![]() |
LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine slasd5 | ( | integer | i, |
real, dimension( 2 ) | d, | ||
real, dimension( 2 ) | z, | ||
real, dimension( 2 ) | delta, | ||
real | rho, | ||
real | dsigma, | ||
real, dimension( 2 ) | work ) |
SLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
Download SLASD5 + dependencies [TGZ] [ZIP] [TXT]
!> !> This subroutine computes the square root of the I-th eigenvalue !> of a positive symmetric rank-one modification of a 2-by-2 diagonal !> matrix !> !> diag( D ) * diag( D ) + RHO * Z * transpose(Z) . !> !> The diagonal entries in the array D are assumed to satisfy !> !> 0 <= D(i) < D(j) for i < j . !> !> We also assume RHO > 0 and that the Euclidean norm of the vector !> Z is one. !>
[in] | I | !> I is INTEGER !> The index of the eigenvalue to be computed. I = 1 or I = 2. !> |
[in] | D | !> D is REAL array, dimension (2) !> The original eigenvalues. We assume 0 <= D(1) < D(2). !> |
[in] | Z | !> Z is REAL array, dimension (2) !> The components of the updating vector. !> |
[out] | DELTA | !> DELTA is REAL array, dimension (2) !> Contains (D(j) - sigma_I) in its j-th component. !> The vector DELTA contains the information necessary !> to construct the eigenvectors. !> |
[in] | RHO | !> RHO is REAL !> The scalar in the symmetric updating formula. !> |
[out] | DSIGMA | !> DSIGMA is REAL !> The computed sigma_I, the I-th updated eigenvalue. !> |
[out] | WORK | !> WORK is REAL array, dimension (2) !> WORK contains (D(j) + sigma_I) in its j-th component. !> |
Definition at line 113 of file slasd5.f.