALL SSYEVX( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M, WA1, Z, LDU, WORK, LWORK, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSYEVX(V,A,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 680 END IF END IF * * Do tests 28 and 29 (or +54) * CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) * CALL SSYT21( 1, UPLO, N, 0, A, LDU, D1, D2, Z, LDU, V, $ LDU, TAU, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 SRNAMT = 'SSYEVX_2STAGE' CALL SSYEVX_2STAGE( 'N', 'A', UPLO, N, A, LDU, VL, VU, $ IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK, $ LWORK, IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 ) $ 'SSYEVX_2STAGE(N,A,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 680 END IF END IF * * Do test 30 (or +54) * TEMP1 = ZERO TEMP2 = ZERO DO 670 J = 1, N TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) ) TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) ) 670 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * 680 CONTINUE * NTEST = NTEST + 1 CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) SRNAMT = 'SSYEVX' CALL SSYEVX( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSYEVX(V,I,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 690 END IF END IF * * Do tests 31 and 32 (or +54) * CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) * CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU, $ V, LDU, TAU, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) SRNAMT = 'SSYEVX_2STAGE' CALL SSYEVX_2STAGE( 'N', 'I', UPLO, N, A, LDU, VL, VU, $ IL, IU, ABSTOL, M3, WA3, Z, LDU, WORK, $ LWORK, IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 ) $ 'SSYEVX_2STAGE(N,I,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 690 END IF END IF * * Do test 33 (or +54) * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) RESULT( NTEST ) = ( TEMP1+TEMP2 ) / $ MAX( UNFL, ULP*TEMP3 ) 690 CONTINUE * NTEST = NTEST + 1 CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) SRNAMT = 'SSYEVX' CALL SSYEVX( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSYEVX(V,V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 700 END IF END IF * * Do tests 34 and 35 (or +54) * CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) * CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU, $ V, LDU, TAU, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) SRNAMT = 'SSYEVX_2STAGE' CALL SSYEVX_2STAGE( 'N', 'V', UPLO, N, A, LDU, VL, VU, $ IL, IU, ABSTOL, M3, WA3, Z, LDU, WORK, $ LWORK, IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 ) $ 'SSYEVX_2STAGE(N,V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 700 END IF END IF * IF( M3.EQ.0 .AND. N.GT.0 ) THEN RESULT( NTEST ) = ULPINV GO TO 700 END IF * * Do test 36 (or +54) * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) ) ELSE TEMP3 = ZERO END IF RESULT( NTEST ) = ( TEMP1+TEMP2 ) / $ MAX( UNFL, TEMP3*ULP ) * 700 CONTINUE * * 5) Call SSPEV and SSPEVX. * CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) * * Load array WORK with the upper or lower triangular * part of the matrix in packed form. * IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 720 J = 1, N DO 710 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 710 CONTINUE 720 CONTINUE ELSE INDX = 1 DO 740 J = 1, N DO 730 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 730 CONTINUE 740 CONTINUE END IF * NTEST = NTEST + 1 SRNAMT = 'SSPEV' CALL SSPEV( 'V', UPLO, N, WORK, D1, Z, LDU, V, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSPEV(V,' // UPLO // ')', $ IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 800 END IF END IF * * Do tests 37 and 38 (or +54) * CALL SSYT21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V, $ LDU, TAU, WORK, RESULT( NTEST ) ) * IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 760 J = 1, N DO 750 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 750 CONTINUE 760 CONTINUE ELSE INDX = 1 DO 780 J = 1, N DO 770 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 770 CONTINUE 780 CONTINUE END IF * NTEST = NTEST + 2 SRNAMT = 'SSPEV' CALL SSPEV( 'N', UPLO, N, WORK, D3, Z, LDU, V, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSPEV(N,' // UPLO // ')', $ IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 800 END IF END IF * * Do test 39 (or +54) * TEMP1 = ZERO TEMP2 = ZERO DO 790 J = 1, N TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) ) 790 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * * Load array WORK with the upper or lower triangular part * of the matrix in packed form. * 800 CONTINUE IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 820 J = 1, N DO 810 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 810 CONTINUE 820 CONTINUE ELSE INDX = 1 DO 840 J = 1, N DO 830 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 830 CONTINUE 840 CONTINUE END IF * NTEST = NTEST + 1 * IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) ) IF( IL.NE.1 ) THEN VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) ELSE IF( N.GT.0 ) THEN VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) END IF IF( IU.NE.N ) THEN VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) ELSE IF( N.GT.0 ) THEN VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) END IF ELSE TEMP3 = ZERO VL = ZERO VU = ONE END IF * SRNAMT = 'SSPEVX' CALL SSPEVX( 'V', 'A', UPLO, N, WORK, VL, VU, IL, IU, $ ABSTOL, M, WA1, Z, LDU, V, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSPEVX(V,A,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 900 END IF END IF * * Do tests 40 and 41 (or +54) * CALL SSYT21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V, $ LDU, TAU, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 * IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 860 J = 1, N DO 850 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 850 CONTINUE 860 CONTINUE ELSE INDX = 1 DO 880 J = 1, N DO 870 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 870 CONTINUE 880 CONTINUE END IF * SRNAMT = 'SSPEVX' CALL SSPEVX( 'N', 'A', UPLO, N, WORK, VL, VU, IL, IU, $ ABSTOL, M2, WA2, Z, LDU, V, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSPEVX(N,A,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 900 END IF END IF * * Do test 42 (or +54) * TEMP1 = ZERO TEMP2 = ZERO DO 890 J = 1, N TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) ) TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) ) 890 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * 900 CONTINUE IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 920 J = 1, N DO 910 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 910 CONTINUE 920 CONTINUE ELSE INDX = 1 DO 940 J = 1, N DO 930 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 930 CONTINUE 940 CONTINUE END IF * NTEST = NTEST + 1 * SRNAMT = 'SSPEVX' CALL SSPEVX( 'V', 'I', UPLO, N, WORK, VL, VU, IL, IU, $ ABSTOL, M2, WA2, Z, LDU, V, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSPEVX(V,I,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 990 END IF END IF * * Do tests 43 and 44 (or +54) * CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU, $ V, LDU, TAU, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 * IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 960 J = 1, N DO 950 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 950 CONTINUE 960 CONTINUE ELSE INDX = 1 DO 980 J = 1, N DO 970 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 970 CONTINUE 980 CONTINUE END IF * SRNAMT = 'SSPEVX' CALL SSPEVX( 'N', 'I', UPLO, N, WORK, VL, VU, IL, IU, $ ABSTOL, M3, WA3, Z, LDU, V, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSPEVX(N,I,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 990 END IF END IF * IF( M3.EQ.0 .AND. N.GT.0 ) THEN RESULT( NTEST ) = ULPINV GO TO 990 END IF * * Do test 45 (or +54) * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) ) ELSE TEMP3 = ZERO END IF RESULT( NTEST ) = ( TEMP1+TEMP2 ) / $ MAX( UNFL, TEMP3*ULP ) * 990 CONTINUE IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 1010 J = 1, N DO 1000 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 1000 CONTINUE 1010 CONTINUE ELSE INDX = 1 DO 1030 J = 1, N DO 1020 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 1020 CONTINUE 1030 CONTINUE END IF * NTEST = NTEST + 1 * SRNAMT = 'SSPEVX' CALL SSPEVX( 'V', 'V', UPLO, N, WORK, VL, VU, IL, IU, $ ABSTOL, M2, WA2, Z, LDU, V, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSPEVX(V,V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 1080 END IF END IF * * Do tests 46 and 47 (or +54) * CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU, $ V, LDU, TAU, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 * IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 1050 J = 1, N DO 1040 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 1040 CONTINUE 1050 CONTINUE ELSE INDX = 1 DO 1070 J = 1, N DO 1060 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 1060 CONTINUE 1070 CONTINUE END IF * SRNAMT = 'SSPEVX' CALL SSPEVX( 'N', 'V', UPLO, N, WORK, VL, VU, IL, IU, $ ABSTOL, M3, WA3, Z, LDU, V, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSPEVX(N,V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 1080 END IF END IF * IF( M3.EQ.0 .AND. N.GT.0 ) THEN RESULT( NTEST ) = ULPINV GO TO 1080 END IF * * Do test 48 (or +54) * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) ) ELSE TEMP3 = ZERO END IF RESULT( NTEST ) = ( TEMP1+TEMP2 ) / $ MAX( UNFL, TEMP3*ULP ) * 1080 CONTINUE * * 6) Call SSBEV and SSBEVX. * IF( JTYPE.LE.7 ) THEN KD = 1 ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN KD = MAX( N-1, 0 ) ELSE KD = IHBW END IF * * Load array V with the upper or lower triangular part * of the matrix in band form. * IF( IUPLO.EQ.1 ) THEN DO 1100 J = 1, N DO 1090 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 1090 CONTINUE 1100 CONTINUE ELSE DO 1120 J = 1, N DO 1110 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 1110 CONTINUE 1120 CONTINUE END IF * NTEST = NTEST + 1 SRNAMT = 'SSBEV' CALL SSBEV( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSBEV(V,' // UPLO // ')', $ IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 1180 END IF END IF * * Do tests 49 and 50 (or ... ) * CALL SSYT21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V, $ LDU, TAU, WORK, RESULT( NTEST ) ) * IF( IUPLO.EQ.1 ) THEN DO 1140 J = 1, N DO 1130 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 1130 CONTINUE 1140 CONTINUE ELSE DO 1160 J = 1, N DO 1150 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 1150 CONTINUE 1160 CONTINUE END IF * NTEST = NTEST + 2 SRNAMT = 'SSBEV_2STAGE' CALL SSBEV_2STAGE( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU, $ WORK, LWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 ) $ 'SSBEV_2STAGE(N,' // UPLO // ')', $ IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 1180 END IF END IF * * Do test 51 (or +54) * TEMP1 = ZERO TEMP2 = ZERO DO 1170 J = 1, N TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) ) 1170 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * * Load array V with the upper or lower triangular part * of the matrix in band form. * 1180 CONTINUE IF( IUPLO.EQ.1 ) THEN DO 1200 J = 1, N DO 1190 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 1190 CONTINUE 1200 CONTINUE ELSE DO 1220 J = 1, N DO 1210 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 1210 CONTINUE 1220 CONTINUE END IF * NTEST = NTEST + 1 SRNAMT = 'SSBEVX' CALL SSBEVX( 'V', 'A', UPLO, N, KD, V, LDU, U, LDU, VL, $ VU, IL, IU, ABSTOL, M, WA2, Z, LDU, WORK, $ IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSBEVX(V,A,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 1280 END IF END IF * * Do tests 52 and 53 (or +54) * CALL SSYT21( 1, UPLO, N, 0, A, LDU, WA2, D2, Z, LDU, V, $ LDU, TAU, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 * IF( IUPLO.EQ.1 ) THEN DO 1240 J = 1, N DO 1230 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 1230 CONTINUE 1240 CONTINUE ELSE DO 1260 J = 1, N DO 1250 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 1250 CONTINUE 1260 CONTINUE END IF * SRNAMT = 'SSBEVX_2STAGE' CALL SSBEVX_2STAGE( 'N', 'A', UPLO, N, KD, V, LDU, $ U, LDU, VL, VU, IL, IU, ABSTOL, M3, WA3, $ Z, LDU, WORK, LWORK, IWORK, IWORK( 5*N+1 ), $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 ) $ 'SSBEVX_2STAGE(N,A,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 1280 END IF END IF * * Do test 54 (or +54) * TEMP1 = ZERO TEMP2 = ZERO DO 1270 J = 1, N TEMP1 = MAX( TEMP1, ABS( WA2( J ) ), ABS( WA3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( WA2( J )-WA3( J ) ) ) 1270 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * 1280 CONTINUE NTEST = NTEST + 1 IF( IUPLO.EQ.1 ) THEN DO 1300 J = 1, N DO 1290 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 1290 CONTINUE 1300 CONTINUE ELSE DO 1320 J = 1, N DO 1310 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 1310 CONTINUE 1320 CONTINUE END IF * SRNAMT = 'SSBEVX' CALL SSBEVX( 'V', 'I', UPLO, N, KD, V, LDU, U, LDU, VL, $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK, $ IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSBEVX(V,I,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 1370 END IF END IF * * Do tests 55 and 56 (or +54) * CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU, $ V, LDU, TAU, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 * IF( IUPLO.EQ.1 ) THEN DO 1340 J = 1, N DO 1330 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 1330 CONTINUE 1340 CONTINUE ELSE DO 1360 J = 1, N DO 1350 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 1350 CONTINUE 1360 CONTINUE END IF * SRNAMT = 'SSBEVX_2STAGE' CALL SSBEVX_2STAGE( 'N', 'I', UPLO, N, KD, V, LDU, $ U, LDU, VL, VU, IL, IU, ABSTOL, M3, WA3, $ Z, LDU, WORK, LWORK, IWORK, IWORK( 5*N+1 ), $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 ) $ 'SSBEVX_2STAGE(N,I,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 1370 END IF END IF * * Do test 57 (or +54) * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) ) ELSE TEMP3 = ZERO END IF RESULT( NTEST ) = ( TEMP1+TEMP2 ) / $ MAX( UNFL, TEMP3*ULP ) * 1370 CONTINUE NTEST = NTEST + 1 IF( IUPLO.EQ.1 ) THEN DO 1390 J = 1, N DO 1380 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 1380 CONTINUE 1390 CONTINUE ELSE DO 1410 J = 1, N DO 1400 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 1400 CONTINUE 1410 CONTINUE END IF * SRNAMT = 'SSBEVX' CALL SSBEVX( 'V', 'V', UPLO, N, KD, V, LDU, U, LDU, VL, $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK, $ IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSBEVX(V,V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 1460 END IF END IF * * Do tests 58 and 59 (or +54) * CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU, $ V, LDU, TAU, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 * IF( IUPLO.EQ.1 ) THEN DO 1430 J = 1, N DO 1420 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 1420 CONTINUE 1430 CONTINUE ELSE DO 1450 J = 1, N DO 1440 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 1440 CONTINUE 1450 CONTINUE END IF * SRNAMT = 'SSBEVX_2STAGE' CALL SSBEVX_2STAGE( 'N', 'V', UPLO, N, KD, V, LDU, $ U, LDU, VL, VU, IL, IU, ABSTOL, M3, WA3, $ Z, LDU, WORK, LWORK, IWORK, IWORK( 5*N+1 ), $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 ) $ 'SSBEVX_2STAGE(N,V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 1460 END IF END IF * IF( M3.EQ.0 .AND. N.GT.0 ) THEN RESULT( NTEST ) = ULPINV GO TO 1460 END IF * * Do test 60 (or +54) * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) ) ELSE TEMP3 = ZERO END IF RESULT( NTEST ) = ( TEMP1+TEMP2 ) / $ MAX( UNFL, TEMP3*ULP ) * 1460 CONTINUE * * 7) Call SSYEVD * CALL SLACPY( ' ', N, N, A, LDA, V, LDU ) * NTEST = NTEST + 1 SRNAMT = 'SSYEVD' CALL SSYEVD( 'V', UPLO, N, A, LDU, D1, WORK, LWEDC, $ IWORK, LIWEDC, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSYEVD(V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 1480 END IF END IF * * Do tests 61 and 62 (or +54) * CALL SSYT21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z, $ LDU, TAU, WORK, RESULT( NTEST ) ) * CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) * NTEST = NTEST + 2 SRNAMT = 'SSYEVD_2STAGE' CALL SSYEVD_2STAGE( 'N', UPLO, N, A, LDU, D3, WORK, $ LWORK, IWORK, LIWEDC, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 ) $ 'SSYEVD_2STAGE(N,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 1480 END IF END IF * * Do test 63 (or +54) * TEMP1 = ZERO TEMP2 = ZERO DO 1470 J = 1, N TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) ) 1470 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * 1480 CONTINUE * * 8) Call SSPEVD. * CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) * * Load array WORK with the upper or lower triangular * part of the matrix in packed form. * IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 1500 J = 1, N DO 1490 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 1490 CONTINUE 1500 CONTINUE ELSE INDX = 1 DO 1520 J = 1, N DO 1510 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 1510 CONTINUE 1520 CONTINUE END IF * NTEST = NTEST + 1 SRNAMT = 'SSPEVD' CALL SSPEVD( 'V', UPLO, N, WORK, D1, Z, LDU, $ WORK( INDX ), LWEDC-INDX+1, IWORK, LIWEDC, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSPEVD(V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 1580 END IF END IF * * Do tests 64 and 65 (or +54) * CALL SSYT21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V, $ LDU, TAU, WORK, RESULT( NTEST ) ) * IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 1540 J = 1, N DO 1530 I = 1, J * WORK( INDX ) = A( I, J ) INDX = INDX + 1 1530 CONTINUE 1540 CONTINUE ELSE INDX = 1 DO 1560 J = 1, N DO 1550 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 1550 CONTINUE 1560 CONTINUE END IF * NTEST = NTEST + 2 SRNAMT = 'SSPEVD' CALL SSPEVD( 'N', UPLO, N, WORK, D3, Z, LDU, $ WORK( INDX ), LWEDC-INDX+1, IWORK, LIWEDC, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSPEVD(N,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 1580 END IF END IF * * Do test 66 (or +54) * TEMP1 = ZERO TEMP2 = ZERO DO 1570 J = 1, N TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) ) 1570 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) 1580 CONTINUE * * 9) Call SSBEVD. * IF( JTYPE.LE.7 ) THEN KD = 1 ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN KD = MAX( N-1, 0 ) ELSE KD = IHBW END IF * * Load array V with the upper or lower triangular part * of the matrix in band form. * IF( IUPLO.EQ.1 ) THEN DO 1600 J = 1, N DO 1590 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 1590 CONTINUE 1600 CONTINUE ELSE DO 1620 J = 1, N DO 1610 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 1610 CONTINUE 1620 CONTINUE END IF * NTEST = NTEST + 1 SRNAMT = 'SSBEVD' CALL SSBEVD( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK, $ LWEDC, IWORK, LIWEDC, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSBEVD(V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 1680 END IF END IF * * Do tests 67 and 68 (or +54) * CALL SSYT21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V, $ LDU, TAU, WORK, RESULT( NTEST ) ) * IF( IUPLO.EQ.1 ) THEN DO 1640 J = 1, N DO 1630 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 1630 CONTINUE 1640 CONTINUE ELSE DO 1660 J = 1, N DO 1650 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 1650 CONTINUE 1660 CONTINUE END IF * NTEST = NTEST + 2 SRNAMT = 'SSBEVD_2STAGE' CALL SSBEVD_2STAGE( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU, $ WORK, LWORK, IWORK, LIWEDC, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 ) $ 'SSBEVD_2STAGE(N,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 1680 END IF END IF * * Do test 69 (or +54) * TEMP1 = ZERO TEMP2 = ZERO DO 1670 J = 1, N TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) ) 1670 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * 1680 CONTINUE * * CALL SLACPY( ' ', N, N, A, LDA, V, LDU ) NTEST = NTEST + 1 SRNAMT = 'SSYEVR' CALL SSYEVR( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M, WA1, Z, LDU, IWORK, WORK, LWORK, $ IWORK(2*N+1), LIWORK-2*N, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSYEVR(V,A,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 1700 END IF END IF * * Do tests 70 and 71 (or ... ) * CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) * CALL SSYT21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V, $ LDU, TAU, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 SRNAMT = 'SSYEVR_2STAGE' CALL SSYEVR_2STAGE( 'N', 'A', UPLO, N, A, LDU, VL, VU, $ IL, IU, ABSTOL, M2, WA2, Z, LDU, IWORK, $ WORK, LWORK, IWORK(2*N+1), LIWORK-2*N, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 ) $ 'SSYEVR_2STAGE(N,A,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 1700 END IF END IF * * Do test 72 (or ... ) * TEMP1 = ZERO TEMP2 = ZERO DO 1690 J = 1, N TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) ) TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) ) 1690 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * 1700 CONTINUE * NTEST = NTEST + 1 CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) SRNAMT = 'SSYEVR' CALL SSYEVR( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK, $ IWORK(2*N+1), LIWORK-2*N, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSYEVR(V,I,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 1710 END IF END IF * * Do tests 73 and 74 (or +54) * CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) * CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU, $ V, LDU, TAU, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) SRNAMT = 'SSYEVR_2STAGE' CALL SSYEVR_2STAGE( 'N', 'I', UPLO, N, A, LDU, VL, VU, $ IL, IU, ABSTOL, M3, WA3, Z, LDU, IWORK, $ WORK, LWORK, IWORK(2*N+1), LIWORK-2*N, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 ) $ 'SSYEVR_2STAGE(N,I,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 1710 END IF END IF * * Do test 75 (or +54) * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) RESULT( NTEST ) = ( TEMP1+TEMP2 ) / $ MAX( UNFL, ULP*TEMP3 ) 1710 CONTINUE * NTEST = NTEST + 1 CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) SRNAMT = 'SSYEVR' CALL SSYEVR( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK, $ IWORK(2*N+1), LIWORK-2*N, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSYEVR(V,V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 700 END IF END IF * * Do tests 76 and 77 (or +54) * CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) * CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU, $ V, LDU, TAU, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) SRNAMT = 'SSYEVR_2STAGE' CALL SSYEVR_2STAGE( 'N', 'V', UPLO, N, A, LDU, VL, VU, $ IL, IU, ABSTOL, M3, WA3, Z, LDU, IWORK, $ WORK, LWORK, IWORK(2*N+1), LIWORK-2*N, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 ) $ 'SSYEVR_2STAGE(N,V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 700 END IF END IF * IF( M3.EQ.0 .AND. N.GT.0 ) THEN RESULT( NTEST ) = ULPINV GO TO 700 END IF * * Do test 78 (or +54) * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) ) ELSE TEMP3 = ZERO END IF RESULT( NTEST ) = ( TEMP1+TEMP2 ) / $ MAX( UNFL, TEMP3*ULP ) * CALL SLACPY( ' ', N, N, V, LDU, A, LDA ) * 1720 CONTINUE * * End of Loop -- Check for RESULT(j) > THRESH * NTESTT = NTESTT + NTEST * CALL SLAFTS( 'SST', N, N, JTYPE, NTEST, RESULT, IOLDSD, $ THRESH, NOUNIT, NERRS ) * 1730 CONTINUE 1740 CONTINUE * * Summary * CALL ALASVM( 'SST', NOUNIT, NERRS, NTESTT, 0 ) * 9999 FORMAT( ' SDRVST2STG: ', A, ' returned INFO=', I6, '.', / 9X, $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' ) * RETURN * * End of SDRVST2STG * END