LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ LAPACKE_zgesvxx_work()

lapack_int LAPACKE_zgesvxx_work ( int  matrix_layout,
char  fact,
char  trans,
lapack_int  n,
lapack_int  nrhs,
lapack_complex_double a,
lapack_int  lda,
lapack_complex_double af,
lapack_int  ldaf,
lapack_int ipiv,
char *  equed,
double *  r,
double *  c,
lapack_complex_double b,
lapack_int  ldb,
lapack_complex_double x,
lapack_int  ldx,
double *  rcond,
double *  rpvgrw,
double *  berr,
lapack_int  n_err_bnds,
double *  err_bnds_norm,
double *  err_bnds_comp,
lapack_int  nparams,
double *  params,
lapack_complex_double work,
double *  rwork 
)

Definition at line 35 of file lapacke_zgesvxx_work.c.

47{
48 lapack_int info = 0;
49 if( matrix_layout == LAPACK_COL_MAJOR ) {
50 /* Call LAPACK function and adjust info */
51 LAPACK_zgesvxx( &fact, &trans, &n, &nrhs, a, &lda, af, &ldaf, ipiv,
52 equed, r, c, b, &ldb, x, &ldx, rcond, rpvgrw, berr,
53 &n_err_bnds, err_bnds_norm, err_bnds_comp, &nparams,
54 params, work, rwork, &info );
55 if( info < 0 ) {
56 info = info - 1;
57 }
58 } else if( matrix_layout == LAPACK_ROW_MAJOR ) {
59 lapack_int lda_t = MAX(1,n);
60 lapack_int ldaf_t = MAX(1,n);
61 lapack_int ldb_t = MAX(1,n);
62 lapack_int ldx_t = MAX(1,n);
63 lapack_complex_double* a_t = NULL;
64 lapack_complex_double* af_t = NULL;
65 lapack_complex_double* b_t = NULL;
66 lapack_complex_double* x_t = NULL;
67 double* err_bnds_norm_t = NULL;
68 double* err_bnds_comp_t = NULL;
69 /* Check leading dimension(s) */
70 if( lda < n ) {
71 info = -7;
72 LAPACKE_xerbla( "LAPACKE_zgesvxx_work", info );
73 return info;
74 }
75 if( ldaf < n ) {
76 info = -9;
77 LAPACKE_xerbla( "LAPACKE_zgesvxx_work", info );
78 return info;
79 }
80 if( ldb < nrhs ) {
81 info = -15;
82 LAPACKE_xerbla( "LAPACKE_zgesvxx_work", info );
83 return info;
84 }
85 if( ldx < nrhs ) {
86 info = -17;
87 LAPACKE_xerbla( "LAPACKE_zgesvxx_work", info );
88 return info;
89 }
90 /* Allocate memory for temporary array(s) */
92 LAPACKE_malloc( sizeof(lapack_complex_double) * lda_t * MAX(1,n) );
93 if( a_t == NULL ) {
95 goto exit_level_0;
96 }
97 af_t = (lapack_complex_double*)
98 LAPACKE_malloc( sizeof(lapack_complex_double) * ldaf_t * MAX(1,n) );
99 if( af_t == NULL ) {
101 goto exit_level_1;
102 }
103 b_t = (lapack_complex_double*)
105 ldb_t * MAX(1,nrhs) );
106 if( b_t == NULL ) {
108 goto exit_level_2;
109 }
110 x_t = (lapack_complex_double*)
112 ldx_t * MAX(1,nrhs) );
113 if( x_t == NULL ) {
115 goto exit_level_3;
116 }
117 err_bnds_norm_t = (double*)
118 LAPACKE_malloc( sizeof(double) * nrhs * MAX(1,n_err_bnds) );
119 if( err_bnds_norm_t == NULL ) {
121 goto exit_level_4;
122 }
123 err_bnds_comp_t = (double*)
124 LAPACKE_malloc( sizeof(double) * nrhs * MAX(1,n_err_bnds) );
125 if( err_bnds_comp_t == NULL ) {
127 goto exit_level_5;
128 }
129 /* Transpose input matrices */
130 LAPACKE_zge_trans( matrix_layout, n, n, a, lda, a_t, lda_t );
131 if( LAPACKE_lsame( fact, 'f' ) ) {
132 LAPACKE_zge_trans( matrix_layout, n, n, af, ldaf, af_t, ldaf_t );
133 }
134 LAPACKE_zge_trans( matrix_layout, n, nrhs, b, ldb, b_t, ldb_t );
135 /* Call LAPACK function and adjust info */
136 LAPACK_zgesvxx( &fact, &trans, &n, &nrhs, a_t, &lda_t, af_t, &ldaf_t,
137 ipiv, equed, r, c, b_t, &ldb_t, x_t, &ldx_t, rcond,
138 rpvgrw, berr, &n_err_bnds, err_bnds_norm_t,
139 err_bnds_comp_t, &nparams, params, work, rwork, &info );
140 if( info < 0 ) {
141 info = info - 1;
142 }
143 /* Transpose output matrices */
144 if( LAPACKE_lsame( fact, 'e' ) && ( LAPACKE_lsame( *equed, 'b' ) ||
145 LAPACKE_lsame( *equed, 'c' ) || LAPACKE_lsame( *equed, 'r' ) ) ) {
146 LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, n, a_t, lda_t, a, lda );
147 }
148 if( LAPACKE_lsame( fact, 'e' ) || LAPACKE_lsame( fact, 'n' ) ) {
149 LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, n, af_t, ldaf_t, af, ldaf );
150 }
151 if( LAPACKE_lsame( fact, 'f' ) && ( LAPACKE_lsame( *equed, 'b' ) ||
152 LAPACKE_lsame( *equed, 'c' ) || LAPACKE_lsame( *equed, 'r' ) ) ) {
153 LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, nrhs, b_t, ldb_t, b, ldb );
154 }
155 LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, nrhs, x_t, ldx_t, x, ldx );
156 LAPACKE_dge_trans( LAPACK_COL_MAJOR, nrhs, n_err_bnds, err_bnds_norm_t,
157 nrhs, err_bnds_norm, n_err_bnds );
158 LAPACKE_dge_trans( LAPACK_COL_MAJOR, nrhs, n_err_bnds, err_bnds_comp_t,
159 nrhs, err_bnds_comp, n_err_bnds );
160 /* Release memory and exit */
161 LAPACKE_free( err_bnds_comp_t );
162exit_level_5:
163 LAPACKE_free( err_bnds_norm_t );
164exit_level_4:
165 LAPACKE_free( x_t );
166exit_level_3:
167 LAPACKE_free( b_t );
168exit_level_2:
169 LAPACKE_free( af_t );
170exit_level_1:
171 LAPACKE_free( a_t );
172exit_level_0:
173 if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
174 LAPACKE_xerbla( "LAPACKE_zgesvxx_work", info );
175 }
176 } else {
177 info = -1;
178 LAPACKE_xerbla( "LAPACKE_zgesvxx_work", info );
179 }
180 return info;
181}
#define LAPACK_zgesvxx(...)
Definition: lapack.h:3937
#define lapack_int
Definition: lapack.h:87
#define lapack_complex_double
Definition: lapack.h:64
#define LAPACK_COL_MAJOR
Definition: lapacke.h:53
#define LAPACKE_free(p)
Definition: lapacke.h:46
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:52
#define LAPACKE_malloc(size)
Definition: lapacke.h:43
#define LAPACK_TRANSPOSE_MEMORY_ERROR
Definition: lapacke.h:56
lapack_logical LAPACKE_lsame(char ca, char cb)
Definition: lapacke_lsame.c:35
void LAPACKE_xerbla(const char *name, lapack_int info)
void LAPACKE_zge_trans(int matrix_layout, lapack_int m, lapack_int n, const lapack_complex_double *in, lapack_int ldin, lapack_complex_double *out, lapack_int ldout)
#define MAX(x, y)
Definition: lapacke_utils.h:46
void LAPACKE_dge_trans(int matrix_layout, lapack_int m, lapack_int n, const double *in, lapack_int ldin, double *out, lapack_int ldout)
Here is the call graph for this function:
Here is the caller graph for this function: