LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dlar2v | ( | integer | n, |
double precision, dimension( * ) | x, | ||
double precision, dimension( * ) | y, | ||
double precision, dimension( * ) | z, | ||
integer | incx, | ||
double precision, dimension( * ) | c, | ||
double precision, dimension( * ) | s, | ||
integer | incc ) |
DLAR2V applies a vector of plane rotations with real cosines and real sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.
Download DLAR2V + dependencies [TGZ] [ZIP] [TXT]
!> !> DLAR2V applies a vector of real plane rotations from both sides to !> a sequence of 2-by-2 real symmetric matrices, defined by the elements !> of the vectors x, y and z. For i = 1,2,...,n !> !> ( x(i) z(i) ) := ( c(i) s(i) ) ( x(i) z(i) ) ( c(i) -s(i) ) !> ( z(i) y(i) ) ( -s(i) c(i) ) ( z(i) y(i) ) ( s(i) c(i) ) !>
[in] | N | !> N is INTEGER !> The number of plane rotations to be applied. !> |
[in,out] | X | !> X is DOUBLE PRECISION array, !> dimension (1+(N-1)*INCX) !> The vector x. !> |
[in,out] | Y | !> Y is DOUBLE PRECISION array, !> dimension (1+(N-1)*INCX) !> The vector y. !> |
[in,out] | Z | !> Z is DOUBLE PRECISION array, !> dimension (1+(N-1)*INCX) !> The vector z. !> |
[in] | INCX | !> INCX is INTEGER !> The increment between elements of X, Y and Z. INCX > 0. !> |
[in] | C | !> C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC) !> The cosines of the plane rotations. !> |
[in] | S | !> S is DOUBLE PRECISION array, dimension (1+(N-1)*INCC) !> The sines of the plane rotations. !> |
[in] | INCC | !> INCC is INTEGER !> The increment between elements of C and S. INCC > 0. !> |
Definition at line 107 of file dlar2v.f.