LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ctpcon()

subroutine ctpcon ( character norm,
character uplo,
character diag,
integer n,
complex, dimension( * ) ap,
real rcond,
complex, dimension( * ) work,
real, dimension( * ) rwork,
integer info )

CTPCON

Download CTPCON + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CTPCON estimates the reciprocal of the condition number of a packed
!> triangular matrix A, in either the 1-norm or the infinity-norm.
!>
!> The norm of A is computed and an estimate is obtained for
!> norm(inv(A)), then the reciprocal of the condition number is
!> computed as
!>    RCOND = 1 / ( norm(A) * norm(inv(A)) ).
!> 
Parameters
[in]NORM
!>          NORM is CHARACTER*1
!>          Specifies whether the 1-norm condition number or the
!>          infinity-norm condition number is required:
!>          = '1' or 'O':  1-norm;
!>          = 'I':         Infinity-norm.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  A is upper triangular;
!>          = 'L':  A is lower triangular.
!> 
[in]DIAG
!>          DIAG is CHARACTER*1
!>          = 'N':  A is non-unit triangular;
!>          = 'U':  A is unit triangular.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]AP
!>          AP is COMPLEX array, dimension (N*(N+1)/2)
!>          The upper or lower triangular matrix A, packed columnwise in
!>          a linear array.  The j-th column of A is stored in the array
!>          AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
!>          If DIAG = 'U', the diagonal elements of A are not referenced
!>          and are assumed to be 1.
!> 
[out]RCOND
!>          RCOND is REAL
!>          The reciprocal of the condition number of the matrix A,
!>          computed as RCOND = 1/(norm(A) * norm(inv(A))).
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (2*N)
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 126 of file ctpcon.f.

128*
129* -- LAPACK computational routine --
130* -- LAPACK is a software package provided by Univ. of Tennessee, --
131* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
132*
133* .. Scalar Arguments ..
134 CHARACTER DIAG, NORM, UPLO
135 INTEGER INFO, N
136 REAL RCOND
137* ..
138* .. Array Arguments ..
139 REAL RWORK( * )
140 COMPLEX AP( * ), WORK( * )
141* ..
142*
143* =====================================================================
144*
145* .. Parameters ..
146 REAL ONE, ZERO
147 parameter( one = 1.0e+0, zero = 0.0e+0 )
148* ..
149* .. Local Scalars ..
150 LOGICAL NOUNIT, ONENRM, UPPER
151 CHARACTER NORMIN
152 INTEGER IX, KASE, KASE1
153 REAL AINVNM, ANORM, SCALE, SMLNUM, XNORM
154 COMPLEX ZDUM
155* ..
156* .. Local Arrays ..
157 INTEGER ISAVE( 3 )
158* ..
159* .. External Functions ..
160 LOGICAL LSAME
161 INTEGER ICAMAX
162 REAL CLANTP, SLAMCH
163 EXTERNAL lsame, icamax, clantp, slamch
164* ..
165* .. External Subroutines ..
166 EXTERNAL clacn2, clatps, csrscl, xerbla
167* ..
168* .. Intrinsic Functions ..
169 INTRINSIC abs, aimag, max, real
170* ..
171* .. Statement Functions ..
172 REAL CABS1
173* ..
174* .. Statement Function definitions ..
175 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
176* ..
177* .. Executable Statements ..
178*
179* Test the input parameters.
180*
181 info = 0
182 upper = lsame( uplo, 'U' )
183 onenrm = norm.EQ.'1' .OR. lsame( norm, 'O' )
184 nounit = lsame( diag, 'N' )
185*
186 IF( .NOT.onenrm .AND. .NOT.lsame( norm, 'I' ) ) THEN
187 info = -1
188 ELSE IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
189 info = -2
190 ELSE IF( .NOT.nounit .AND. .NOT.lsame( diag, 'U' ) ) THEN
191 info = -3
192 ELSE IF( n.LT.0 ) THEN
193 info = -4
194 END IF
195 IF( info.NE.0 ) THEN
196 CALL xerbla( 'CTPCON', -info )
197 RETURN
198 END IF
199*
200* Quick return if possible
201*
202 IF( n.EQ.0 ) THEN
203 rcond = one
204 RETURN
205 END IF
206*
207 rcond = zero
208 smlnum = slamch( 'Safe minimum' )*real( max( 1, n ) )
209*
210* Compute the norm of the triangular matrix A.
211*
212 anorm = clantp( norm, uplo, diag, n, ap, rwork )
213*
214* Continue only if ANORM > 0.
215*
216 IF( anorm.GT.zero ) THEN
217*
218* Estimate the norm of the inverse of A.
219*
220 ainvnm = zero
221 normin = 'N'
222 IF( onenrm ) THEN
223 kase1 = 1
224 ELSE
225 kase1 = 2
226 END IF
227 kase = 0
228 10 CONTINUE
229 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
230 IF( kase.NE.0 ) THEN
231 IF( kase.EQ.kase1 ) THEN
232*
233* Multiply by inv(A).
234*
235 CALL clatps( uplo, 'No transpose', diag, normin, n,
236 $ ap,
237 $ work, scale, rwork, info )
238 ELSE
239*
240* Multiply by inv(A**H).
241*
242 CALL clatps( uplo, 'Conjugate transpose', diag,
243 $ normin,
244 $ n, ap, work, scale, rwork, info )
245 END IF
246 normin = 'Y'
247*
248* Multiply by 1/SCALE if doing so will not cause overflow.
249*
250 IF( scale.NE.one ) THEN
251 ix = icamax( n, work, 1 )
252 xnorm = cabs1( work( ix ) )
253 IF( scale.LT.xnorm*smlnum .OR. scale.EQ.zero )
254 $ GO TO 20
255 CALL csrscl( n, scale, work, 1 )
256 END IF
257 GO TO 10
258 END IF
259*
260* Compute the estimate of the reciprocal condition number.
261*
262 IF( ainvnm.NE.zero )
263 $ rcond = ( one / anorm ) / ainvnm
264 END IF
265*
266 20 CONTINUE
267 RETURN
268*
269* End of CTPCON
270*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
integer function icamax(n, cx, incx)
ICAMAX
Definition icamax.f:71
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition clacn2.f:131
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clantp(norm, uplo, diag, n, ap, work)
CLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clantp.f:124
subroutine clatps(uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)
CLATPS solves a triangular system of equations with the matrix held in packed storage.
Definition clatps.f:229
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine csrscl(n, sa, sx, incx)
CSRSCL multiplies a vector by the reciprocal of a real scalar.
Definition csrscl.f:82
Here is the call graph for this function:
Here is the caller graph for this function: