LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zdiv()

program zdiv

zdiv tests the robustness and precision of the double complex division

Author
Weslley S. Pereira, University of Colorado Denver, U.S.
 Real values for test:
 (1) x = 2**m, where m = MINEXPONENT-DIGITS, ..., MINEXPONENT-1.
     Mind that not all platforms might implement subnormal numbers.
 (2) x = 2**m, where m = MINEXPONENT, ..., 0.
 (3) x = OV, where OV is the overflow threshold. OV^2 overflows but the norm is OV.
 (4) x = 2**m, where m = MAXEXPONENT-1, ..., 1.

 Tests:
 (a) y = x + 0 * I, y/y = 1
 (b) y = 0 + x * I, y/y = 1
 (c) y = x + x * I, y/y = 1
 (d) y1 = 0 + x * I, y2 = x + 0 * I, y1/y2 = I
 (e) y1 = 0 + x * I, y2 = x + 0 * I, y2/y1 = -I
 (f) y = x + x * I, y/conj(y) = I

 Special cases:

 (i) Inf inputs:
    (1) y = ( Inf + 0   * I)
    (2) y = ( 0   + Inf * I)
    (3) y = (-Inf + 0   * I)
    (4) y = ( 0   - Inf * I)
    (5) y = ( Inf + Inf * I)
 Tests:
    (a) 0 / y is either 0 or NaN.
    (b) 1 / y is either 0 or NaN.
    (c) y / y is NaN.

 (n) NaN inputs:
    (1) y = (NaN + 0   * I)
    (2) y = (0   + NaN * I)
    (3) y = (NaN + NaN * I)
 Tests:
    (a) 0 / y is NaN.
    (b) 1 / y is NaN.
    (c) y / y is NaN.

Definition at line 57 of file test_zcomplexdiv.f.