LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
ctpttf.f
Go to the documentation of this file.
1*> \brief \b CTPTTF copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF).
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CTPTTF + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctpttf.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctpttf.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctpttf.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CTPTTF( TRANSR, UPLO, N, AP, ARF, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER TRANSR, UPLO
25* INTEGER INFO, N
26* ..
27* .. Array Arguments ..
28* COMPLEX AP( 0: * ), ARF( 0: * )
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> CTPTTF copies a triangular matrix A from standard packed format (TP)
37*> to rectangular full packed format (TF).
38*> \endverbatim
39*
40* Arguments:
41* ==========
42*
43*> \param[in] TRANSR
44*> \verbatim
45*> TRANSR is CHARACTER*1
46*> = 'N': ARF in Normal format is wanted;
47*> = 'C': ARF in Conjugate-transpose format is wanted.
48*> \endverbatim
49*>
50*> \param[in] UPLO
51*> \verbatim
52*> UPLO is CHARACTER*1
53*> = 'U': A is upper triangular;
54*> = 'L': A is lower triangular.
55*> \endverbatim
56*>
57*> \param[in] N
58*> \verbatim
59*> N is INTEGER
60*> The order of the matrix A. N >= 0.
61*> \endverbatim
62*>
63*> \param[in] AP
64*> \verbatim
65*> AP is COMPLEX array, dimension ( N*(N+1)/2 ),
66*> On entry, the upper or lower triangular matrix A, packed
67*> columnwise in a linear array. The j-th column of A is stored
68*> in the array AP as follows:
69*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
70*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
71*> \endverbatim
72*>
73*> \param[out] ARF
74*> \verbatim
75*> ARF is COMPLEX array, dimension ( N*(N+1)/2 ),
76*> On exit, the upper or lower triangular matrix A stored in
77*> RFP format. For a further discussion see Notes below.
78*> \endverbatim
79*>
80*> \param[out] INFO
81*> \verbatim
82*> INFO is INTEGER
83*> = 0: successful exit
84*> < 0: if INFO = -i, the i-th argument had an illegal value
85*> \endverbatim
86*
87* Authors:
88* ========
89*
90*> \author Univ. of Tennessee
91*> \author Univ. of California Berkeley
92*> \author Univ. of Colorado Denver
93*> \author NAG Ltd.
94*
95*> \ingroup tpttf
96*
97*> \par Further Details:
98* =====================
99*>
100*> \verbatim
101*>
102*> We first consider Standard Packed Format when N is even.
103*> We give an example where N = 6.
104*>
105*> AP is Upper AP is Lower
106*>
107*> 00 01 02 03 04 05 00
108*> 11 12 13 14 15 10 11
109*> 22 23 24 25 20 21 22
110*> 33 34 35 30 31 32 33
111*> 44 45 40 41 42 43 44
112*> 55 50 51 52 53 54 55
113*>
114*>
115*> Let TRANSR = 'N'. RFP holds AP as follows:
116*> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
117*> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
118*> conjugate-transpose of the first three columns of AP upper.
119*> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
120*> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
121*> conjugate-transpose of the last three columns of AP lower.
122*> To denote conjugate we place -- above the element. This covers the
123*> case N even and TRANSR = 'N'.
124*>
125*> RFP A RFP A
126*>
127*> -- -- --
128*> 03 04 05 33 43 53
129*> -- --
130*> 13 14 15 00 44 54
131*> --
132*> 23 24 25 10 11 55
133*>
134*> 33 34 35 20 21 22
135*> --
136*> 00 44 45 30 31 32
137*> -- --
138*> 01 11 55 40 41 42
139*> -- -- --
140*> 02 12 22 50 51 52
141*>
142*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
143*> transpose of RFP A above. One therefore gets:
144*>
145*>
146*> RFP A RFP A
147*>
148*> -- -- -- -- -- -- -- -- -- --
149*> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
150*> -- -- -- -- -- -- -- -- -- --
151*> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
152*> -- -- -- -- -- -- -- -- -- --
153*> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
154*>
155*>
156*> We next consider Standard Packed Format when N is odd.
157*> We give an example where N = 5.
158*>
159*> AP is Upper AP is Lower
160*>
161*> 00 01 02 03 04 00
162*> 11 12 13 14 10 11
163*> 22 23 24 20 21 22
164*> 33 34 30 31 32 33
165*> 44 40 41 42 43 44
166*>
167*>
168*> Let TRANSR = 'N'. RFP holds AP as follows:
169*> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
170*> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
171*> conjugate-transpose of the first two columns of AP upper.
172*> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
173*> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
174*> conjugate-transpose of the last two columns of AP lower.
175*> To denote conjugate we place -- above the element. This covers the
176*> case N odd and TRANSR = 'N'.
177*>
178*> RFP A RFP A
179*>
180*> -- --
181*> 02 03 04 00 33 43
182*> --
183*> 12 13 14 10 11 44
184*>
185*> 22 23 24 20 21 22
186*> --
187*> 00 33 34 30 31 32
188*> -- --
189*> 01 11 44 40 41 42
190*>
191*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
192*> transpose of RFP A above. One therefore gets:
193*>
194*>
195*> RFP A RFP A
196*>
197*> -- -- -- -- -- -- -- -- --
198*> 02 12 22 00 01 00 10 20 30 40 50
199*> -- -- -- -- -- -- -- -- --
200*> 03 13 23 33 11 33 11 21 31 41 51
201*> -- -- -- -- -- -- -- -- --
202*> 04 14 24 34 44 43 44 22 32 42 52
203*> \endverbatim
204*>
205* =====================================================================
206 SUBROUTINE ctpttf( TRANSR, UPLO, N, AP, ARF, INFO )
207*
208* -- LAPACK computational routine --
209* -- LAPACK is a software package provided by Univ. of Tennessee, --
210* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
211*
212* .. Scalar Arguments ..
213 CHARACTER TRANSR, UPLO
214 INTEGER INFO, N
215* ..
216* .. Array Arguments ..
217 COMPLEX AP( 0: * ), ARF( 0: * )
218*
219* =====================================================================
220*
221* .. Parameters ..
222* ..
223* .. Local Scalars ..
224 LOGICAL LOWER, NISODD, NORMALTRANSR
225 INTEGER N1, N2, K, NT
226 INTEGER I, J, IJ
227 INTEGER IJP, JP, LDA, JS
228* ..
229* .. External Functions ..
230 LOGICAL LSAME
231 EXTERNAL lsame
232* ..
233* .. External Subroutines ..
234 EXTERNAL xerbla
235* ..
236* .. Intrinsic Functions ..
237 INTRINSIC conjg, mod
238* ..
239* .. Executable Statements ..
240*
241* Test the input parameters.
242*
243 info = 0
244 normaltransr = lsame( transr, 'N' )
245 lower = lsame( uplo, 'L' )
246 IF( .NOT.normaltransr .AND. .NOT.lsame( transr, 'C' ) ) THEN
247 info = -1
248 ELSE IF( .NOT.lower .AND. .NOT.lsame( uplo, 'U' ) ) THEN
249 info = -2
250 ELSE IF( n.LT.0 ) THEN
251 info = -3
252 END IF
253 IF( info.NE.0 ) THEN
254 CALL xerbla( 'CTPTTF', -info )
255 RETURN
256 END IF
257*
258* Quick return if possible
259*
260 IF( n.EQ.0 )
261 $ RETURN
262*
263 IF( n.EQ.1 ) THEN
264 IF( normaltransr ) THEN
265 arf( 0 ) = ap( 0 )
266 ELSE
267 arf( 0 ) = conjg( ap( 0 ) )
268 END IF
269 RETURN
270 END IF
271*
272* Size of array ARF(0:NT-1)
273*
274 nt = n*( n+1 ) / 2
275*
276* Set N1 and N2 depending on LOWER
277*
278 IF( lower ) THEN
279 n2 = n / 2
280 n1 = n - n2
281 ELSE
282 n1 = n / 2
283 n2 = n - n1
284 END IF
285*
286* If N is odd, set NISODD = .TRUE.
287* If N is even, set K = N/2 and NISODD = .FALSE.
288*
289* set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
290* where noe = 0 if n is even, noe = 1 if n is odd
291*
292 IF( mod( n, 2 ).EQ.0 ) THEN
293 k = n / 2
294 nisodd = .false.
295 lda = n + 1
296 ELSE
297 nisodd = .true.
298 lda = n
299 END IF
300*
301* ARF^C has lda rows and n+1-noe cols
302*
303 IF( .NOT.normaltransr )
304 $ lda = ( n+1 ) / 2
305*
306* start execution: there are eight cases
307*
308 IF( nisodd ) THEN
309*
310* N is odd
311*
312 IF( normaltransr ) THEN
313*
314* N is odd and TRANSR = 'N'
315*
316 IF( lower ) THEN
317*
318* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
319* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
320* T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n
321*
322 ijp = 0
323 jp = 0
324 DO j = 0, n2
325 DO i = j, n - 1
326 ij = i + jp
327 arf( ij ) = ap( ijp )
328 ijp = ijp + 1
329 END DO
330 jp = jp + lda
331 END DO
332 DO i = 0, n2 - 1
333 DO j = 1 + i, n2
334 ij = i + j*lda
335 arf( ij ) = conjg( ap( ijp ) )
336 ijp = ijp + 1
337 END DO
338 END DO
339*
340 ELSE
341*
342* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
343* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
344* T1 -> a(n2), T2 -> a(n1), S -> a(0)
345*
346 ijp = 0
347 DO j = 0, n1 - 1
348 ij = n2 + j
349 DO i = 0, j
350 arf( ij ) = conjg( ap( ijp ) )
351 ijp = ijp + 1
352 ij = ij + lda
353 END DO
354 END DO
355 js = 0
356 DO j = n1, n - 1
357 ij = js
358 DO ij = js, js + j
359 arf( ij ) = ap( ijp )
360 ijp = ijp + 1
361 END DO
362 js = js + lda
363 END DO
364*
365 END IF
366*
367 ELSE
368*
369* N is odd and TRANSR = 'C'
370*
371 IF( lower ) THEN
372*
373* SRPA for LOWER, TRANSPOSE and N is odd
374* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
375* T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
376*
377 ijp = 0
378 DO i = 0, n2
379 DO ij = i*( lda+1 ), n*lda - 1, lda
380 arf( ij ) = conjg( ap( ijp ) )
381 ijp = ijp + 1
382 END DO
383 END DO
384 js = 1
385 DO j = 0, n2 - 1
386 DO ij = js, js + n2 - j - 1
387 arf( ij ) = ap( ijp )
388 ijp = ijp + 1
389 END DO
390 js = js + lda + 1
391 END DO
392*
393 ELSE
394*
395* SRPA for UPPER, TRANSPOSE and N is odd
396* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
397* T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
398*
399 ijp = 0
400 js = n2*lda
401 DO j = 0, n1 - 1
402 DO ij = js, js + j
403 arf( ij ) = ap( ijp )
404 ijp = ijp + 1
405 END DO
406 js = js + lda
407 END DO
408 DO i = 0, n1
409 DO ij = i, i + ( n1+i )*lda, lda
410 arf( ij ) = conjg( ap( ijp ) )
411 ijp = ijp + 1
412 END DO
413 END DO
414*
415 END IF
416*
417 END IF
418*
419 ELSE
420*
421* N is even
422*
423 IF( normaltransr ) THEN
424*
425* N is even and TRANSR = 'N'
426*
427 IF( lower ) THEN
428*
429* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
430* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
431* T1 -> a(1), T2 -> a(0), S -> a(k+1)
432*
433 ijp = 0
434 jp = 0
435 DO j = 0, k - 1
436 DO i = j, n - 1
437 ij = 1 + i + jp
438 arf( ij ) = ap( ijp )
439 ijp = ijp + 1
440 END DO
441 jp = jp + lda
442 END DO
443 DO i = 0, k - 1
444 DO j = i, k - 1
445 ij = i + j*lda
446 arf( ij ) = conjg( ap( ijp ) )
447 ijp = ijp + 1
448 END DO
449 END DO
450*
451 ELSE
452*
453* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
454* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
455* T1 -> a(k+1), T2 -> a(k), S -> a(0)
456*
457 ijp = 0
458 DO j = 0, k - 1
459 ij = k + 1 + j
460 DO i = 0, j
461 arf( ij ) = conjg( ap( ijp ) )
462 ijp = ijp + 1
463 ij = ij + lda
464 END DO
465 END DO
466 js = 0
467 DO j = k, n - 1
468 ij = js
469 DO ij = js, js + j
470 arf( ij ) = ap( ijp )
471 ijp = ijp + 1
472 END DO
473 js = js + lda
474 END DO
475*
476 END IF
477*
478 ELSE
479*
480* N is even and TRANSR = 'C'
481*
482 IF( lower ) THEN
483*
484* SRPA for LOWER, TRANSPOSE and N is even (see paper)
485* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
486* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
487*
488 ijp = 0
489 DO i = 0, k - 1
490 DO ij = i + ( i+1 )*lda, ( n+1 )*lda - 1, lda
491 arf( ij ) = conjg( ap( ijp ) )
492 ijp = ijp + 1
493 END DO
494 END DO
495 js = 0
496 DO j = 0, k - 1
497 DO ij = js, js + k - j - 1
498 arf( ij ) = ap( ijp )
499 ijp = ijp + 1
500 END DO
501 js = js + lda + 1
502 END DO
503*
504 ELSE
505*
506* SRPA for UPPER, TRANSPOSE and N is even (see paper)
507* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0)
508* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
509*
510 ijp = 0
511 js = ( k+1 )*lda
512 DO j = 0, k - 1
513 DO ij = js, js + j
514 arf( ij ) = ap( ijp )
515 ijp = ijp + 1
516 END DO
517 js = js + lda
518 END DO
519 DO i = 0, k - 1
520 DO ij = i, i + ( k+i )*lda, lda
521 arf( ij ) = conjg( ap( ijp ) )
522 ijp = ijp + 1
523 END DO
524 END DO
525*
526 END IF
527*
528 END IF
529*
530 END IF
531*
532 RETURN
533*
534* End of CTPTTF
535*
536 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ctpttf(transr, uplo, n, ap, arf, info)
CTPTTF copies a triangular matrix from the standard packed format (TP) to the rectangular full packed...
Definition ctpttf.f:207