LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dlabrd()

subroutine dlabrd ( integer  m,
integer  n,
integer  nb,
double precision, dimension( lda, * )  a,
integer  lda,
double precision, dimension( * )  d,
double precision, dimension( * )  e,
double precision, dimension( * )  tauq,
double precision, dimension( * )  taup,
double precision, dimension( ldx, * )  x,
integer  ldx,
double precision, dimension( ldy, * )  y,
integer  ldy 
)

DLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.

Download DLABRD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DLABRD reduces the first NB rows and columns of a real general
 m by n matrix A to upper or lower bidiagonal form by an orthogonal
 transformation Q**T * A * P, and returns the matrices X and Y which
 are needed to apply the transformation to the unreduced part of A.

 If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
 bidiagonal form.

 This is an auxiliary routine called by DGEBRD
Parameters
[in]M
          M is INTEGER
          The number of rows in the matrix A.
[in]N
          N is INTEGER
          The number of columns in the matrix A.
[in]NB
          NB is INTEGER
          The number of leading rows and columns of A to be reduced.
[in,out]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the m by n general matrix to be reduced.
          On exit, the first NB rows and columns of the matrix are
          overwritten; the rest of the array is unchanged.
          If m >= n, elements on and below the diagonal in the first NB
            columns, with the array TAUQ, represent the orthogonal
            matrix Q as a product of elementary reflectors; and
            elements above the diagonal in the first NB rows, with the
            array TAUP, represent the orthogonal matrix P as a product
            of elementary reflectors.
          If m < n, elements below the diagonal in the first NB
            columns, with the array TAUQ, represent the orthogonal
            matrix Q as a product of elementary reflectors, and
            elements on and above the diagonal in the first NB rows,
            with the array TAUP, represent the orthogonal matrix P as
            a product of elementary reflectors.
          See Further Details.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]D
          D is DOUBLE PRECISION array, dimension (NB)
          The diagonal elements of the first NB rows and columns of
          the reduced matrix.  D(i) = A(i,i).
[out]E
          E is DOUBLE PRECISION array, dimension (NB)
          The off-diagonal elements of the first NB rows and columns of
          the reduced matrix.
[out]TAUQ
          TAUQ is DOUBLE PRECISION array, dimension (NB)
          The scalar factors of the elementary reflectors which
          represent the orthogonal matrix Q. See Further Details.
[out]TAUP
          TAUP is DOUBLE PRECISION array, dimension (NB)
          The scalar factors of the elementary reflectors which
          represent the orthogonal matrix P. See Further Details.
[out]X
          X is DOUBLE PRECISION array, dimension (LDX,NB)
          The m-by-nb matrix X required to update the unreduced part
          of A.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X. LDX >= max(1,M).
[out]Y
          Y is DOUBLE PRECISION array, dimension (LDY,NB)
          The n-by-nb matrix Y required to update the unreduced part
          of A.
[in]LDY
          LDY is INTEGER
          The leading dimension of the array Y. LDY >= max(1,N).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  The matrices Q and P are represented as products of elementary
  reflectors:

     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)

  Each H(i) and G(i) has the form:

     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T

  where tauq and taup are real scalars, and v and u are real vectors.

  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).

  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).

  The elements of the vectors v and u together form the m-by-nb matrix
  V and the nb-by-n matrix U**T which are needed, with X and Y, to apply
  the transformation to the unreduced part of the matrix, using a block
  update of the form:  A := A - V*Y**T - X*U**T.

  The contents of A on exit are illustrated by the following examples
  with nb = 2:

  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):

    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
    (  v1  v2  a   a   a  )

  where a denotes an element of the original matrix which is unchanged,
  vi denotes an element of the vector defining H(i), and ui an element
  of the vector defining G(i).

Definition at line 208 of file dlabrd.f.

210*
211* -- LAPACK auxiliary routine --
212* -- LAPACK is a software package provided by Univ. of Tennessee, --
213* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
214*
215* .. Scalar Arguments ..
216 INTEGER LDA, LDX, LDY, M, N, NB
217* ..
218* .. Array Arguments ..
219 DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAUP( * ),
220 $ TAUQ( * ), X( LDX, * ), Y( LDY, * )
221* ..
222*
223* =====================================================================
224*
225* .. Parameters ..
226 DOUBLE PRECISION ZERO, ONE
227 parameter( zero = 0.0d0, one = 1.0d0 )
228* ..
229* .. Local Scalars ..
230 INTEGER I
231* ..
232* .. External Subroutines ..
233 EXTERNAL dgemv, dlarfg, dscal
234* ..
235* .. Intrinsic Functions ..
236 INTRINSIC min
237* ..
238* .. Executable Statements ..
239*
240* Quick return if possible
241*
242 IF( m.LE.0 .OR. n.LE.0 )
243 $ RETURN
244*
245 IF( m.GE.n ) THEN
246*
247* Reduce to upper bidiagonal form
248*
249 DO 10 i = 1, nb
250*
251* Update A(i:m,i)
252*
253 CALL dgemv( 'No transpose', m-i+1, i-1, -one, a( i, 1 ),
254 $ lda, y( i, 1 ), ldy, one, a( i, i ), 1 )
255 CALL dgemv( 'No transpose', m-i+1, i-1, -one, x( i, 1 ),
256 $ ldx, a( 1, i ), 1, one, a( i, i ), 1 )
257*
258* Generate reflection Q(i) to annihilate A(i+1:m,i)
259*
260 CALL dlarfg( m-i+1, a( i, i ), a( min( i+1, m ), i ), 1,
261 $ tauq( i ) )
262 d( i ) = a( i, i )
263 IF( i.LT.n ) THEN
264 a( i, i ) = one
265*
266* Compute Y(i+1:n,i)
267*
268 CALL dgemv( 'Transpose', m-i+1, n-i, one, a( i, i+1 ),
269 $ lda, a( i, i ), 1, zero, y( i+1, i ), 1 )
270 CALL dgemv( 'Transpose', m-i+1, i-1, one, a( i, 1 ), lda,
271 $ a( i, i ), 1, zero, y( 1, i ), 1 )
272 CALL dgemv( 'No transpose', n-i, i-1, -one, y( i+1, 1 ),
273 $ ldy, y( 1, i ), 1, one, y( i+1, i ), 1 )
274 CALL dgemv( 'Transpose', m-i+1, i-1, one, x( i, 1 ), ldx,
275 $ a( i, i ), 1, zero, y( 1, i ), 1 )
276 CALL dgemv( 'Transpose', i-1, n-i, -one, a( 1, i+1 ),
277 $ lda, y( 1, i ), 1, one, y( i+1, i ), 1 )
278 CALL dscal( n-i, tauq( i ), y( i+1, i ), 1 )
279*
280* Update A(i,i+1:n)
281*
282 CALL dgemv( 'No transpose', n-i, i, -one, y( i+1, 1 ),
283 $ ldy, a( i, 1 ), lda, one, a( i, i+1 ), lda )
284 CALL dgemv( 'Transpose', i-1, n-i, -one, a( 1, i+1 ),
285 $ lda, x( i, 1 ), ldx, one, a( i, i+1 ), lda )
286*
287* Generate reflection P(i) to annihilate A(i,i+2:n)
288*
289 CALL dlarfg( n-i, a( i, i+1 ), a( i, min( i+2, n ) ),
290 $ lda, taup( i ) )
291 e( i ) = a( i, i+1 )
292 a( i, i+1 ) = one
293*
294* Compute X(i+1:m,i)
295*
296 CALL dgemv( 'No transpose', m-i, n-i, one, a( i+1, i+1 ),
297 $ lda, a( i, i+1 ), lda, zero, x( i+1, i ), 1 )
298 CALL dgemv( 'Transpose', n-i, i, one, y( i+1, 1 ), ldy,
299 $ a( i, i+1 ), lda, zero, x( 1, i ), 1 )
300 CALL dgemv( 'No transpose', m-i, i, -one, a( i+1, 1 ),
301 $ lda, x( 1, i ), 1, one, x( i+1, i ), 1 )
302 CALL dgemv( 'No transpose', i-1, n-i, one, a( 1, i+1 ),
303 $ lda, a( i, i+1 ), lda, zero, x( 1, i ), 1 )
304 CALL dgemv( 'No transpose', m-i, i-1, -one, x( i+1, 1 ),
305 $ ldx, x( 1, i ), 1, one, x( i+1, i ), 1 )
306 CALL dscal( m-i, taup( i ), x( i+1, i ), 1 )
307 END IF
308 10 CONTINUE
309 ELSE
310*
311* Reduce to lower bidiagonal form
312*
313 DO 20 i = 1, nb
314*
315* Update A(i,i:n)
316*
317 CALL dgemv( 'No transpose', n-i+1, i-1, -one, y( i, 1 ),
318 $ ldy, a( i, 1 ), lda, one, a( i, i ), lda )
319 CALL dgemv( 'Transpose', i-1, n-i+1, -one, a( 1, i ), lda,
320 $ x( i, 1 ), ldx, one, a( i, i ), lda )
321*
322* Generate reflection P(i) to annihilate A(i,i+1:n)
323*
324 CALL dlarfg( n-i+1, a( i, i ), a( i, min( i+1, n ) ), lda,
325 $ taup( i ) )
326 d( i ) = a( i, i )
327 IF( i.LT.m ) THEN
328 a( i, i ) = one
329*
330* Compute X(i+1:m,i)
331*
332 CALL dgemv( 'No transpose', m-i, n-i+1, one, a( i+1, i ),
333 $ lda, a( i, i ), lda, zero, x( i+1, i ), 1 )
334 CALL dgemv( 'Transpose', n-i+1, i-1, one, y( i, 1 ), ldy,
335 $ a( i, i ), lda, zero, x( 1, i ), 1 )
336 CALL dgemv( 'No transpose', m-i, i-1, -one, a( i+1, 1 ),
337 $ lda, x( 1, i ), 1, one, x( i+1, i ), 1 )
338 CALL dgemv( 'No transpose', i-1, n-i+1, one, a( 1, i ),
339 $ lda, a( i, i ), lda, zero, x( 1, i ), 1 )
340 CALL dgemv( 'No transpose', m-i, i-1, -one, x( i+1, 1 ),
341 $ ldx, x( 1, i ), 1, one, x( i+1, i ), 1 )
342 CALL dscal( m-i, taup( i ), x( i+1, i ), 1 )
343*
344* Update A(i+1:m,i)
345*
346 CALL dgemv( 'No transpose', m-i, i-1, -one, a( i+1, 1 ),
347 $ lda, y( i, 1 ), ldy, one, a( i+1, i ), 1 )
348 CALL dgemv( 'No transpose', m-i, i, -one, x( i+1, 1 ),
349 $ ldx, a( 1, i ), 1, one, a( i+1, i ), 1 )
350*
351* Generate reflection Q(i) to annihilate A(i+2:m,i)
352*
353 CALL dlarfg( m-i, a( i+1, i ), a( min( i+2, m ), i ), 1,
354 $ tauq( i ) )
355 e( i ) = a( i+1, i )
356 a( i+1, i ) = one
357*
358* Compute Y(i+1:n,i)
359*
360 CALL dgemv( 'Transpose', m-i, n-i, one, a( i+1, i+1 ),
361 $ lda, a( i+1, i ), 1, zero, y( i+1, i ), 1 )
362 CALL dgemv( 'Transpose', m-i, i-1, one, a( i+1, 1 ), lda,
363 $ a( i+1, i ), 1, zero, y( 1, i ), 1 )
364 CALL dgemv( 'No transpose', n-i, i-1, -one, y( i+1, 1 ),
365 $ ldy, y( 1, i ), 1, one, y( i+1, i ), 1 )
366 CALL dgemv( 'Transpose', m-i, i, one, x( i+1, 1 ), ldx,
367 $ a( i+1, i ), 1, zero, y( 1, i ), 1 )
368 CALL dgemv( 'Transpose', i, n-i, -one, a( 1, i+1 ), lda,
369 $ y( 1, i ), 1, one, y( i+1, i ), 1 )
370 CALL dscal( n-i, tauq( i ), y( i+1, i ), 1 )
371 END IF
372 20 CONTINUE
373 END IF
374 RETURN
375*
376* End of DLABRD
377*
subroutine dgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
DGEMV
Definition dgemv.f:158
subroutine dlarfg(n, alpha, x, incx, tau)
DLARFG generates an elementary reflector (Householder matrix).
Definition dlarfg.f:106
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
Here is the call graph for this function:
Here is the caller graph for this function: