PROGRAM ZBLAT3 * * Test program for the COMPLEX*16 Level 3 Blas. * * The program must be driven by a short data file. The first 13 records * of the file are read using list-directed input, the last 9 records * are read using the format ( A12,L2 ). An annotated example of a data * file can be obtained by deleting the first 3 characters from the * following 22 lines: * 'CBLAT3.SNAP' NAME OF SNAPSHOT OUTPUT FILE * -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) * F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. * F LOGICAL FLAG, T TO STOP ON FAILURES. * T LOGICAL FLAG, T TO TEST ERROR EXITS. * 2 0 TO TEST COLUMN-MAJOR, 1 TO TEST ROW-MAJOR, 2 TO TEST BOTH * 16.0 THRESHOLD VALUE OF TEST RATIO * 6 NUMBER OF VALUES OF N * 0 1 2 3 5 9 VALUES OF N * 3 NUMBER OF VALUES OF ALPHA * (0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA * 3 NUMBER OF VALUES OF BETA * (0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA * ZGEMM T PUT F FOR NO TEST. SAME COLUMNS. * ZHEMM T PUT F FOR NO TEST. SAME COLUMNS. * ZSYMM T PUT F FOR NO TEST. SAME COLUMNS. * ZTRMM T PUT F FOR NO TEST. SAME COLUMNS. * ZTRSM T PUT F FOR NO TEST. SAME COLUMNS. * ZHERK T PUT F FOR NO TEST. SAME COLUMNS. * ZSYRK T PUT F FOR NO TEST. SAME COLUMNS. * ZHER2K T PUT F FOR NO TEST. SAME COLUMNS. * ZSYR2K T PUT F FOR NO TEST. SAME COLUMNS. * * See: * * Dongarra J. J., Du Croz J. J., Duff I. S. and Hammarling S. * A Set of Level 3 Basic Linear Algebra Subprograms. * * Technical Memorandum No.88 (Revision 1), Mathematics and * Computer Science Division, Argonne National Laboratory, 9700 * South Cass Avenue, Argonne, Illinois 60439, US. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NSUBS PARAMETER ( NSUBS = 9 ) COMPLEX*16 ZERO, ONE PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), $ ONE = ( 1.0D0, 0.0D0 ) ) DOUBLE PRECISION RZERO, RHALF, RONE PARAMETER ( RZERO = 0.0D0, RHALF = 0.5D0, RONE = 1.0D0 ) INTEGER NMAX PARAMETER ( NMAX = 65 ) INTEGER NIDMAX, NALMAX, NBEMAX PARAMETER ( NIDMAX = 9, NALMAX = 7, NBEMAX = 7 ) * .. Local Scalars .. DOUBLE PRECISION EPS, ERR, THRESH INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NTRA, $ LAYOUT LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE, $ TSTERR, CORDER, RORDER CHARACTER*1 TRANSA, TRANSB CHARACTER*12 SNAMET CHARACTER*32 SNAPS * .. Local Arrays .. COMPLEX*16 AA( NMAX*NMAX ), AB( NMAX, 2*NMAX ), $ ALF( NALMAX ), AS( NMAX*NMAX ), $ BB( NMAX*NMAX ), BET( NBEMAX ), $ BS( NMAX*NMAX ), C( NMAX, NMAX ), $ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ), $ W( 2*NMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDMAX ) LOGICAL LTEST( NSUBS ) CHARACTER*12 SNAMES( NSUBS ) * .. External Functions .. DOUBLE PRECISION DDIFF LOGICAL LZE EXTERNAL DDIFF, LZE * .. External Subroutines .. EXTERNAL ZCHK1, ZCHK2, ZCHK3, ZCHK4, ZCHK5,ZMMCH * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK CHARACTER*12 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR COMMON /SRNAMC/SRNAMT * .. Data statements .. DATA SNAMES/'cblas_zgemm ', 'cblas_zhemm ', $ 'cblas_zsymm ', 'cblas_ztrmm ', 'cblas_ztrsm ', $ 'cblas_zherk ', 'cblas_zsyrk ', 'cblas_zher2k', $ 'cblas_zsyr2k'/ * .. Executable Statements .. * NOUTC = NOUT * * Read name and unit number for snapshot output file and open file. * READ( NIN, FMT = * )SNAPS READ( NIN, FMT = * )NTRA TRACE = NTRA.GE.0 IF( TRACE )THEN OPEN( NTRA, FILE = SNAPS, STATUS = 'NEW' ) END IF * Read the flag that directs rewinding of the snapshot file. READ( NIN, FMT = * )REWI REWI = REWI.AND.TRACE * Read the flag that directs stopping on any failure. READ( NIN, FMT = * )SFATAL * Read the flag that indicates whether error exits are to be tested. READ( NIN, FMT = * )TSTERR * Read the flag that indicates whether row-major data layout to be tested. READ( NIN, FMT = * )LAYOUT * Read the threshold value of the test ratio READ( NIN, FMT = * )THRESH * * Read and check the parameter values for the tests. * * Values of N READ( NIN, FMT = * )NIDIM IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN WRITE( NOUT, FMT = 9997 )'N', NIDMAX GO TO 220 END IF READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM ) DO 10 I = 1, NIDIM IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN WRITE( NOUT, FMT = 9996 )NMAX GO TO 220 END IF 10 CONTINUE * Values of ALPHA READ( NIN, FMT = * )NALF IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX GO TO 220 END IF READ( NIN, FMT = * )( ALF( I ), I = 1, NALF ) * Values of BETA READ( NIN, FMT = * )NBET IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX GO TO 220 END IF READ( NIN, FMT = * )( BET( I ), I = 1, NBET ) * * Report values of parameters. * WRITE( NOUT, FMT = 9995 ) WRITE( NOUT, FMT = 9994 )( IDIM( I ), I = 1, NIDIM ) WRITE( NOUT, FMT = 9993 )( ALF( I ), I = 1, NALF ) WRITE( NOUT, FMT = 9992 )( BET( I ), I = 1, NBET ) IF( .NOT.TSTERR )THEN WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9984 ) END IF WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9999 )THRESH WRITE( NOUT, FMT = * ) RORDER = .FALSE. CORDER = .FALSE. IF (LAYOUT.EQ.2) THEN RORDER = .TRUE. CORDER = .TRUE. WRITE( *, FMT = 10002 ) ELSE IF (LAYOUT.EQ.1) THEN RORDER = .TRUE. WRITE( *, FMT = 10001 ) ELSE IF (LAYOUT.EQ.0) THEN CORDER = .TRUE. WRITE( *, FMT = 10000 ) END IF WRITE( *, FMT = * ) * * Read names of subroutines and flags which indicate * whether they are to be tested. * DO 20 I = 1, NSUBS LTEST( I ) = .FALSE. 20 CONTINUE 30 READ( NIN, FMT = 9988, END = 60 )SNAMET, LTESTT DO 40 I = 1, NSUBS IF( SNAMET.EQ.SNAMES( I ) ) $ GO TO 50 40 CONTINUE WRITE( NOUT, FMT = 9990 )SNAMET STOP 50 LTEST( I ) = LTESTT GO TO 30 * 60 CONTINUE CLOSE ( NIN ) * * Compute EPS (the machine precision). * EPS = RONE 70 CONTINUE IF( DDIFF( RONE + EPS, RONE ).EQ.RZERO ) $ GO TO 80 EPS = RHALF*EPS GO TO 70 80 CONTINUE EPS = EPS + EPS WRITE( NOUT, FMT = 9998 )EPS * * Check the reliability of ZMMCH using exact data. * N = MIN( 32, NMAX ) DO 100 J = 1, N DO 90 I = 1, N AB( I, J ) = MAX( I - J + 1, 0 ) 90 CONTINUE AB( J, NMAX + 1 ) = J AB( 1, NMAX + J ) = J C( J, 1 ) = ZERO 100 CONTINUE DO 110 J = 1, N CC( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3 110 CONTINUE * CC holds the exact result. On exit from ZMMCH CT holds * the result computed by ZMMCH. TRANSA = 'N' TRANSB = 'N' CALL ZMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LZE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF TRANSB = 'C' CALL ZMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LZE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF DO 120 J = 1, N AB( J, NMAX + 1 ) = N - J + 1 AB( 1, NMAX + J ) = N - J + 1 120 CONTINUE DO 130 J = 1, N CC( N - J + 1 ) = J*( ( J + 1 )*J )/2 - $ ( ( J + 1 )*J*( J - 1 ) )/3 130 CONTINUE TRANSA = 'C' TRANSB = 'N' CALL ZMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LZE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF TRANSB = 'C' CALL ZMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LZE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF * * Test each subroutine in turn. * DO 200 ISNUM = 1, NSUBS WRITE( NOUT, FMT = * ) IF( .NOT.LTEST( ISNUM ) )THEN * Subprogram is not to be tested. WRITE( NOUT, FMT = 9987 )SNAMES( ISNUM ) ELSE SRNAMT = SNAMES( ISNUM ) * Test error exits. IF( TSTERR )THEN CALL CZ3CHKE( SNAMES( ISNUM ) ) WRITE( NOUT, FMT = * ) END IF * Test computations. INFOT = 0 OK = .TRUE. FATAL = .FALSE. GO TO ( 140, 150, 150, 160, 160, 170, 170, $ 180, 180 )ISNUM * Test ZGEMM, 01. 140 IF (CORDER) THEN CALL ZCHK1(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G, 0 ) END IF IF (RORDER) THEN CALL ZCHK1(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G, 1 ) END IF GO TO 190 * Test ZHEMM, 02, ZSYMM, 03. 150 IF (CORDER) THEN CALL ZCHK2(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G, 0 ) END IF IF (RORDER) THEN CALL ZCHK2(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G, 1 ) END IF GO TO 190 * Test ZTRMM, 04, ZTRSM, 05. 160 IF (CORDER) THEN CALL ZCHK3(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NMAX, AB, $ AA, AS, AB( 1, NMAX + 1 ), BB, BS, CT, G, C, $ 0 ) END IF IF (RORDER) THEN CALL ZCHK3(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NMAX, AB, $ AA, AS, AB( 1, NMAX + 1 ), BB, BS, CT, G, C, $ 1 ) END IF GO TO 190 * Test ZHERK, 06, ZSYRK, 07. 170 IF (CORDER) THEN CALL ZCHK4(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G, 0 ) END IF IF (RORDER) THEN CALL ZCHK4(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G, 1 ) END IF GO TO 190 * Test ZHER2K, 08, ZSYR2K, 09. 180 IF (CORDER) THEN CALL ZCHK5(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, BB, BS, C, CC, CS, CT, G, W, $ 0 ) END IF IF (RORDER) THEN CALL ZCHK5(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, BB, BS, C, CC, CS, CT, G, W, $ 1 ) END IF GO TO 190 * 190 IF( FATAL.AND.SFATAL ) $ GO TO 210 END IF 200 CONTINUE WRITE( NOUT, FMT = 9986 ) GO TO 230 * 210 CONTINUE WRITE( NOUT, FMT = 9985 ) GO TO 230 * 220 CONTINUE WRITE( NOUT, FMT = 9991 ) * 230 CONTINUE IF( TRACE ) $ CLOSE ( NTRA ) CLOSE ( NOUT ) STOP * 10002 FORMAT( ' COLUMN-MAJOR AND ROW-MAJOR DATA LAYOUTS ARE TESTED' ) 10001 FORMAT(' ROW-MAJOR DATA LAYOUT IS TESTED' ) 10000 FORMAT(' COLUMN-MAJOR DATA LAYOUT IS TESTED' ) 9999 FORMAT(' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES', $ 'S THAN', F8.2 ) 9998 FORMAT(' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, E9.1 ) 9997 FORMAT(' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ', $ 'THAN ', I2 ) 9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 ) 9995 FORMAT('TESTS OF THE COMPLEX*16 LEVEL 3 BLAS', //' THE F', $ 'OLLOWING PARAMETER VALUES WILL BE USED:' ) 9994 FORMAT( ' FOR N ', 9I6 ) 9993 FORMAT( ' FOR ALPHA ', $ 7( '(', F4.1, ',', F4.1, ') ', : ) ) 9992 FORMAT( ' FOR BETA ', $ 7( '(', F4.1, ',', F4.1, ') ', : ) ) 9991 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM', $ /' ******* TESTS ABANDONED *******' ) 9990 FORMAT(' SUBPROGRAM NAME ', A12,' NOT RECOGNIZED', /' ******* T', $ 'ESTS ABANDONED *******' ) 9989 FORMAT(' ERROR IN ZMMCH - IN-LINE DOT PRODUCTS ARE BEING EVALU', $ 'ATED WRONGLY.', /' ZMMCH WAS CALLED WITH TRANSA = ', A1, $ 'AND TRANSB = ', A1, /' AND RETURNED SAME = ', L1, ' AND ', $ ' ERR = ', F12.3, '.', /' THIS MAY BE DUE TO FAULTS IN THE ', $ 'ARITHMETIC OR THE COMPILER.', /' ******* TESTS ABANDONED ', $ '*******' ) 9988 FORMAT( A12,L2 ) 9987 FORMAT( 1X, A12,' WAS NOT TESTED' ) 9986 FORMAT( /' END OF TESTS' ) 9985 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' ) 9984 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' ) * * End of ZBLAT3. * END SUBROUTINE ZCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G, $ IORDER ) * * Tests ZGEMM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX*16 ZERO PARAMETER ( ZERO = ( 0.0, 0.0 ) ) DOUBLE PRECISION RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA, IORDER LOGICAL FATAL, REWI, TRACE CHARACTER*12 SNAME * .. Array Arguments .. COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX*16 ALPHA, ALS, BETA, BLS DOUBLE PRECISION ERR, ERRMAX INTEGER I, IA, IB, ICA, ICB, IK, IM, IN, K, KS, LAA, $ LBB, LCC, LDA, LDAS, LDB, LDBS, LDC, LDCS, M, $ MA, MB, MS, N, NA, NARGS, NB, NC, NS LOGICAL NULL, RESET, SAME, TRANA, TRANB CHARACTER*1 TRANAS, TRANBS, TRANSA, TRANSB CHARACTER*3 ICH * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LZE, LZERES EXTERNAL LZE, LZERES * .. External Subroutines .. EXTERNAL CZGEMM, ZMAKE, ZMMCH * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'NTC'/ * .. Executable Statements .. * NARGS = 13 NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 110 IM = 1, NIDIM M = IDIM( IM ) * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = M IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 100 LCC = LDC*N NULL = N.LE.0.OR.M.LE.0 * DO 90 IK = 1, NIDIM K = IDIM( IK ) * DO 80 ICA = 1, 3 TRANSA = ICH( ICA: ICA ) TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C' * IF( TRANA )THEN MA = K NA = M ELSE MA = M NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * * Generate the matrix A. * CALL ZMAKE( 'ge', ' ', ' ', MA, NA, A, NMAX, AA, LDA, $ RESET, ZERO ) * DO 70 ICB = 1, 3 TRANSB = ICH( ICB: ICB ) TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C' * IF( TRANB )THEN MB = N NB = K ELSE MB = K NB = N END IF * Set LDB to 1 more than minimum value if room. LDB = MB IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 70 LBB = LDB*NB * * Generate the matrix B. * CALL ZMAKE( 'ge', ' ', ' ', MB, NB, B, NMAX, BB, $ LDB, RESET, ZERO ) * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL ZMAKE( 'ge', ' ', ' ', M, N, C, NMAX, $ CC, LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * TRANAS = TRANSA TRANBS = TRANSB MS = M NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB BLS = BETA DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ CALL ZPRCN1(NTRA, NC, SNAME, IORDER, $ TRANSA, TRANSB, M, N, K, ALPHA, LDA, $ LDB, BETA, LDC) IF( REWI ) $ REWIND NTRA CALL CZGEMM( IORDER, TRANSA, TRANSB, M, N, $ K, ALPHA, AA, LDA, BB, LDB, $ BETA, CC, LDC ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = TRANSA.EQ.TRANAS ISAME( 2 ) = TRANSB.EQ.TRANBS ISAME( 3 ) = MS.EQ.M ISAME( 4 ) = NS.EQ.N ISAME( 5 ) = KS.EQ.K ISAME( 6 ) = ALS.EQ.ALPHA ISAME( 7 ) = LZE( AS, AA, LAA ) ISAME( 8 ) = LDAS.EQ.LDA ISAME( 9 ) = LZE( BS, BB, LBB ) ISAME( 10 ) = LDBS.EQ.LDB ISAME( 11 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 12 ) = LZE( CS, CC, LCC ) ELSE ISAME( 12 ) = LZERES( 'ge', ' ', M, N, CS, $ CC, LDC ) END IF ISAME( 13 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report * and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result. * CALL ZMMCH( TRANSA, TRANSB, M, N, K, $ ALPHA, A, NMAX, B, NMAX, BETA, $ C, NMAX, CT, G, CC, LDC, EPS, $ ERR, FATAL, NOUT, .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 120 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10000 )SNAME, NC IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10001 )SNAME, NC ELSE IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10002 )SNAME, NC, ERRMAX IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10003 )SNAME, NC, ERRMAX END IF GO TO 130 * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME CALL ZPRCN1(NOUT, NC, SNAME, IORDER, TRANSA, TRANSB, $ M, N, K, ALPHA, LDA, LDB, BETA, LDC) * 130 CONTINUE RETURN * 10003 FORMAT( ' ', A12,' COMPLETED THE ROW-MAJOR COMPUTATIONAL ', $ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ', $ 'RATIO ', F8.2, ' - SUSPECT *******' ) 10002 FORMAT( ' ', A12,' COMPLETED THE COLUMN-MAJOR COMPUTATIONAL ', $ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ', $ 'RATIO ', F8.2, ' - SUSPECT *******' ) 10001 FORMAT( ' ', A12,' PASSED THE ROW-MAJOR COMPUTATIONAL TESTS', $ ' (', I6, ' CALL', 'S)' ) 10000 FORMAT( ' ', A12,' PASSED THE COLUMN-MAJOR COMPUTATIONAL TESTS', $ ' (', I6, ' CALL', 'S)' ) 9998 FORMAT(' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9996 FORMAT( ' ******* ', A12,' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A12,'(''', A1, ''',''', A1, ''',', $ 3( I3, ',' ), '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, $ ',(', F4.1, ',', F4.1, '), C,', I3, ').' ) 9994 FORMAT(' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of ZCHK1. * END * SUBROUTINE ZPRCN1(NOUT, NC, SNAME, IORDER, TRANSA, TRANSB, M, N, $ K, ALPHA, LDA, LDB, BETA, LDC) INTEGER NOUT, NC, IORDER, M, N, K, LDA, LDB, LDC DOUBLE COMPLEX ALPHA, BETA CHARACTER*1 TRANSA, TRANSB CHARACTER*12 SNAME CHARACTER*14 CRC, CTA,CTB IF (TRANSA.EQ.'N')THEN CTA = ' CblasNoTrans' ELSE IF (TRANSA.EQ.'T')THEN CTA = ' CblasTrans' ELSE CTA = 'CblasConjTrans' END IF IF (TRANSB.EQ.'N')THEN CTB = ' CblasNoTrans' ELSE IF (TRANSB.EQ.'T')THEN CTB = ' CblasTrans' ELSE CTB = 'CblasConjTrans' END IF IF (IORDER.EQ.1)THEN CRC = ' CblasRowMajor' ELSE CRC = ' CblasColMajor' END IF WRITE(NOUT, FMT = 9995)NC,SNAME,CRC, CTA,CTB WRITE(NOUT, FMT = 9994)M, N, K, ALPHA, LDA, LDB, BETA, LDC 9995 FORMAT( 1X, I6, ': ', A12,'(', A14, ',', A14, ',', A14, ',') 9994 FORMAT( 10X, 3( I3, ',' ) ,' (', F4.1,',',F4.1,') , A,', $ I3, ', B,', I3, ', (', F4.1,',',F4.1,') , C,', I3, ').' ) END * SUBROUTINE ZCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G, $ IORDER ) * * Tests ZHEMM and ZSYMM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX*16 ZERO PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ) ) DOUBLE PRECISION RZERO PARAMETER ( RZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA, IORDER LOGICAL FATAL, REWI, TRACE CHARACTER*12 SNAME * .. Array Arguments .. COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX*16 ALPHA, ALS, BETA, BLS DOUBLE PRECISION ERR, ERRMAX INTEGER I, IA, IB, ICS, ICU, IM, IN, LAA, LBB, LCC, $ LDA, LDAS, LDB, LDBS, LDC, LDCS, M, MS, N, NA, $ NARGS, NC, NS LOGICAL CONJ, LEFT, NULL, RESET, SAME CHARACTER*1 SIDE, SIDES, UPLO, UPLOS CHARACTER*2 ICHS, ICHU * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LZE, LZERES EXTERNAL LZE, LZERES * .. External Subroutines .. EXTERNAL CZHEMM, ZMAKE, ZMMCH, CZSYMM * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHS/'LR'/, ICHU/'UL'/ * .. Executable Statements .. CONJ = SNAME( 8: 9 ).EQ.'he' * NARGS = 12 NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 100 IM = 1, NIDIM M = IDIM( IM ) * DO 90 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = M IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 90 LCC = LDC*N NULL = N.LE.0.OR.M.LE.0 * Set LDB to 1 more than minimum value if room. LDB = M IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 90 LBB = LDB*N * * Generate the matrix B. * CALL ZMAKE( 'ge', ' ', ' ', M, N, B, NMAX, BB, LDB, RESET, $ ZERO ) * DO 80 ICS = 1, 2 SIDE = ICHS( ICS: ICS ) LEFT = SIDE.EQ.'L' * IF( LEFT )THEN NA = M ELSE NA = N END IF * Set LDA to 1 more than minimum value if room. LDA = NA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * DO 70 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * * Generate the hermitian or symmetric matrix A. * CALL ZMAKE(SNAME( 8: 9 ), UPLO, ' ', NA, NA, A, NMAX, $ AA, LDA, RESET, ZERO ) * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL ZMAKE( 'ge', ' ', ' ', M, N, C, NMAX, CC, $ LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * SIDES = SIDE UPLOS = UPLO MS = M NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB BLS = BETA DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ CALL ZPRCN2(NTRA, NC, SNAME, IORDER, $ SIDE, UPLO, M, N, ALPHA, LDA, LDB, $ BETA, LDC) IF( REWI ) $ REWIND NTRA IF( CONJ )THEN CALL CZHEMM( IORDER, SIDE, UPLO, M, N, $ ALPHA, AA, LDA, BB, LDB, BETA, $ CC, LDC ) ELSE CALL CZSYMM( IORDER, SIDE, UPLO, M, N, $ ALPHA, AA, LDA, BB, LDB, BETA, $ CC, LDC ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 110 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = SIDES.EQ.SIDE ISAME( 2 ) = UPLOS.EQ.UPLO ISAME( 3 ) = MS.EQ.M ISAME( 4 ) = NS.EQ.N ISAME( 5 ) = ALS.EQ.ALPHA ISAME( 6 ) = LZE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA ISAME( 8 ) = LZE( BS, BB, LBB ) ISAME( 9 ) = LDBS.EQ.LDB ISAME( 10 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 11 ) = LZE( CS, CC, LCC ) ELSE ISAME( 11 ) = LZERES( 'ge', ' ', M, N, CS, $ CC, LDC ) END IF ISAME( 12 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 110 END IF * IF( .NOT.NULL )THEN * * Check the result. * IF( LEFT )THEN CALL ZMMCH( 'N', 'N', M, N, M, ALPHA, A, $ NMAX, B, NMAX, BETA, C, NMAX, $ CT, G, CC, LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL ZMMCH( 'N', 'N', M, N, N, ALPHA, B, $ NMAX, A, NMAX, BETA, C, NMAX, $ CT, G, CC, LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 110 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10000 )SNAME, NC IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10001 )SNAME, NC ELSE IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10002 )SNAME, NC, ERRMAX IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10003 )SNAME, NC, ERRMAX END IF GO TO 120 * 110 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME CALL ZPRCN2(NOUT, NC, SNAME, IORDER, SIDE, UPLO, M, N, ALPHA, LDA, $ LDB, BETA, LDC) * 120 CONTINUE RETURN * 10003 FORMAT( ' ', A12,' COMPLETED THE ROW-MAJOR COMPUTATIONAL ', $ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ', $ 'RATIO ', F8.2, ' - SUSPECT *******' ) 10002 FORMAT( ' ', A12,' COMPLETED THE COLUMN-MAJOR COMPUTATIONAL ', $ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ', $ 'RATIO ', F8.2, ' - SUSPECT *******' ) 10001 FORMAT( ' ', A12,' PASSED THE ROW-MAJOR COMPUTATIONAL TESTS', $ ' (', I6, ' CALL', 'S)' ) 10000 FORMAT( ' ', A12,' PASSED THE COLUMN-MAJOR COMPUTATIONAL TESTS', $ ' (', I6, ' CALL', 'S)' ) 9998 FORMAT(' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9996 FORMAT( ' ******* ', A12,' FAILED ON CALL NUMBER:' ) 9995 FORMAT(1X, I6, ': ', A12,'(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',(', F4.1, $ ',', F4.1, '), C,', I3, ') .' ) 9994 FORMAT(' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of ZCHK2. * END * SUBROUTINE ZPRCN2(NOUT, NC, SNAME, IORDER, SIDE, UPLO, M, N, $ ALPHA, LDA, LDB, BETA, LDC) INTEGER NOUT, NC, IORDER, M, N, LDA, LDB, LDC DOUBLE COMPLEX ALPHA, BETA CHARACTER*1 SIDE, UPLO CHARACTER*12 SNAME CHARACTER*14 CRC, CS,CU IF (SIDE.EQ.'L')THEN CS = ' CblasLeft' ELSE CS = ' CblasRight' END IF IF (UPLO.EQ.'U')THEN CU = ' CblasUpper' ELSE CU = ' CblasLower' END IF IF (IORDER.EQ.1)THEN CRC = ' CblasRowMajor' ELSE CRC = ' CblasColMajor' END IF WRITE(NOUT, FMT = 9995)NC,SNAME,CRC, CS,CU WRITE(NOUT, FMT = 9994)M, N, ALPHA, LDA, LDB, BETA, LDC 9995 FORMAT( 1X, I6, ': ', A12,'(', A14, ',', A14, ',', A14, ',') 9994 FORMAT( 10X, 2( I3, ',' ),' (',F4.1,',',F4.1, '), A,', I3, $ ', B,', I3, ', (',F4.1,',',F4.1, '), ', 'C,', I3, ').' ) END * SUBROUTINE ZCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NMAX, A, AA, AS, $ B, BB, BS, CT, G, C, IORDER ) * * Tests ZTRMM and ZTRSM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX*16 ZERO, ONE PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), ONE = ( 1.0D0, 0.0D0 ) ) DOUBLE PRECISION RZERO PARAMETER ( RZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER NALF, NIDIM, NMAX, NOUT, NTRA, IORDER LOGICAL FATAL, REWI, TRACE CHARACTER*12 SNAME * .. Array Arguments .. COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CT( NMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX*16 ALPHA, ALS DOUBLE PRECISION ERR, ERRMAX INTEGER I, IA, ICD, ICS, ICT, ICU, IM, IN, J, LAA, LBB, $ LDA, LDAS, LDB, LDBS, M, MS, N, NA, NARGS, NC, $ NS LOGICAL LEFT, NULL, RESET, SAME CHARACTER*1 DIAG, DIAGS, SIDE, SIDES, TRANAS, TRANSA, UPLO, $ UPLOS CHARACTER*2 ICHD, ICHS, ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LZE, LZERES EXTERNAL LZE, LZERES * .. External Subroutines .. EXTERNAL ZMAKE, ZMMCH, CZTRMM, CZTRSM * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/, ICHS/'LR'/ * .. Executable Statements .. * NARGS = 11 NC = 0 RESET = .TRUE. ERRMAX = RZERO * Set up zero matrix for ZMMCH. DO 20 J = 1, NMAX DO 10 I = 1, NMAX C( I, J ) = ZERO 10 CONTINUE 20 CONTINUE * DO 140 IM = 1, NIDIM M = IDIM( IM ) * DO 130 IN = 1, NIDIM N = IDIM( IN ) * Set LDB to 1 more than minimum value if room. LDB = M IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 130 LBB = LDB*N NULL = M.LE.0.OR.N.LE.0 * DO 120 ICS = 1, 2 SIDE = ICHS( ICS: ICS ) LEFT = SIDE.EQ.'L' IF( LEFT )THEN NA = M ELSE NA = N END IF * Set LDA to 1 more than minimum value if room. LDA = NA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 130 LAA = LDA*NA * DO 110 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * DO 100 ICT = 1, 3 TRANSA = ICHT( ICT: ICT ) * DO 90 ICD = 1, 2 DIAG = ICHD( ICD: ICD ) * DO 80 IA = 1, NALF ALPHA = ALF( IA ) * * Generate the matrix A. * CALL ZMAKE( 'tr', UPLO, DIAG, NA, NA, A, $ NMAX, AA, LDA, RESET, ZERO ) * * Generate the matrix B. * CALL ZMAKE( 'ge', ' ', ' ', M, N, B, NMAX, $ BB, LDB, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * SIDES = SIDE UPLOS = UPLO TRANAS = TRANSA DIAGS = DIAG MS = M NS = N ALS = ALPHA DO 30 I = 1, LAA AS( I ) = AA( I ) 30 CONTINUE LDAS = LDA DO 40 I = 1, LBB BS( I ) = BB( I ) 40 CONTINUE LDBS = LDB * * Call the subroutine. * IF( SNAME( 10: 11 ).EQ.'mm' )THEN IF( TRACE ) $ CALL ZPRCN3( NTRA, NC, SNAME, IORDER, $ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, $ LDA, LDB) IF( REWI ) $ REWIND NTRA CALL CZTRMM(IORDER, SIDE, UPLO, TRANSA, $ DIAG, M, N, ALPHA, AA, LDA, $ BB, LDB ) ELSE IF( SNAME( 10: 11 ).EQ.'sm' )THEN IF( TRACE ) $ CALL ZPRCN3( NTRA, NC, SNAME, IORDER, $ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, $ LDA, LDB) IF( REWI ) $ REWIND NTRA CALL CZTRSM(IORDER, SIDE, UPLO, TRANSA, $ DIAG, M, N, ALPHA, AA, LDA, $ BB, LDB ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 150 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = SIDES.EQ.SIDE ISAME( 2 ) = UPLOS.EQ.UPLO ISAME( 3 ) = TRANAS.EQ.TRANSA ISAME( 4 ) = DIAGS.EQ.DIAG ISAME( 5 ) = MS.EQ.M ISAME( 6 ) = NS.EQ.N ISAME( 7 ) = ALS.EQ.ALPHA ISAME( 8 ) = LZE( AS, AA, LAA ) ISAME( 9 ) = LDAS.EQ.LDA IF( NULL )THEN ISAME( 10 ) = LZE( BS, BB, LBB ) ELSE ISAME( 10 ) = LZERES( 'ge', ' ', M, N, BS, $ BB, LDB ) END IF ISAME( 11 ) = LDBS.EQ.LDB * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 50 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 50 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 150 END IF * IF( .NOT.NULL )THEN IF( SNAME( 10: 11 ).EQ.'mm' )THEN * * Check the result. * IF( LEFT )THEN CALL ZMMCH( TRANSA, 'N', M, N, M, $ ALPHA, A, NMAX, B, NMAX, $ ZERO, C, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL ZMMCH( 'N', TRANSA, M, N, N, $ ALPHA, B, NMAX, A, NMAX, $ ZERO, C, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF ELSE IF( SNAME( 10: 11 ).EQ.'sm' )THEN * * Compute approximation to original * matrix. * DO 70 J = 1, N DO 60 I = 1, M C( I, J ) = BB( I + ( J - 1 )* $ LDB ) BB( I + ( J - 1 )*LDB ) = ALPHA* $ B( I, J ) 60 CONTINUE 70 CONTINUE * IF( LEFT )THEN CALL ZMMCH( TRANSA, 'N', M, N, M, $ ONE, A, NMAX, C, NMAX, $ ZERO, B, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .FALSE. ) ELSE CALL ZMMCH( 'N', TRANSA, M, N, N, $ ONE, C, NMAX, A, NMAX, $ ZERO, B, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .FALSE. ) END IF END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 150 END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * 140 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10000 )SNAME, NC IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10001 )SNAME, NC ELSE IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10002 )SNAME, NC, ERRMAX IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10003 )SNAME, NC, ERRMAX END IF GO TO 160 * 150 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( TRACE ) $ CALL ZPRCN3( NTRA, NC, SNAME, IORDER, SIDE, UPLO, TRANSA, DIAG, $ M, N, ALPHA, LDA, LDB) * 160 CONTINUE RETURN * 10003 FORMAT( ' ', A12,' COMPLETED THE ROW-MAJOR COMPUTATIONAL ', $ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ', $ 'RATIO ', F8.2, ' - SUSPECT *******' ) 10002 FORMAT( ' ', A12,' COMPLETED THE COLUMN-MAJOR COMPUTATIONAL ', $ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ', $ 'RATIO ', F8.2, ' - SUSPECT *******' ) 10001 FORMAT( ' ', A12,' PASSED THE ROW-MAJOR COMPUTATIONAL TESTS', $ ' (', I6, ' CALL', 'S)' ) 10000 FORMAT( ' ', A12,' PASSED THE COLUMN-MAJOR COMPUTATIONAL TESTS', $ ' (', I6, ' CALL', 'S)' ) 9998 FORMAT(' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9996 FORMAT(' ******* ', A12,' FAILED ON CALL NUMBER:' ) 9995 FORMAT(1X, I6, ': ', A12,'(', 4( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ') ', $ ' .' ) 9994 FORMAT(' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of ZCHK3. * END * SUBROUTINE ZPRCN3(NOUT, NC, SNAME, IORDER, SIDE, UPLO, TRANSA, $ DIAG, M, N, ALPHA, LDA, LDB) INTEGER NOUT, NC, IORDER, M, N, LDA, LDB DOUBLE COMPLEX ALPHA CHARACTER*1 SIDE, UPLO, TRANSA, DIAG CHARACTER*12 SNAME CHARACTER*14 CRC, CS, CU, CA, CD IF (SIDE.EQ.'L')THEN CS = ' CblasLeft' ELSE CS = ' CblasRight' END IF IF (UPLO.EQ.'U')THEN CU = ' CblasUpper' ELSE CU = ' CblasLower' END IF IF (TRANSA.EQ.'N')THEN CA = ' CblasNoTrans' ELSE IF (TRANSA.EQ.'T')THEN CA = ' CblasTrans' ELSE CA = 'CblasConjTrans' END IF IF (DIAG.EQ.'N')THEN CD = ' CblasNonUnit' ELSE CD = ' CblasUnit' END IF IF (IORDER.EQ.1)THEN CRC = ' CblasRowMajor' ELSE CRC = ' CblasColMajor' END IF WRITE(NOUT, FMT = 9995)NC,SNAME,CRC, CS,CU WRITE(NOUT, FMT = 9994)CA, CD, M, N, ALPHA, LDA, LDB 9995 FORMAT( 1X, I6, ': ', A12,'(', A14, ',', A14, ',', A14, ',') 9994 FORMAT( 10X, 2( A14, ',') , 2( I3, ',' ), ' (', F4.1, ',', $ F4.1, '), A,', I3, ', B,', I3, ').' ) END * SUBROUTINE ZCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G, $ IORDER ) * * Tests ZHERK and ZSYRK. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX*16 ZERO PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ) ) DOUBLE PRECISION RONE, RZERO PARAMETER ( RONE = 1.0D0, RZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA, IORDER LOGICAL FATAL, REWI, TRACE CHARACTER*12 SNAME * .. Array Arguments .. COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX*16 ALPHA, ALS, BETA, BETS DOUBLE PRECISION ERR, ERRMAX, RALPHA, RALS, RBETA, RBETS INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, K, KS, $ LAA, LCC, LDA, LDAS, LDC, LDCS, LJ, MA, N, NA, $ NARGS, NC, NS LOGICAL CONJ, NULL, RESET, SAME, TRAN, UPPER CHARACTER*1 TRANS, TRANSS, TRANST, UPLO, UPLOS CHARACTER*2 ICHT, ICHU * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LZE, LZERES EXTERNAL LZE, LZERES * .. External Subroutines .. EXTERNAL CZHERK, ZMAKE, ZMMCH, CZSYRK * .. Intrinsic Functions .. INTRINSIC DCMPLX, MAX, DBLE * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHT/'NC'/, ICHU/'UL'/ * .. Executable Statements .. CONJ = SNAME( 8: 9 ).EQ.'he' * NARGS = 10 NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = N IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 100 LCC = LDC*N * DO 90 IK = 1, NIDIM K = IDIM( IK ) * DO 80 ICT = 1, 2 TRANS = ICHT( ICT: ICT ) TRAN = TRANS.EQ.'C' IF( TRAN.AND..NOT.CONJ ) $ TRANS = 'T' IF( TRAN )THEN MA = K NA = N ELSE MA = N NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * * Generate the matrix A. * CALL ZMAKE( 'ge', ' ', ' ', MA, NA, A, NMAX, AA, LDA, $ RESET, ZERO ) * DO 70 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) UPPER = UPLO.EQ.'U' * DO 60 IA = 1, NALF ALPHA = ALF( IA ) IF( CONJ )THEN RALPHA = DBLE( ALPHA ) ALPHA = DCMPLX( RALPHA, RZERO ) END IF * DO 50 IB = 1, NBET BETA = BET( IB ) IF( CONJ )THEN RBETA = DBLE( BETA ) BETA = DCMPLX( RBETA, RZERO ) END IF NULL = N.LE.0 IF( CONJ ) $ NULL = NULL.OR.( ( K.LE.0.OR.RALPHA.EQ. $ RZERO ).AND.RBETA.EQ.RONE ) * * Generate the matrix C. * CALL ZMAKE( SNAME( 8: 9 ), UPLO, ' ', N, N, C, $ NMAX, CC, LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS NS = N KS = K IF( CONJ )THEN RALS = RALPHA ELSE ALS = ALPHA END IF DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA IF( CONJ )THEN RBETS = RBETA ELSE BETS = BETA END IF DO 20 I = 1, LCC CS( I ) = CC( I ) 20 CONTINUE LDCS = LDC * * Call the subroutine. * IF( CONJ )THEN IF( TRACE ) $ CALL ZPRCN6( NTRA, NC, SNAME, IORDER, $ UPLO, TRANS, N, K, RALPHA, LDA, RBETA, $ LDC) IF( REWI ) $ REWIND NTRA CALL CZHERK( IORDER, UPLO, TRANS, N, K, $ RALPHA, AA, LDA, RBETA, CC, $ LDC ) ELSE IF( TRACE ) $ CALL ZPRCN4( NTRA, NC, SNAME, IORDER, $ UPLO, TRANS, N, K, ALPHA, LDA, BETA, LDC) IF( REWI ) $ REWIND NTRA CALL CZSYRK( IORDER, UPLO, TRANS, N, K, $ ALPHA, AA, LDA, BETA, CC, LDC ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLOS.EQ.UPLO ISAME( 2 ) = TRANSS.EQ.TRANS ISAME( 3 ) = NS.EQ.N ISAME( 4 ) = KS.EQ.K IF( CONJ )THEN ISAME( 5 ) = RALS.EQ.RALPHA ELSE ISAME( 5 ) = ALS.EQ.ALPHA END IF ISAME( 6 ) = LZE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA IF( CONJ )THEN ISAME( 8 ) = RBETS.EQ.RBETA ELSE ISAME( 8 ) = BETS.EQ.BETA END IF IF( NULL )THEN ISAME( 9 ) = LZE( CS, CC, LCC ) ELSE ISAME( 9 ) = LZERES( SNAME( 8: 9 ), UPLO, N, $ N, CS, CC, LDC ) END IF ISAME( 10 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 30 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 30 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( CONJ )THEN TRANST = 'C' ELSE TRANST = 'T' END IF JC = 1 DO 40 J = 1, N IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF IF( TRAN )THEN CALL ZMMCH( TRANST, 'N', LJ, 1, K, $ ALPHA, A( 1, JJ ), NMAX, $ A( 1, J ), NMAX, BETA, $ C( JJ, J ), NMAX, CT, G, $ CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL ZMMCH( 'N', TRANST, LJ, 1, K, $ ALPHA, A( JJ, 1 ), NMAX, $ A( J, 1 ), NMAX, BETA, $ C( JJ, J ), NMAX, CT, G, $ CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF IF( UPPER )THEN JC = JC + LDC ELSE JC = JC + LDC + 1 END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 110 40 CONTINUE END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10000 )SNAME, NC IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10001 )SNAME, NC ELSE IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10002 )SNAME, NC, ERRMAX IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10003 )SNAME, NC, ERRMAX END IF GO TO 130 * 110 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9995 )J * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( CONJ )THEN CALL ZPRCN6( NOUT, NC, SNAME, IORDER, UPLO, TRANS, N, K, RALPHA, $ LDA, rBETA, LDC) ELSE CALL ZPRCN4( NOUT, NC, SNAME, IORDER, UPLO, TRANS, N, K, ALPHA, $ LDA, BETA, LDC) END IF * 130 CONTINUE RETURN * 10003 FORMAT( ' ', A12,' COMPLETED THE ROW-MAJOR COMPUTATIONAL ', $ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ', $ 'RATIO ', F8.2, ' - SUSPECT *******' ) 10002 FORMAT( ' ', A12,' COMPLETED THE COLUMN-MAJOR COMPUTATIONAL ', $ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ', $ 'RATIO ', F8.2, ' - SUSPECT *******' ) 10001 FORMAT( ' ', A12,' PASSED THE ROW-MAJOR COMPUTATIONAL TESTS', $ ' (', I6, ' CALL', 'S)' ) 10000 FORMAT( ' ', A12,' PASSED THE COLUMN-MAJOR COMPUTATIONAL TESTS', $ ' (', I6, ' CALL', 'S)' ) 9998 FORMAT(' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9996 FORMAT( ' ******* ', A12,' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT(1X, I6, ': ', A12,'(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ F4.1, ', A,', I3, ',', F4.1, ', C,', I3, ') ', $ ' .' ) 9993 FORMAT(1X, I6, ': ', A12,'(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, ') , A,', I3, ',(', F4.1, ',', F4.1, $ '), C,', I3, ') .' ) 9992 FORMAT(' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK4. * END * SUBROUTINE ZPRCN4(NOUT, NC, SNAME, IORDER, UPLO, TRANSA, $ N, K, ALPHA, LDA, BETA, LDC) INTEGER NOUT, NC, IORDER, N, K, LDA, LDC DOUBLE COMPLEX ALPHA, BETA CHARACTER*1 UPLO, TRANSA CHARACTER*12 SNAME CHARACTER*14 CRC, CU, CA IF (UPLO.EQ.'U')THEN CU = ' CblasUpper' ELSE CU = ' CblasLower' END IF IF (TRANSA.EQ.'N')THEN CA = ' CblasNoTrans' ELSE IF (TRANSA.EQ.'T')THEN CA = ' CblasTrans' ELSE CA = 'CblasConjTrans' END IF IF (IORDER.EQ.1)THEN CRC = ' CblasRowMajor' ELSE CRC = ' CblasColMajor' END IF WRITE(NOUT, FMT = 9995)NC, SNAME, CRC, CU, CA WRITE(NOUT, FMT = 9994)N, K, ALPHA, LDA, BETA, LDC 9995 FORMAT( 1X, I6, ': ', A12,'(', 3( A14, ',') ) 9994 FORMAT( 10X, 2( I3, ',' ), ' (', F4.1, ',', F4.1 ,'), A,', $ I3, ', (', F4.1,',', F4.1, '), C,', I3, ').' ) END * * SUBROUTINE ZPRCN6(NOUT, NC, SNAME, IORDER, UPLO, TRANSA, $ N, K, ALPHA, LDA, BETA, LDC) INTEGER NOUT, NC, IORDER, N, K, LDA, LDC DOUBLE PRECISION ALPHA, BETA CHARACTER*1 UPLO, TRANSA CHARACTER*12 SNAME CHARACTER*14 CRC, CU, CA IF (UPLO.EQ.'U')THEN CU = ' CblasUpper' ELSE CU = ' CblasLower' END IF IF (TRANSA.EQ.'N')THEN CA = ' CblasNoTrans' ELSE IF (TRANSA.EQ.'T')THEN CA = ' CblasTrans' ELSE CA = 'CblasConjTrans' END IF IF (IORDER.EQ.1)THEN CRC = ' CblasRowMajor' ELSE CRC = ' CblasColMajor' END IF WRITE(NOUT, FMT = 9995)NC, SNAME, CRC, CU, CA WRITE(NOUT, FMT = 9994)N, K, ALPHA, LDA, BETA, LDC 9995 FORMAT( 1X, I6, ': ', A12,'(', 3( A14, ',') ) 9994 FORMAT( 10X, 2( I3, ',' ), $ F4.1, ', A,', I3, ',', F4.1, ', C,', I3, ').' ) END * SUBROUTINE ZCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ AB, AA, AS, BB, BS, C, CC, CS, CT, G, W, $ IORDER ) * * Tests ZHER2K and ZSYR2K. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX*16 ZERO, ONE PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), ONE = ( 1.0D0, 0.0D0 ) ) DOUBLE PRECISION RONE, RZERO PARAMETER ( RONE = 1.0D0, RZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA, IORDER LOGICAL FATAL, REWI, TRACE CHARACTER*12 SNAME * .. Array Arguments .. COMPLEX*16 AA( NMAX*NMAX ), AB( 2*NMAX*NMAX ), $ ALF( NALF ), AS( NMAX*NMAX ), BB( NMAX*NMAX ), $ BET( NBET ), BS( NMAX*NMAX ), C( NMAX, NMAX ), $ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ), $ W( 2*NMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX*16 ALPHA, ALS, BETA, BETS DOUBLE PRECISION ERR, ERRMAX, RBETA, RBETS INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, JJAB, $ K, KS, LAA, LBB, LCC, LDA, LDAS, LDB, LDBS, $ LDC, LDCS, LJ, MA, N, NA, NARGS, NC, NS LOGICAL CONJ, NULL, RESET, SAME, TRAN, UPPER CHARACTER*1 TRANS, TRANSS, TRANST, UPLO, UPLOS CHARACTER*2 ICHT, ICHU * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LZE, LZERES EXTERNAL LZE, LZERES * .. External Subroutines .. EXTERNAL CZHER2K, ZMAKE, ZMMCH, CZSYR2K * .. Intrinsic Functions .. INTRINSIC DCMPLX, DCONJG, MAX, DBLE * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHT/'NC'/, ICHU/'UL'/ * .. Executable Statements .. CONJ = SNAME( 8: 9 ).EQ.'he' * NARGS = 12 NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 130 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = N IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 130 LCC = LDC*N * DO 120 IK = 1, NIDIM K = IDIM( IK ) * DO 110 ICT = 1, 2 TRANS = ICHT( ICT: ICT ) TRAN = TRANS.EQ.'C' IF( TRAN.AND..NOT.CONJ ) $ TRANS = 'T' IF( TRAN )THEN MA = K NA = N ELSE MA = N NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 110 LAA = LDA*NA * * Generate the matrix A. * IF( TRAN )THEN CALL ZMAKE( 'ge', ' ', ' ', MA, NA, AB, 2*NMAX, AA, $ LDA, RESET, ZERO ) ELSE CALL ZMAKE( 'ge', ' ', ' ', MA, NA, AB, NMAX, AA, LDA, $ RESET, ZERO ) END IF * * Generate the matrix B. * LDB = LDA LBB = LAA IF( TRAN )THEN CALL ZMAKE( 'ge', ' ', ' ', MA, NA, AB( K + 1 ), $ 2*NMAX, BB, LDB, RESET, ZERO ) ELSE CALL ZMAKE( 'ge', ' ', ' ', MA, NA, AB( K*NMAX + 1 ), $ NMAX, BB, LDB, RESET, ZERO ) END IF * DO 100 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) UPPER = UPLO.EQ.'U' * DO 90 IA = 1, NALF ALPHA = ALF( IA ) * DO 80 IB = 1, NBET BETA = BET( IB ) IF( CONJ )THEN RBETA = DBLE( BETA ) BETA = DCMPLX( RBETA, RZERO ) END IF NULL = N.LE.0 IF( CONJ ) $ NULL = NULL.OR.( ( K.LE.0.OR.ALPHA.EQ. $ ZERO ).AND.RBETA.EQ.RONE ) * * Generate the matrix C. * CALL ZMAKE( SNAME( 8: 9 ), UPLO, ' ', N, N, C, $ NMAX, CC, LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB IF( CONJ )THEN RBETS = RBETA ELSE BETS = BETA END IF DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( CONJ )THEN IF( TRACE ) $ CALL ZPRCN7( NTRA, NC, SNAME, IORDER, $ UPLO, TRANS, N, K, ALPHA, LDA, LDB, $ RBETA, LDC) IF( REWI ) $ REWIND NTRA CALL CZHER2K( IORDER, UPLO, TRANS, N, K, $ ALPHA, AA, LDA, BB, LDB, RBETA, $ CC, LDC ) ELSE IF( TRACE ) $ CALL ZPRCN5( NTRA, NC, SNAME, IORDER, $ UPLO, TRANS, N, K, ALPHA, LDA, LDB, $ BETA, LDC) IF( REWI ) $ REWIND NTRA CALL CZSYR2K( IORDER, UPLO, TRANS, N, K, $ ALPHA, AA, LDA, BB, LDB, BETA, $ CC, LDC ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 150 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLOS.EQ.UPLO ISAME( 2 ) = TRANSS.EQ.TRANS ISAME( 3 ) = NS.EQ.N ISAME( 4 ) = KS.EQ.K ISAME( 5 ) = ALS.EQ.ALPHA ISAME( 6 ) = LZE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA ISAME( 8 ) = LZE( BS, BB, LBB ) ISAME( 9 ) = LDBS.EQ.LDB IF( CONJ )THEN ISAME( 10 ) = RBETS.EQ.RBETA ELSE ISAME( 10 ) = BETS.EQ.BETA END IF IF( NULL )THEN ISAME( 11 ) = LZE( CS, CC, LCC ) ELSE ISAME( 11 ) = LZERES( 'he', UPLO, N, N, CS, $ CC, LDC ) END IF ISAME( 12 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 150 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( CONJ )THEN TRANST = 'C' ELSE TRANST = 'T' END IF JJAB = 1 JC = 1 DO 70 J = 1, N IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF IF( TRAN )THEN DO 50 I = 1, K W( I ) = ALPHA*AB( ( J - 1 )*2* $ NMAX + K + I ) IF( CONJ )THEN W( K + I ) = DCONJG( ALPHA )* $ AB( ( J - 1 )*2* $ NMAX + I ) ELSE W( K + I ) = ALPHA* $ AB( ( J - 1 )*2* $ NMAX + I ) END IF 50 CONTINUE CALL ZMMCH( TRANST, 'N', LJ, 1, 2*K, $ ONE, AB( JJAB ), 2*NMAX, W, $ 2*NMAX, BETA, C( JJ, J ), $ NMAX, CT, G, CC( JC ), LDC, $ EPS, ERR, FATAL, NOUT, $ .TRUE. ) ELSE DO 60 I = 1, K IF( CONJ )THEN W( I ) = ALPHA*DCONJG( AB( ( K + $ I - 1 )*NMAX + J ) ) W( K + I ) = DCONJG( ALPHA* $ AB( ( I - 1 )*NMAX + $ J ) ) ELSE W( I ) = ALPHA*AB( ( K + I - 1 )* $ NMAX + J ) W( K + I ) = ALPHA* $ AB( ( I - 1 )*NMAX + $ J ) END IF 60 CONTINUE CALL ZMMCH( 'N', 'N', LJ, 1, 2*K, ONE, $ AB( JJ ), NMAX, W, 2*NMAX, $ BETA, C( JJ, J ), NMAX, CT, $ G, CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF IF( UPPER )THEN JC = JC + LDC ELSE JC = JC + LDC + 1 IF( TRAN ) $ JJAB = JJAB + 2*NMAX END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 140 70 CONTINUE END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10000 )SNAME, NC IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10001 )SNAME, NC ELSE IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10002 )SNAME, NC, ERRMAX IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10003 )SNAME, NC, ERRMAX END IF GO TO 160 * 140 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9995 )J * 150 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( CONJ )THEN CALL ZPRCN7( NOUT, NC, SNAME, IORDER, UPLO, TRANS, N, K, $ ALPHA, LDA, LDB, RBETA, LDC) ELSE CALL ZPRCN5( NOUT, NC, SNAME, IORDER, UPLO, TRANS, N, K, $ ALPHA, LDA, LDB, BETA, LDC) END IF * 160 CONTINUE RETURN * 10003 FORMAT( ' ', A12,' COMPLETED THE ROW-MAJOR COMPUTATIONAL ', $ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ', $ 'RATIO ', F8.2, ' - SUSPECT *******' ) 10002 FORMAT( ' ', A12,' COMPLETED THE COLUMN-MAJOR COMPUTATIONAL ', $ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ', $ 'RATIO ', F8.2, ' - SUSPECT *******' ) 10001 FORMAT( ' ', A12,' PASSED THE ROW-MAJOR COMPUTATIONAL TESTS', $ ' (', I6, ' CALL', 'S)' ) 10000 FORMAT( ' ', A12,' PASSED THE COLUMN-MAJOR COMPUTATIONAL TESTS', $ ' (', I6, ' CALL', 'S)' ) 9998 FORMAT(' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9996 FORMAT( ' ******* ', A12,' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT(1X, I6, ': ', A12,'(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',', F4.1, $ ', C,', I3, ') .' ) 9993 FORMAT(1X, I6, ': ', A12,'(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',(', F4.1, $ ',', F4.1, '), C,', I3, ') .' ) 9992 FORMAT(' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of ZCHK5. * END * SUBROUTINE ZPRCN5(NOUT, NC, SNAME, IORDER, UPLO, TRANSA, $ N, K, ALPHA, LDA, LDB, BETA, LDC) INTEGER NOUT, NC, IORDER, N, K, LDA, LDB, LDC DOUBLE COMPLEX ALPHA, BETA CHARACTER*1 UPLO, TRANSA CHARACTER*12 SNAME CHARACTER*14 CRC, CU, CA IF (UPLO.EQ.'U')THEN CU = ' CblasUpper' ELSE CU = ' CblasLower' END IF IF (TRANSA.EQ.'N')THEN CA = ' CblasNoTrans' ELSE IF (TRANSA.EQ.'T')THEN CA = ' CblasTrans' ELSE CA = 'CblasConjTrans' END IF IF (IORDER.EQ.1)THEN CRC = ' CblasRowMajor' ELSE CRC = ' CblasColMajor' END IF WRITE(NOUT, FMT = 9995)NC, SNAME, CRC, CU, CA WRITE(NOUT, FMT = 9994)N, K, ALPHA, LDA, LDB, BETA, LDC 9995 FORMAT( 1X, I6, ': ', A12,'(', 3( A14, ',') ) 9994 FORMAT( 10X, 2( I3, ',' ), ' (', F4.1, ',', F4.1, '), A,', $ I3, ', B', I3, ', (', F4.1, ',', F4.1, '), C,', I3, ').' ) END * * SUBROUTINE ZPRCN7(NOUT, NC, SNAME, IORDER, UPLO, TRANSA, $ N, K, ALPHA, LDA, LDB, BETA, LDC) INTEGER NOUT, NC, IORDER, N, K, LDA, LDB, LDC DOUBLE COMPLEX ALPHA DOUBLE PRECISION BETA CHARACTER*1 UPLO, TRANSA CHARACTER*12 SNAME CHARACTER*14 CRC, CU, CA IF (UPLO.EQ.'U')THEN CU = ' CblasUpper' ELSE CU = ' CblasLower' END IF IF (TRANSA.EQ.'N')THEN CA = ' CblasNoTrans' ELSE IF (TRANSA.EQ.'T')THEN CA = ' CblasTrans' ELSE CA = 'CblasConjTrans' END IF IF (IORDER.EQ.1)THEN CRC = ' CblasRowMajor' ELSE CRC = ' CblasColMajor' END IF WRITE(NOUT, FMT = 9995)NC, SNAME, CRC, CU, CA WRITE(NOUT, FMT = 9994)N, K, ALPHA, LDA, LDB, BETA, LDC 9995 FORMAT( 1X, I6, ': ', A12,'(', 3( A14, ',') ) 9994 FORMAT( 10X, 2( I3, ',' ), ' (', F4.1, ',', F4.1, '), A,', $ I3, ', B', I3, ',', F4.1, ', C,', I3, ').' ) END * SUBROUTINE ZMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, RESET, $ TRANSL ) * * Generates values for an M by N matrix A. * Stores the values in the array AA in the data structure required * by the routine, with unwanted elements set to rogue value. * * TYPE is 'ge', 'he', 'sy' or 'tr'. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX*16 ZERO, ONE PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), $ ONE = ( 1.0D0, 0.0D0 ) ) COMPLEX*16 ROGUE PARAMETER ( ROGUE = ( -1.0D10, 1.0D10 ) ) DOUBLE PRECISION RZERO PARAMETER ( RZERO = 0.0D0 ) DOUBLE PRECISION RROGUE PARAMETER ( RROGUE = -1.0D10 ) * .. Scalar Arguments .. COMPLEX*16 TRANSL INTEGER LDA, M, N, NMAX LOGICAL RESET CHARACTER*1 DIAG, UPLO CHARACTER*2 TYPE * .. Array Arguments .. COMPLEX*16 A( NMAX, * ), AA( * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J, JJ LOGICAL GEN, HER, LOWER, SYM, TRI, UNIT, UPPER * .. External Functions .. COMPLEX*16 ZBEG EXTERNAL ZBEG * .. Intrinsic Functions .. INTRINSIC DCMPLX, DCONJG, DBLE * .. Executable Statements .. GEN = TYPE.EQ.'ge' HER = TYPE.EQ.'he' SYM = TYPE.EQ.'sy' TRI = TYPE.EQ.'tr' UPPER = ( HER.OR.SYM.OR.TRI ).AND.UPLO.EQ.'U' LOWER = ( HER.OR.SYM.OR.TRI ).AND.UPLO.EQ.'L' UNIT = TRI.AND.DIAG.EQ.'U' * * Generate data in array A. * DO 20 J = 1, N DO 10 I = 1, M IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) ) $ THEN A( I, J ) = ZBEG( RESET ) + TRANSL IF( I.NE.J )THEN * Set some elements to zero IF( N.GT.3.AND.J.EQ.N/2 ) $ A( I, J ) = ZERO IF( HER )THEN A( J, I ) = DCONJG( A( I, J ) ) ELSE IF( SYM )THEN A( J, I ) = A( I, J ) ELSE IF( TRI )THEN A( J, I ) = ZERO END IF END IF END IF 10 CONTINUE IF( HER ) $ A( J, J ) = DCMPLX( DBLE( A( J, J ) ), RZERO ) IF( TRI ) $ A( J, J ) = A( J, J ) + ONE IF( UNIT ) $ A( J, J ) = ONE 20 CONTINUE * * Store elements in array AS in data structure required by routine. * IF( TYPE.EQ.'ge' )THEN DO 50 J = 1, N DO 30 I = 1, M AA( I + ( J - 1 )*LDA ) = A( I, J ) 30 CONTINUE DO 40 I = M + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 40 CONTINUE 50 CONTINUE ELSE IF( TYPE.EQ.'he'.OR.TYPE.EQ.'sy'.OR.TYPE.EQ.'tr' )THEN DO 90 J = 1, N IF( UPPER )THEN IBEG = 1 IF( UNIT )THEN IEND = J - 1 ELSE IEND = J END IF ELSE IF( UNIT )THEN IBEG = J + 1 ELSE IBEG = J END IF IEND = N END IF DO 60 I = 1, IBEG - 1 AA( I + ( J - 1 )*LDA ) = ROGUE 60 CONTINUE DO 70 I = IBEG, IEND AA( I + ( J - 1 )*LDA ) = A( I, J ) 70 CONTINUE DO 80 I = IEND + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 80 CONTINUE IF( HER )THEN JJ = J + ( J - 1 )*LDA AA( JJ ) = DCMPLX( DBLE( AA( JJ ) ), RROGUE ) END IF 90 CONTINUE END IF RETURN * * End of ZMAKE. * END SUBROUTINE ZMMCH( TRANSA, TRANSB, M, N, KK, ALPHA, A, LDA, B, LDB, $ BETA, C, LDC, CT, G, CC, LDCC, EPS, ERR, FATAL, $ NOUT, MV ) * * Checks the results of the computational tests. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX*16 ZERO PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ) ) DOUBLE PRECISION RZERO, RONE PARAMETER ( RZERO = 0.0D0, RONE = 1.0D0 ) * .. Scalar Arguments .. COMPLEX*16 ALPHA, BETA DOUBLE PRECISION EPS, ERR INTEGER KK, LDA, LDB, LDC, LDCC, M, N, NOUT LOGICAL FATAL, MV CHARACTER*1 TRANSA, TRANSB * .. Array Arguments .. COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ), $ CC( LDCC, * ), CT( * ) DOUBLE PRECISION G( * ) * .. Local Scalars .. COMPLEX*16 CL DOUBLE PRECISION ERRI INTEGER I, J, K LOGICAL CTRANA, CTRANB, TRANA, TRANB * .. Intrinsic Functions .. INTRINSIC ABS, DIMAG, DCONJG, MAX, DBLE, SQRT * .. Statement Functions .. DOUBLE PRECISION ABS1 * .. Statement Function definitions .. ABS1( CL ) = ABS( DBLE( CL ) ) + ABS( DIMAG( CL ) ) * .. Executable Statements .. TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C' TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C' CTRANA = TRANSA.EQ.'C' CTRANB = TRANSB.EQ.'C' * * Compute expected result, one column at a time, in CT using data * in A, B and C. * Compute gauges in G. * DO 220 J = 1, N * DO 10 I = 1, M CT( I ) = ZERO G( I ) = RZERO 10 CONTINUE IF( .NOT.TRANA.AND..NOT.TRANB )THEN DO 30 K = 1, KK DO 20 I = 1, M CT( I ) = CT( I ) + A( I, K )*B( K, J ) G( I ) = G( I ) + ABS1( A( I, K ) )*ABS1( B( K, J ) ) 20 CONTINUE 30 CONTINUE ELSE IF( TRANA.AND..NOT.TRANB )THEN IF( CTRANA )THEN DO 50 K = 1, KK DO 40 I = 1, M CT( I ) = CT( I ) + DCONJG( A( K, I ) )*B( K, J ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( K, J ) ) 40 CONTINUE 50 CONTINUE ELSE DO 70 K = 1, KK DO 60 I = 1, M CT( I ) = CT( I ) + A( K, I )*B( K, J ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( K, J ) ) 60 CONTINUE 70 CONTINUE END IF ELSE IF( .NOT.TRANA.AND.TRANB )THEN IF( CTRANB )THEN DO 90 K = 1, KK DO 80 I = 1, M CT( I ) = CT( I ) + A( I, K )*DCONJG( B( J, K ) ) G( I ) = G( I ) + ABS1( A( I, K ) )* $ ABS1( B( J, K ) ) 80 CONTINUE 90 CONTINUE ELSE DO 110 K = 1, KK DO 100 I = 1, M CT( I ) = CT( I ) + A( I, K )*B( J, K ) G( I ) = G( I ) + ABS1( A( I, K ) )* $ ABS1( B( J, K ) ) 100 CONTINUE 110 CONTINUE END IF ELSE IF( TRANA.AND.TRANB )THEN IF( CTRANA )THEN IF( CTRANB )THEN DO 130 K = 1, KK DO 120 I = 1, M CT( I ) = CT( I ) + DCONJG( A( K, I ) )* $ DCONJG( B( J, K ) ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( J, K ) ) 120 CONTINUE 130 CONTINUE ELSE DO 150 K = 1, KK DO 140 I = 1, M CT( I ) = CT( I ) + DCONJG( A( K, I ) )* $ B( J, K ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( J, K ) ) 140 CONTINUE 150 CONTINUE END IF ELSE IF( CTRANB )THEN DO 170 K = 1, KK DO 160 I = 1, M CT( I ) = CT( I ) + A( K, I )* $ DCONJG( B( J, K ) ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( J, K ) ) 160 CONTINUE 170 CONTINUE ELSE DO 190 K = 1, KK DO 180 I = 1, M CT( I ) = CT( I ) + A( K, I )*B( J, K ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( J, K ) ) 180 CONTINUE 190 CONTINUE END IF END IF END IF DO 200 I = 1, M CT( I ) = ALPHA*CT( I ) + BETA*C( I, J ) G( I ) = ABS1( ALPHA )*G( I ) + $ ABS1( BETA )*ABS1( C( I, J ) ) 200 CONTINUE * * Compute the error ratio for this result. * ERR = ZERO DO 210 I = 1, M ERRI = ABS1( CT( I ) - CC( I, J ) )/EPS IF( G( I ).NE.RZERO ) $ ERRI = ERRI/G( I ) ERR = MAX( ERR, ERRI ) IF( ERR*SQRT( EPS ).GE.RONE ) $ GO TO 230 210 CONTINUE * 220 CONTINUE * * If the loop completes, all results are at least half accurate. GO TO 250 * * Report fatal error. * 230 FATAL = .TRUE. WRITE( NOUT, FMT = 9999 ) DO 240 I = 1, M IF( MV )THEN WRITE( NOUT, FMT = 9998 )I, CT( I ), CC( I, J ) ELSE WRITE( NOUT, FMT = 9998 )I, CC( I, J ), CT( I ) END IF 240 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9997 )J * 250 CONTINUE RETURN * 9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL', $ 'F ACCURATE *******', /' EXPECTED RE', $ 'SULT COMPUTED RESULT' ) 9998 FORMAT( 1X, I7, 2( ' (', G15.6, ',', G15.6, ')' ) ) 9997 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) * * End of ZMMCH. * END LOGICAL FUNCTION LZE( RI, RJ, LR ) * * Tests if two arrays are identical. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER LR * .. Array Arguments .. COMPLEX*16 RI( * ), RJ( * ) * .. Local Scalars .. INTEGER I * .. Executable Statements .. DO 10 I = 1, LR IF( RI( I ).NE.RJ( I ) ) $ GO TO 20 10 CONTINUE LZE = .TRUE. GO TO 30 20 CONTINUE LZE = .FALSE. 30 RETURN * * End of LZE. * END LOGICAL FUNCTION LZERES( TYPE, UPLO, M, N, AA, AS, LDA ) * * Tests if selected elements in two arrays are equal. * * TYPE is 'ge' or 'he' or 'sy'. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER LDA, M, N CHARACTER*1 UPLO CHARACTER*2 TYPE * .. Array Arguments .. COMPLEX*16 AA( LDA, * ), AS( LDA, * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J LOGICAL UPPER * .. Executable Statements .. UPPER = UPLO.EQ.'U' IF( TYPE.EQ.'ge' )THEN DO 20 J = 1, N DO 10 I = M + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 10 CONTINUE 20 CONTINUE ELSE IF( TYPE.EQ.'he'.OR.TYPE.EQ.'sy' )THEN DO 50 J = 1, N IF( UPPER )THEN IBEG = 1 IEND = J ELSE IBEG = J IEND = N END IF DO 30 I = 1, IBEG - 1 IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 30 CONTINUE DO 40 I = IEND + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 40 CONTINUE 50 CONTINUE END IF * 60 CONTINUE LZERES = .TRUE. GO TO 80 70 CONTINUE LZERES = .FALSE. 80 RETURN * * End of LZERES. * END COMPLEX*16 FUNCTION ZBEG( RESET ) * * Generates complex numbers as pairs of random numbers uniformly * distributed between -0.5 and 0.5. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. LOGICAL RESET * .. Local Scalars .. INTEGER I, IC, J, MI, MJ * .. Save statement .. SAVE I, IC, J, MI, MJ * .. Intrinsic Functions .. INTRINSIC DCMPLX * .. Executable Statements .. IF( RESET )THEN * Initialize local variables. MI = 891 MJ = 457 I = 7 J = 7 IC = 0 RESET = .FALSE. END IF * * The sequence of values of I or J is bounded between 1 and 999. * If initial I or J = 1,2,3,6,7 or 9, the period will be 50. * If initial I or J = 4 or 8, the period will be 25. * If initial I or J = 5, the period will be 10. * IC is used to break up the period by skipping 1 value of I or J * in 6. * IC = IC + 1 10 I = I*MI J = J*MJ I = I - 1000*( I/1000 ) J = J - 1000*( J/1000 ) IF( IC.GE.5 )THEN IC = 0 GO TO 10 END IF ZBEG = DCMPLX( ( I - 500 )/1001.0D0, ( J - 500 )/1001.0D0 ) RETURN * * End of ZBEG. * END DOUBLE PRECISION FUNCTION DDIFF( X, Y ) * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. DOUBLE PRECISION X, Y * .. Executable Statements .. DDIFF = X - Y RETURN * * End of DDIFF. * END