LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dgeequb.f
Go to the documentation of this file.
1*> \brief \b DGEEQUB
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DGEEQUB + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeequb.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeequb.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeequb.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE DGEEQUB( M, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
22* INFO )
23*
24* .. Scalar Arguments ..
25* INTEGER INFO, LDA, M, N
26* DOUBLE PRECISION AMAX, COLCND, ROWCND
27* ..
28* .. Array Arguments ..
29* DOUBLE PRECISION A( LDA, * ), C( * ), R( * )
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*> \verbatim
37*>
38*> DGEEQUB computes row and column scalings intended to equilibrate an
39*> M-by-N matrix A and reduce its condition number. R returns the row
40*> scale factors and C the column scale factors, chosen to try to make
41*> the largest element in each row and column of the matrix B with
42*> elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most
43*> the radix.
44*>
45*> R(i) and C(j) are restricted to be a power of the radix between
46*> SMLNUM = smallest safe number and BIGNUM = largest safe number. Use
47*> of these scaling factors is not guaranteed to reduce the condition
48*> number of A but works well in practice.
49*>
50*> This routine differs from DGEEQU by restricting the scaling factors
51*> to a power of the radix. Barring over- and underflow, scaling by
52*> these factors introduces no additional rounding errors. However, the
53*> scaled entries' magnitudes are no longer approximately 1 but lie
54*> between sqrt(radix) and 1/sqrt(radix).
55*> \endverbatim
56*
57* Arguments:
58* ==========
59*
60*> \param[in] M
61*> \verbatim
62*> M is INTEGER
63*> The number of rows of the matrix A. M >= 0.
64*> \endverbatim
65*>
66*> \param[in] N
67*> \verbatim
68*> N is INTEGER
69*> The number of columns of the matrix A. N >= 0.
70*> \endverbatim
71*>
72*> \param[in] A
73*> \verbatim
74*> A is DOUBLE PRECISION array, dimension (LDA,N)
75*> The M-by-N matrix whose equilibration factors are
76*> to be computed.
77*> \endverbatim
78*>
79*> \param[in] LDA
80*> \verbatim
81*> LDA is INTEGER
82*> The leading dimension of the array A. LDA >= max(1,M).
83*> \endverbatim
84*>
85*> \param[out] R
86*> \verbatim
87*> R is DOUBLE PRECISION array, dimension (M)
88*> If INFO = 0 or INFO > M, R contains the row scale factors
89*> for A.
90*> \endverbatim
91*>
92*> \param[out] C
93*> \verbatim
94*> C is DOUBLE PRECISION array, dimension (N)
95*> If INFO = 0, C contains the column scale factors for A.
96*> \endverbatim
97*>
98*> \param[out] ROWCND
99*> \verbatim
100*> ROWCND is DOUBLE PRECISION
101*> If INFO = 0 or INFO > M, ROWCND contains the ratio of the
102*> smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
103*> AMAX is neither too large nor too small, it is not worth
104*> scaling by R.
105*> \endverbatim
106*>
107*> \param[out] COLCND
108*> \verbatim
109*> COLCND is DOUBLE PRECISION
110*> If INFO = 0, COLCND contains the ratio of the smallest
111*> C(i) to the largest C(i). If COLCND >= 0.1, it is not
112*> worth scaling by C.
113*> \endverbatim
114*>
115*> \param[out] AMAX
116*> \verbatim
117*> AMAX is DOUBLE PRECISION
118*> Absolute value of largest matrix element. If AMAX is very
119*> close to overflow or very close to underflow, the matrix
120*> should be scaled.
121*> \endverbatim
122*>
123*> \param[out] INFO
124*> \verbatim
125*> INFO is INTEGER
126*> = 0: successful exit
127*> < 0: if INFO = -i, the i-th argument had an illegal value
128*> > 0: if INFO = i, and i is
129*> <= M: the i-th row of A is exactly zero
130*> > M: the (i-M)-th column of A is exactly zero
131*> \endverbatim
132*
133* Authors:
134* ========
135*
136*> \author Univ. of Tennessee
137*> \author Univ. of California Berkeley
138*> \author Univ. of Colorado Denver
139*> \author NAG Ltd.
140*
141*> \ingroup geequb
142*
143* =====================================================================
144 SUBROUTINE dgeequb( M, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
145 $ INFO )
146*
147* -- LAPACK computational routine --
148* -- LAPACK is a software package provided by Univ. of Tennessee, --
149* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
150*
151* .. Scalar Arguments ..
152 INTEGER INFO, LDA, M, N
153 DOUBLE PRECISION AMAX, COLCND, ROWCND
154* ..
155* .. Array Arguments ..
156 DOUBLE PRECISION A( LDA, * ), C( * ), R( * )
157* ..
158*
159* =====================================================================
160*
161* .. Parameters ..
162 DOUBLE PRECISION ONE, ZERO
163 parameter( one = 1.0d+0, zero = 0.0d+0 )
164* ..
165* .. Local Scalars ..
166 INTEGER I, J
167 DOUBLE PRECISION BIGNUM, RCMAX, RCMIN, SMLNUM, RADIX, LOGRDX
168* ..
169* .. External Functions ..
170 DOUBLE PRECISION DLAMCH
171 EXTERNAL dlamch
172* ..
173* .. External Subroutines ..
174 EXTERNAL xerbla
175* ..
176* .. Intrinsic Functions ..
177 INTRINSIC abs, max, min, log
178* ..
179* .. Executable Statements ..
180*
181* Test the input parameters.
182*
183 info = 0
184 IF( m.LT.0 ) THEN
185 info = -1
186 ELSE IF( n.LT.0 ) THEN
187 info = -2
188 ELSE IF( lda.LT.max( 1, m ) ) THEN
189 info = -4
190 END IF
191 IF( info.NE.0 ) THEN
192 CALL xerbla( 'DGEEQUB', -info )
193 RETURN
194 END IF
195*
196* Quick return if possible.
197*
198 IF( m.EQ.0 .OR. n.EQ.0 ) THEN
199 rowcnd = one
200 colcnd = one
201 amax = zero
202 RETURN
203 END IF
204*
205* Get machine constants. Assume SMLNUM is a power of the radix.
206*
207 smlnum = dlamch( 'S' )
208 bignum = one / smlnum
209 radix = dlamch( 'B' )
210 logrdx = log( radix )
211*
212* Compute row scale factors.
213*
214 DO 10 i = 1, m
215 r( i ) = zero
216 10 CONTINUE
217*
218* Find the maximum element in each row.
219*
220 DO 30 j = 1, n
221 DO 20 i = 1, m
222 r( i ) = max( r( i ), abs( a( i, j ) ) )
223 20 CONTINUE
224 30 CONTINUE
225 DO i = 1, m
226 IF( r( i ).GT.zero ) THEN
227 r( i ) = radix**int( log( r( i ) ) / logrdx )
228 END IF
229 END DO
230*
231* Find the maximum and minimum scale factors.
232*
233 rcmin = bignum
234 rcmax = zero
235 DO 40 i = 1, m
236 rcmax = max( rcmax, r( i ) )
237 rcmin = min( rcmin, r( i ) )
238 40 CONTINUE
239 amax = rcmax
240*
241 IF( rcmin.EQ.zero ) THEN
242*
243* Find the first zero scale factor and return an error code.
244*
245 DO 50 i = 1, m
246 IF( r( i ).EQ.zero ) THEN
247 info = i
248 RETURN
249 END IF
250 50 CONTINUE
251 ELSE
252*
253* Invert the scale factors.
254*
255 DO 60 i = 1, m
256 r( i ) = one / min( max( r( i ), smlnum ), bignum )
257 60 CONTINUE
258*
259* Compute ROWCND = min(R(I)) / max(R(I)).
260*
261 rowcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
262 END IF
263*
264* Compute column scale factors
265*
266 DO 70 j = 1, n
267 c( j ) = zero
268 70 CONTINUE
269*
270* Find the maximum element in each column,
271* assuming the row scaling computed above.
272*
273 DO 90 j = 1, n
274 DO 80 i = 1, m
275 c( j ) = max( c( j ), abs( a( i, j ) )*r( i ) )
276 80 CONTINUE
277 IF( c( j ).GT.zero ) THEN
278 c( j ) = radix**int( log( c( j ) ) / logrdx )
279 END IF
280 90 CONTINUE
281*
282* Find the maximum and minimum scale factors.
283*
284 rcmin = bignum
285 rcmax = zero
286 DO 100 j = 1, n
287 rcmin = min( rcmin, c( j ) )
288 rcmax = max( rcmax, c( j ) )
289 100 CONTINUE
290*
291 IF( rcmin.EQ.zero ) THEN
292*
293* Find the first zero scale factor and return an error code.
294*
295 DO 110 j = 1, n
296 IF( c( j ).EQ.zero ) THEN
297 info = m + j
298 RETURN
299 END IF
300 110 CONTINUE
301 ELSE
302*
303* Invert the scale factors.
304*
305 DO 120 j = 1, n
306 c( j ) = one / min( max( c( j ), smlnum ), bignum )
307 120 CONTINUE
308*
309* Compute COLCND = min(C(J)) / max(C(J)).
310*
311 colcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
312 END IF
313*
314 RETURN
315*
316* End of DGEEQUB
317*
318 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgeequb(m, n, a, lda, r, c, rowcnd, colcnd, amax, info)
DGEEQUB
Definition dgeequb.f:146