LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ LAPACKE_zgesvj_work()

lapack_int LAPACKE_zgesvj_work ( int  matrix_layout,
char  joba,
char  jobu,
char  jobv,
lapack_int  m,
lapack_int  n,
lapack_complex_double a,
lapack_int  lda,
double *  sva,
lapack_int  mv,
lapack_complex_double v,
lapack_int  ldv,
lapack_complex_double cwork,
lapack_int  lwork,
double *  rwork,
lapack_int  lrwork 
)

Definition at line 35 of file lapacke_zgesvj_work.c.

42{
43 lapack_int info = 0;
44 if( matrix_layout == LAPACK_COL_MAJOR ) {
45 /* Call LAPACK function and adjust info */
46 LAPACK_zgesvj( &joba, &jobu, &jobv, &m, &n, a, &lda, sva, &mv, v, &ldv,
47 cwork, &lwork, rwork, &lrwork, &info );
48 if( info < 0 ) {
49 info = info - 1;
50 }
51 } else if( matrix_layout == LAPACK_ROW_MAJOR ) {
52 lapack_int nrows_v = LAPACKE_lsame( jobv, 'v' ) ? MAX(0,n) :
53 ( LAPACKE_lsame( jobv, 'a' ) ? MAX(0,mv) : 0);
54 lapack_int lda_t = MAX(1,m);
55 lapack_int ldv_t = MAX(1,nrows_v);
56 lapack_complex_double* a_t = NULL;
57 lapack_complex_double* v_t = NULL;
58 /* Check leading dimension(s) */
59 if( lda < n ) {
60 info = -8;
61 LAPACKE_xerbla( "LAPACKE_zgesvj_work", info );
62 return info;
63 }
64 if( ldv < n ) {
65 info = -12;
66 LAPACKE_xerbla( "LAPACKE_zgesvj_work", info );
67 return info;
68 }
69 /* Allocate memory for temporary array(s) */
71 LAPACKE_malloc( sizeof(lapack_complex_double) * lda_t * MAX(1,n) );
72 if( a_t == NULL ) {
74 goto exit_level_0;
75 }
76 if( LAPACKE_lsame( jobv, 'a' ) || LAPACKE_lsame( jobv, 'v' ) ) {
78 LAPACKE_malloc( sizeof(lapack_complex_double) * ldv_t * MAX(1,n) );
79 if( v_t == NULL ) {
81 goto exit_level_1;
82 }
83 }
84 /* Transpose input matrices */
85 LAPACKE_zge_trans( matrix_layout, m, n, a, lda, a_t, lda_t );
86 if( LAPACKE_lsame( jobv, 'a' ) ) {
87 LAPACKE_zge_trans( matrix_layout, nrows_v, n, v, ldv, v_t, ldv_t );
88 }
89 /* Call LAPACK function and adjust info */
90 LAPACK_zgesvj( &joba, &jobu, &jobv, &m, &n, a_t, &lda_t, sva, &mv, v_t,
91 &ldv_t, cwork, &lwork, rwork, &lrwork, &info );
92 if( info < 0 ) {
93 info = info - 1;
94 }
95 /* Transpose output matrices */
96 LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, a_t, lda_t, a, lda );
97 if( LAPACKE_lsame( jobv, 'a' ) || LAPACKE_lsame( jobv, 'v' ) ) {
98 LAPACKE_zge_trans( LAPACK_COL_MAJOR, nrows_v, n, v_t, ldv_t, v,
99 ldv );
100 }
101 /* Release memory and exit */
102 if( LAPACKE_lsame( jobv, 'a' ) || LAPACKE_lsame( jobv, 'v' ) ) {
103 LAPACKE_free( v_t );
104 }
105exit_level_1:
106 LAPACKE_free( a_t );
107exit_level_0:
108 if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
109 LAPACKE_xerbla( "LAPACKE_zgesvj_work", info );
110 }
111 } else {
112 info = -1;
113 LAPACKE_xerbla( "LAPACKE_zgesvj_work", info );
114 }
115 return info;
116}
#define lapack_int
Definition: lapack.h:87
#define LAPACK_zgesvj(...)
Definition: lapack.h:3709
#define lapack_complex_double
Definition: lapack.h:64
#define LAPACK_COL_MAJOR
Definition: lapacke.h:53
#define LAPACKE_free(p)
Definition: lapacke.h:46
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:52
#define LAPACKE_malloc(size)
Definition: lapacke.h:43
#define LAPACK_TRANSPOSE_MEMORY_ERROR
Definition: lapacke.h:56
lapack_logical LAPACKE_lsame(char ca, char cb)
Definition: lapacke_lsame.c:35
void LAPACKE_xerbla(const char *name, lapack_int info)
void LAPACKE_zge_trans(int matrix_layout, lapack_int m, lapack_int n, const lapack_complex_double *in, lapack_int ldin, lapack_complex_double *out, lapack_int ldout)
#define MAX(x, y)
Definition: lapacke_utils.h:46
Here is the call graph for this function:
Here is the caller graph for this function: