LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
chpgv.f
Go to the documentation of this file.
1*> \brief \b CHPGV
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CHPGV + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chpgv.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chpgv.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chpgv.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CHPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
20* RWORK, INFO )
21*
22* .. Scalar Arguments ..
23* CHARACTER JOBZ, UPLO
24* INTEGER INFO, ITYPE, LDZ, N
25* ..
26* .. Array Arguments ..
27* REAL RWORK( * ), W( * )
28* COMPLEX AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> CHPGV computes all the eigenvalues and, optionally, the eigenvectors
38*> of a complex generalized Hermitian-definite eigenproblem, of the form
39*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
40*> Here A and B are assumed to be Hermitian, stored in packed format,
41*> and B is also positive definite.
42*> \endverbatim
43*
44* Arguments:
45* ==========
46*
47*> \param[in] ITYPE
48*> \verbatim
49*> ITYPE is INTEGER
50*> Specifies the problem type to be solved:
51*> = 1: A*x = (lambda)*B*x
52*> = 2: A*B*x = (lambda)*x
53*> = 3: B*A*x = (lambda)*x
54*> \endverbatim
55*>
56*> \param[in] JOBZ
57*> \verbatim
58*> JOBZ is CHARACTER*1
59*> = 'N': Compute eigenvalues only;
60*> = 'V': Compute eigenvalues and eigenvectors.
61*> \endverbatim
62*>
63*> \param[in] UPLO
64*> \verbatim
65*> UPLO is CHARACTER*1
66*> = 'U': Upper triangles of A and B are stored;
67*> = 'L': Lower triangles of A and B are stored.
68*> \endverbatim
69*>
70*> \param[in] N
71*> \verbatim
72*> N is INTEGER
73*> The order of the matrices A and B. N >= 0.
74*> \endverbatim
75*>
76*> \param[in,out] AP
77*> \verbatim
78*> AP is COMPLEX array, dimension (N*(N+1)/2)
79*> On entry, the upper or lower triangle of the Hermitian matrix
80*> A, packed columnwise in a linear array. The j-th column of A
81*> is stored in the array AP as follows:
82*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
83*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
84*>
85*> On exit, the contents of AP are destroyed.
86*> \endverbatim
87*>
88*> \param[in,out] BP
89*> \verbatim
90*> BP is COMPLEX array, dimension (N*(N+1)/2)
91*> On entry, the upper or lower triangle of the Hermitian matrix
92*> B, packed columnwise in a linear array. The j-th column of B
93*> is stored in the array BP as follows:
94*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
95*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
96*>
97*> On exit, the triangular factor U or L from the Cholesky
98*> factorization B = U**H*U or B = L*L**H, in the same storage
99*> format as B.
100*> \endverbatim
101*>
102*> \param[out] W
103*> \verbatim
104*> W is REAL array, dimension (N)
105*> If INFO = 0, the eigenvalues in ascending order.
106*> \endverbatim
107*>
108*> \param[out] Z
109*> \verbatim
110*> Z is COMPLEX array, dimension (LDZ, N)
111*> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
112*> eigenvectors. The eigenvectors are normalized as follows:
113*> if ITYPE = 1 or 2, Z**H*B*Z = I;
114*> if ITYPE = 3, Z**H*inv(B)*Z = I.
115*> If JOBZ = 'N', then Z is not referenced.
116*> \endverbatim
117*>
118*> \param[in] LDZ
119*> \verbatim
120*> LDZ is INTEGER
121*> The leading dimension of the array Z. LDZ >= 1, and if
122*> JOBZ = 'V', LDZ >= max(1,N).
123*> \endverbatim
124*>
125*> \param[out] WORK
126*> \verbatim
127*> WORK is COMPLEX array, dimension (max(1, 2*N-1))
128*> \endverbatim
129*>
130*> \param[out] RWORK
131*> \verbatim
132*> RWORK is REAL array, dimension (max(1, 3*N-2))
133*> \endverbatim
134*>
135*> \param[out] INFO
136*> \verbatim
137*> INFO is INTEGER
138*> = 0: successful exit
139*> < 0: if INFO = -i, the i-th argument had an illegal value
140*> > 0: CPPTRF or CHPEV returned an error code:
141*> <= N: if INFO = i, CHPEV failed to converge;
142*> i off-diagonal elements of an intermediate
143*> tridiagonal form did not convergeto zero;
144*> > N: if INFO = N + i, for 1 <= i <= n, then the leading
145*> principal minor of order i of B is not positive.
146*> The factorization of B could not be completed and
147*> no eigenvalues or eigenvectors were computed.
148*> \endverbatim
149*
150* Authors:
151* ========
152*
153*> \author Univ. of Tennessee
154*> \author Univ. of California Berkeley
155*> \author Univ. of Colorado Denver
156*> \author NAG Ltd.
157*
158*> \ingroup hpgv
159*
160* =====================================================================
161 SUBROUTINE chpgv( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ,
162 $ WORK,
163 $ RWORK, INFO )
164*
165* -- LAPACK driver routine --
166* -- LAPACK is a software package provided by Univ. of Tennessee, --
167* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
168*
169* .. Scalar Arguments ..
170 CHARACTER JOBZ, UPLO
171 INTEGER INFO, ITYPE, LDZ, N
172* ..
173* .. Array Arguments ..
174 REAL RWORK( * ), W( * )
175 COMPLEX AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
176* ..
177*
178* =====================================================================
179*
180* .. Local Scalars ..
181 LOGICAL UPPER, WANTZ
182 CHARACTER TRANS
183 INTEGER J, NEIG
184* ..
185* .. External Functions ..
186 LOGICAL LSAME
187 EXTERNAL LSAME
188* ..
189* .. External Subroutines ..
190 EXTERNAL chpev, chpgst, cpptrf, ctpmv, ctpsv,
191 $ xerbla
192* ..
193* .. Executable Statements ..
194*
195* Test the input parameters.
196*
197 wantz = lsame( jobz, 'V' )
198 upper = lsame( uplo, 'U' )
199*
200 info = 0
201 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
202 info = -1
203 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
204 info = -2
205 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
206 info = -3
207 ELSE IF( n.LT.0 ) THEN
208 info = -4
209 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
210 info = -9
211 END IF
212 IF( info.NE.0 ) THEN
213 CALL xerbla( 'CHPGV ', -info )
214 RETURN
215 END IF
216*
217* Quick return if possible
218*
219 IF( n.EQ.0 )
220 $ RETURN
221*
222* Form a Cholesky factorization of B.
223*
224 CALL cpptrf( uplo, n, bp, info )
225 IF( info.NE.0 ) THEN
226 info = n + info
227 RETURN
228 END IF
229*
230* Transform problem to standard eigenvalue problem and solve.
231*
232 CALL chpgst( itype, uplo, n, ap, bp, info )
233 CALL chpev( jobz, uplo, n, ap, w, z, ldz, work, rwork, info )
234*
235 IF( wantz ) THEN
236*
237* Backtransform eigenvectors to the original problem.
238*
239 neig = n
240 IF( info.GT.0 )
241 $ neig = info - 1
242 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
243*
244* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
245* backtransform eigenvectors: x = inv(L)**H*y or inv(U)*y
246*
247 IF( upper ) THEN
248 trans = 'N'
249 ELSE
250 trans = 'C'
251 END IF
252*
253 DO 10 j = 1, neig
254 CALL ctpsv( uplo, trans, 'Non-unit', n, bp, z( 1, j ),
255 $ 1 )
256 10 CONTINUE
257*
258 ELSE IF( itype.EQ.3 ) THEN
259*
260* For B*A*x=(lambda)*x;
261* backtransform eigenvectors: x = L*y or U**H*y
262*
263 IF( upper ) THEN
264 trans = 'C'
265 ELSE
266 trans = 'N'
267 END IF
268*
269 DO 20 j = 1, neig
270 CALL ctpmv( uplo, trans, 'Non-unit', n, bp, z( 1, j ),
271 $ 1 )
272 20 CONTINUE
273 END IF
274 END IF
275 RETURN
276*
277* End of CHPGV
278*
279 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine chpev(jobz, uplo, n, ap, w, z, ldz, work, rwork, info)
CHPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Definition chpev.f:136
subroutine chpgst(itype, uplo, n, ap, bp, info)
CHPGST
Definition chpgst.f:111
subroutine chpgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork, info)
CHPGV
Definition chpgv.f:164
subroutine cpptrf(uplo, n, ap, info)
CPPTRF
Definition cpptrf.f:117
subroutine ctpmv(uplo, trans, diag, n, ap, x, incx)
CTPMV
Definition ctpmv.f:142
subroutine ctpsv(uplo, trans, diag, n, ap, x, incx)
CTPSV
Definition ctpsv.f:144