160 $ LDAB, AFB, LDAFB, IPIV,
161 $ C, CAPPLY, INFO, WORK,
171 INTEGER n, kl, ku, kd, ke, ldab, ldafb, info
175 COMPLEX*16 ab( ldab, * ), afb( ldafb, * ), work( * )
176 DOUBLE PRECISION c( * ), rwork( * )
184 DOUBLE PRECISION ainvnm, anorm, tmp
201 DOUBLE PRECISION cabs1
204 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
210 notrans =
lsame( trans,
'N' )
211 IF ( .NOT. notrans .AND. .NOT.
lsame( trans,
'T' ) .AND. .NOT.
212 $
lsame( trans,
'C' ) )
THEN
214 ELSE IF( n.LT.0 )
THEN
216 ELSE IF( kl.LT.0 .OR. kl.GT.n-1 )
THEN
218 ELSE IF( ku.LT.0 .OR. ku.GT.n-1 )
THEN
220 ELSE IF( ldab.LT.kl+ku+1 )
THEN
222 ELSE IF( ldafb.LT.2*kl+ku+1 )
THEN
226 CALL xerbla(
'ZLA_GBRCOND_C', -info )
239 DO j = max( i-kl, 1 ), min( i+ku, n )
240 tmp = tmp + cabs1( ab( kd+i-j, j ) ) / c( j )
243 DO j = max( i-kl, 1 ), min( i+ku, n )
244 tmp = tmp + cabs1( ab( kd+i-j, j ) )
248 anorm = max( anorm, tmp )
254 DO j = max( i-kl, 1 ), min( i+ku, n )
255 tmp = tmp + cabs1( ab( ke-i+j, i ) ) / c( j )
258 DO j = max( i-kl, 1 ), min( i+ku, n )
259 tmp = tmp + cabs1( ab( ke-i+j, i ) )
263 anorm = max( anorm, tmp )
272 ELSE IF( anorm .EQ. 0.0d+0 )
THEN
282 CALL zlacn2( n, work( n+1 ), work, ainvnm, kase, isave )
289 work( i ) = work( i ) * rwork( i )
293 CALL zgbtrs(
'No transpose', n, kl, ku, 1, afb, ldafb,
294 $ ipiv, work, n, info )
296 CALL zgbtrs(
'Conjugate transpose', n, kl, ku, 1, afb,
297 $ ldafb, ipiv, work, n, info )
304 work( i ) = work( i ) * c( i )
313 work( i ) = work( i ) * c( i )
318 CALL zgbtrs(
'Conjugate transpose', n, kl, ku, 1, afb,
319 $ ldafb, ipiv, work, n, info )
321 CALL zgbtrs(
'No transpose', n, kl, ku, 1, afb, ldafb,
322 $ ipiv, work, n, info )
328 work( i ) = work( i ) * rwork( i )
336 IF( ainvnm .NE. 0.0d+0 )
subroutine xerbla(srname, info)
subroutine zgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
ZGBTRS
double precision function zla_gbrcond_c(trans, n, kl, ku, ab, ldab, afb, ldafb, ipiv, c, capply, info, work, rwork)
ZLA_GBRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for general banded ma...
subroutine zlacn2(n, v, x, est, kase, isave)
ZLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
logical function lsame(ca, cb)
LSAME