LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine clar2v | ( | integer | n, |
complex, dimension( * ) | x, | ||
complex, dimension( * ) | y, | ||
complex, dimension( * ) | z, | ||
integer | incx, | ||
real, dimension( * ) | c, | ||
complex, dimension( * ) | s, | ||
integer | incc ) |
CLAR2V applies a vector of plane rotations with real cosines and complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.
Download CLAR2V + dependencies [TGZ] [ZIP] [TXT]
!> !> CLAR2V applies a vector of complex plane rotations with real cosines !> from both sides to a sequence of 2-by-2 complex Hermitian matrices, !> defined by the elements of the vectors x, y and z. For i = 1,2,...,n !> !> ( x(i) z(i) ) := !> ( conjg(z(i)) y(i) ) !> !> ( c(i) conjg(s(i)) ) ( x(i) z(i) ) ( c(i) -conjg(s(i)) ) !> ( -s(i) c(i) ) ( conjg(z(i)) y(i) ) ( s(i) c(i) ) !>
[in] | N | !> N is INTEGER !> The number of plane rotations to be applied. !> |
[in,out] | X | !> X is COMPLEX array, dimension (1+(N-1)*INCX) !> The vector x; the elements of x are assumed to be real. !> |
[in,out] | Y | !> Y is COMPLEX array, dimension (1+(N-1)*INCX) !> The vector y; the elements of y are assumed to be real. !> |
[in,out] | Z | !> Z is COMPLEX array, dimension (1+(N-1)*INCX) !> The vector z. !> |
[in] | INCX | !> INCX is INTEGER !> The increment between elements of X, Y and Z. INCX > 0. !> |
[in] | C | !> C is REAL array, dimension (1+(N-1)*INCC) !> The cosines of the plane rotations. !> |
[in] | S | !> S is COMPLEX array, dimension (1+(N-1)*INCC) !> The sines of the plane rotations. !> |
[in] | INCC | !> INCC is INTEGER !> The increment between elements of C and S. INCC > 0. !> |
Definition at line 108 of file clar2v.f.