LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sorgtsqr()

subroutine sorgtsqr ( integer m,
integer n,
integer mb,
integer nb,
real, dimension( lda, * ) a,
integer lda,
real, dimension( ldt, * ) t,
integer ldt,
real, dimension( * ) work,
integer lwork,
integer info )

SORGTSQR

Download SORGTSQR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SORGTSQR generates an M-by-N real matrix Q_out with orthonormal columns,
!> which are the first N columns of a product of real orthogonal
!> matrices of order M which are returned by SLATSQR
!>
!>      Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
!>
!> See the documentation for SLATSQR.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A. M >= N >= 0.
!> 
[in]MB
!>          MB is INTEGER
!>          The row block size used by SLATSQR to return
!>          arrays A and T. MB > N.
!>          (Note that if MB > M, then M is used instead of MB
!>          as the row block size).
!> 
[in]NB
!>          NB is INTEGER
!>          The column block size used by SLATSQR to return
!>          arrays A and T. NB >= 1.
!>          (Note that if NB > N, then N is used instead of NB
!>          as the column block size).
!> 
[in,out]A
!>          A is REAL array, dimension (LDA,N)
!>
!>          On entry:
!>
!>             The elements on and above the diagonal are not accessed.
!>             The elements below the diagonal represent the unit
!>             lower-trapezoidal blocked matrix V computed by SLATSQR
!>             that defines the input matrices Q_in(k) (ones on the
!>             diagonal are not stored) (same format as the output A
!>             below the diagonal in SLATSQR).
!>
!>          On exit:
!>
!>             The array A contains an M-by-N orthonormal matrix Q_out,
!>             i.e the columns of A are orthogonal unit vectors.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[in]T
!>          T is REAL array,
!>          dimension (LDT, N * NIRB)
!>          where NIRB = Number_of_input_row_blocks
!>                     = MAX( 1, CEIL((M-N)/(MB-N)) )
!>          Let NICB = Number_of_input_col_blocks
!>                   = CEIL(N/NB)
!>
!>          The upper-triangular block reflectors used to define the
!>          input matrices Q_in(k), k=(1:NIRB*NICB). The block
!>          reflectors are stored in compact form in NIRB block
!>          reflector sequences. Each of NIRB block reflector sequences
!>          is stored in a larger NB-by-N column block of T and consists
!>          of NICB smaller NB-by-NB upper-triangular column blocks.
!>          (same format as the output T in SLATSQR).
!> 
[in]LDT
!>          LDT is INTEGER
!>          The leading dimension of the array T.
!>          LDT >= max(1,min(NB1,N)).
!> 
[out]WORK
!>          (workspace) REAL array, dimension (MAX(2,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.  LWORK >= (M+NB)*N.
!>          If LWORK = -1, then a workspace query is assumed.
!>          The routine only calculates the optimal size of the WORK
!>          array, returns this value as the first entry of the WORK
!>          array, and no error message related to LWORK is issued
!>          by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
!>
!> November 2019, Igor Kozachenko,
!>                Computer Science Division,
!>                University of California, Berkeley
!>
!> 

Definition at line 172 of file sorgtsqr.f.

174 IMPLICIT NONE
175*
176* -- LAPACK computational routine --
177* -- LAPACK is a software package provided by Univ. of Tennessee, --
178* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
179*
180* .. Scalar Arguments ..
181 INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
182* ..
183* .. Array Arguments ..
184 REAL A( LDA, * ), T( LDT, * ), WORK( * )
185* ..
186*
187* =====================================================================
188*
189* .. Parameters ..
190 REAL ONE, ZERO
191 parameter( one = 1.0e+0, zero = 0.0e+0 )
192* ..
193* .. Local Scalars ..
194 LOGICAL LQUERY
195 INTEGER IINFO, LDC, LWORKOPT, LC, LW, NBLOCAL, J
196* ..
197* .. External Functions ..
198 REAL SROUNDUP_LWORK
199 EXTERNAL sroundup_lwork
200* ..
201* .. External Subroutines ..
202 EXTERNAL scopy, slamtsqr, slaset, xerbla
203* ..
204* .. Intrinsic Functions ..
205 INTRINSIC max, min
206* ..
207* .. Executable Statements ..
208*
209* Test the input parameters
210*
211 lquery = lwork.EQ.-1
212 info = 0
213 IF( m.LT.0 ) THEN
214 info = -1
215 ELSE IF( n.LT.0 .OR. m.LT.n ) THEN
216 info = -2
217 ELSE IF( mb.LE.n ) THEN
218 info = -3
219 ELSE IF( nb.LT.1 ) THEN
220 info = -4
221 ELSE IF( lda.LT.max( 1, m ) ) THEN
222 info = -6
223 ELSE IF( ldt.LT.max( 1, min( nb, n ) ) ) THEN
224 info = -8
225 ELSE
226*
227* Test the input LWORK for the dimension of the array WORK.
228* This workspace is used to store array C(LDC, N) and WORK(LWORK)
229* in the call to SLAMTSQR. See the documentation for SLAMTSQR.
230*
231 IF( lwork.LT.2 .AND. (.NOT.lquery) ) THEN
232 info = -10
233 ELSE
234*
235* Set block size for column blocks
236*
237 nblocal = min( nb, n )
238*
239* LWORK = -1, then set the size for the array C(LDC,N)
240* in SLAMTSQR call and set the optimal size of the work array
241* WORK(LWORK) in SLAMTSQR call.
242*
243 ldc = m
244 lc = ldc*n
245 lw = n * nblocal
246*
247 lworkopt = lc+lw
248*
249 IF( ( lwork.LT.max( 1, lworkopt ) ).AND.(.NOT.lquery) ) THEN
250 info = -10
251 END IF
252 END IF
253*
254 END IF
255*
256* Handle error in the input parameters and return workspace query.
257*
258 IF( info.NE.0 ) THEN
259 CALL xerbla( 'SORGTSQR', -info )
260 RETURN
261 ELSE IF ( lquery ) THEN
262 work( 1 ) = sroundup_lwork( lworkopt )
263 RETURN
264 END IF
265*
266* Quick return if possible
267*
268 IF( min( m, n ).EQ.0 ) THEN
269 work( 1 ) = sroundup_lwork( lworkopt )
270 RETURN
271 END IF
272*
273* (1) Form explicitly the tall-skinny M-by-N left submatrix Q1_in
274* of M-by-M orthogonal matrix Q_in, which is implicitly stored in
275* the subdiagonal part of input array A and in the input array T.
276* Perform by the following operation using the routine SLAMTSQR.
277*
278* Q1_in = Q_in * ( I ), where I is a N-by-N identity matrix,
279* ( 0 ) 0 is a (M-N)-by-N zero matrix.
280*
281* (1a) Form M-by-N matrix in the array WORK(1:LDC*N) with ones
282* on the diagonal and zeros elsewhere.
283*
284 CALL slaset( 'F', m, n, zero, one, work, ldc )
285*
286* (1b) On input, WORK(1:LDC*N) stores ( I );
287* ( 0 )
288*
289* On output, WORK(1:LDC*N) stores Q1_in.
290*
291 CALL slamtsqr( 'L', 'N', m, n, n, mb, nblocal, a, lda, t, ldt,
292 $ work, ldc, work( lc+1 ), lw, iinfo )
293*
294* (2) Copy the result from the part of the work array (1:M,1:N)
295* with the leading dimension LDC that starts at WORK(1) into
296* the output array A(1:M,1:N) column-by-column.
297*
298 DO j = 1, n
299 CALL scopy( m, work( (j-1)*ldc + 1 ), 1, a( 1, j ), 1 )
300 END DO
301*
302 work( 1 ) = sroundup_lwork( lworkopt )
303 RETURN
304*
305* End of SORGTSQR
306*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine slamtsqr(side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)
SLAMTSQR
Definition slamtsqr.f:201
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:108
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
Here is the call graph for this function:
Here is the caller graph for this function: