LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cdrgev.f
Go to the documentation of this file.
1*> \brief \b CDRGEV
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE CDRGEV( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
12* NOUNIT, A, LDA, B, S, T, Q, LDQ, Z, QE, LDQE,
13* ALPHA, BETA, ALPHA1, BETA1, WORK, LWORK, RWORK,
14* RESULT, INFO )
15*
16* .. Scalar Arguments ..
17* INTEGER INFO, LDA, LDQ, LDQE, LWORK, NOUNIT, NSIZES,
18* $ NTYPES
19* REAL THRESH
20* ..
21* .. Array Arguments ..
22* LOGICAL DOTYPE( * )
23* INTEGER ISEED( 4 ), NN( * )
24* REAL RESULT( * ), RWORK( * )
25* COMPLEX A( LDA, * ), ALPHA( * ), ALPHA1( * ),
26* $ B( LDA, * ), BETA( * ), BETA1( * ),
27* $ Q( LDQ, * ), QE( LDQE, * ), S( LDA, * ),
28* $ T( LDA, * ), WORK( * ), Z( LDQ, * )
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> CDRGEV checks the nonsymmetric generalized eigenvalue problem driver
38*> routine CGGEV.
39*>
40*> CGGEV computes for a pair of n-by-n nonsymmetric matrices (A,B) the
41*> generalized eigenvalues and, optionally, the left and right
42*> eigenvectors.
43*>
44*> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
45*> or a ratio alpha/beta = w, such that A - w*B is singular. It is
46*> usually represented as the pair (alpha,beta), as there is reasonable
47*> interpretation for beta=0, and even for both being zero.
48*>
49*> A right generalized eigenvector corresponding to a generalized
50*> eigenvalue w for a pair of matrices (A,B) is a vector r such that
51*> (A - wB) * r = 0. A left generalized eigenvector is a vector l such
52*> that l**H * (A - wB) = 0, where l**H is the conjugate-transpose of l.
53*>
54*> When CDRGEV is called, a number of matrix "sizes" ("n's") and a
55*> number of matrix "types" are specified. For each size ("n")
56*> and each type of matrix, a pair of matrices (A, B) will be generated
57*> and used for testing. For each matrix pair, the following tests
58*> will be performed and compared with the threshold THRESH.
59*>
60*> Results from CGGEV:
61*>
62*> (1) max over all left eigenvalue/-vector pairs (alpha/beta,l) of
63*>
64*> | VL**H * (beta A - alpha B) |/( ulp max(|beta A|, |alpha B|) )
65*>
66*> where VL**H is the conjugate-transpose of VL.
67*>
68*> (2) | |VL(i)| - 1 | / ulp and whether largest component real
69*>
70*> VL(i) denotes the i-th column of VL.
71*>
72*> (3) max over all right eigenvalue/-vector pairs (alpha/beta,r) of
73*>
74*> | (beta A - alpha B) * VR | / ( ulp max(|beta A|, |alpha B|) )
75*>
76*> (4) | |VR(i)| - 1 | / ulp and whether largest component real
77*>
78*> VR(i) denotes the i-th column of VR.
79*>
80*> (5) W(full) = W(partial)
81*> W(full) denotes the eigenvalues computed when both l and r
82*> are also computed, and W(partial) denotes the eigenvalues
83*> computed when only W, only W and r, or only W and l are
84*> computed.
85*>
86*> (6) VL(full) = VL(partial)
87*> VL(full) denotes the left eigenvectors computed when both l
88*> and r are computed, and VL(partial) denotes the result
89*> when only l is computed.
90*>
91*> (7) VR(full) = VR(partial)
92*> VR(full) denotes the right eigenvectors computed when both l
93*> and r are also computed, and VR(partial) denotes the result
94*> when only l is computed.
95*>
96*>
97*> Test Matrices
98*> ---- --------
99*>
100*> The sizes of the test matrices are specified by an array
101*> NN(1:NSIZES); the value of each element NN(j) specifies one size.
102*> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if
103*> DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
104*> Currently, the list of possible types is:
105*>
106*> (1) ( 0, 0 ) (a pair of zero matrices)
107*>
108*> (2) ( I, 0 ) (an identity and a zero matrix)
109*>
110*> (3) ( 0, I ) (an identity and a zero matrix)
111*>
112*> (4) ( I, I ) (a pair of identity matrices)
113*>
114*> t t
115*> (5) ( J , J ) (a pair of transposed Jordan blocks)
116*>
117*> t ( I 0 )
118*> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t )
119*> ( 0 I ) ( 0 J )
120*> and I is a k x k identity and J a (k+1)x(k+1)
121*> Jordan block; k=(N-1)/2
122*>
123*> (7) ( D, I ) where D is diag( 0, 1,..., N-1 ) (a diagonal
124*> matrix with those diagonal entries.)
125*> (8) ( I, D )
126*>
127*> (9) ( big*D, small*I ) where "big" is near overflow and small=1/big
128*>
129*> (10) ( small*D, big*I )
130*>
131*> (11) ( big*I, small*D )
132*>
133*> (12) ( small*I, big*D )
134*>
135*> (13) ( big*D, big*I )
136*>
137*> (14) ( small*D, small*I )
138*>
139*> (15) ( D1, D2 ) where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and
140*> D2 is diag( 0, N-3, N-4,..., 1, 0, 0 )
141*> t t
142*> (16) Q ( J , J ) Z where Q and Z are random orthogonal matrices.
143*>
144*> (17) Q ( T1, T2 ) Z where T1 and T2 are upper triangular matrices
145*> with random O(1) entries above the diagonal
146*> and diagonal entries diag(T1) =
147*> ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =
148*> ( 0, N-3, N-4,..., 1, 0, 0 )
149*>
150*> (18) Q ( T1, T2 ) Z diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )
151*> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )
152*> s = machine precision.
153*>
154*> (19) Q ( T1, T2 ) Z diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )
155*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )
156*>
157*> N-5
158*> (20) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 )
159*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
160*>
161*> (21) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )
162*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
163*> where r1,..., r(N-4) are random.
164*>
165*> (22) Q ( big*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
166*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
167*>
168*> (23) Q ( small*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
169*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
170*>
171*> (24) Q ( small*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
172*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
173*>
174*> (25) Q ( big*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
175*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
176*>
177*> (26) Q ( T1, T2 ) Z where T1 and T2 are random upper-triangular
178*> matrices.
179*>
180*> \endverbatim
181*
182* Arguments:
183* ==========
184*
185*> \param[in] NSIZES
186*> \verbatim
187*> NSIZES is INTEGER
188*> The number of sizes of matrices to use. If it is zero,
189*> CDRGES does nothing. NSIZES >= 0.
190*> \endverbatim
191*>
192*> \param[in] NN
193*> \verbatim
194*> NN is INTEGER array, dimension (NSIZES)
195*> An array containing the sizes to be used for the matrices.
196*> Zero values will be skipped. NN >= 0.
197*> \endverbatim
198*>
199*> \param[in] NTYPES
200*> \verbatim
201*> NTYPES is INTEGER
202*> The number of elements in DOTYPE. If it is zero, CDRGEV
203*> does nothing. It must be at least zero. If it is MAXTYP+1
204*> and NSIZES is 1, then an additional type, MAXTYP+1 is
205*> defined, which is to use whatever matrix is in A. This
206*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
207*> DOTYPE(MAXTYP+1) is .TRUE. .
208*> \endverbatim
209*>
210*> \param[in] DOTYPE
211*> \verbatim
212*> DOTYPE is LOGICAL array, dimension (NTYPES)
213*> If DOTYPE(j) is .TRUE., then for each size in NN a
214*> matrix of that size and of type j will be generated.
215*> If NTYPES is smaller than the maximum number of types
216*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
217*> MAXTYP will not be generated. If NTYPES is larger
218*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
219*> will be ignored.
220*> \endverbatim
221*>
222*> \param[in,out] ISEED
223*> \verbatim
224*> ISEED is INTEGER array, dimension (4)
225*> On entry ISEED specifies the seed of the random number
226*> generator. The array elements should be between 0 and 4095;
227*> if not they will be reduced mod 4096. Also, ISEED(4) must
228*> be odd. The random number generator uses a linear
229*> congruential sequence limited to small integers, and so
230*> should produce machine independent random numbers. The
231*> values of ISEED are changed on exit, and can be used in the
232*> next call to CDRGES to continue the same random number
233*> sequence.
234*> \endverbatim
235*>
236*> \param[in] THRESH
237*> \verbatim
238*> THRESH is REAL
239*> A test will count as "failed" if the "error", computed as
240*> described above, exceeds THRESH. Note that the error is
241*> scaled to be O(1), so THRESH should be a reasonably small
242*> multiple of 1, e.g., 10 or 100. In particular, it should
243*> not depend on the precision (single vs. double) or the size
244*> of the matrix. It must be at least zero.
245*> \endverbatim
246*>
247*> \param[in] NOUNIT
248*> \verbatim
249*> NOUNIT is INTEGER
250*> The FORTRAN unit number for printing out error messages
251*> (e.g., if a routine returns IERR not equal to 0.)
252*> \endverbatim
253*>
254*> \param[in,out] A
255*> \verbatim
256*> A is COMPLEX array, dimension(LDA, max(NN))
257*> Used to hold the original A matrix. Used as input only
258*> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
259*> DOTYPE(MAXTYP+1)=.TRUE.
260*> \endverbatim
261*>
262*> \param[in] LDA
263*> \verbatim
264*> LDA is INTEGER
265*> The leading dimension of A, B, S, and T.
266*> It must be at least 1 and at least max( NN ).
267*> \endverbatim
268*>
269*> \param[in,out] B
270*> \verbatim
271*> B is COMPLEX array, dimension(LDA, max(NN))
272*> Used to hold the original B matrix. Used as input only
273*> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
274*> DOTYPE(MAXTYP+1)=.TRUE.
275*> \endverbatim
276*>
277*> \param[out] S
278*> \verbatim
279*> S is COMPLEX array, dimension (LDA, max(NN))
280*> The Schur form matrix computed from A by CGGEV. On exit, S
281*> contains the Schur form matrix corresponding to the matrix
282*> in A.
283*> \endverbatim
284*>
285*> \param[out] T
286*> \verbatim
287*> T is COMPLEX array, dimension (LDA, max(NN))
288*> The upper triangular matrix computed from B by CGGEV.
289*> \endverbatim
290*>
291*> \param[out] Q
292*> \verbatim
293*> Q is COMPLEX array, dimension (LDQ, max(NN))
294*> The (left) eigenvectors matrix computed by CGGEV.
295*> \endverbatim
296*>
297*> \param[in] LDQ
298*> \verbatim
299*> LDQ is INTEGER
300*> The leading dimension of Q and Z. It must
301*> be at least 1 and at least max( NN ).
302*> \endverbatim
303*>
304*> \param[out] Z
305*> \verbatim
306*> Z is COMPLEX array, dimension( LDQ, max(NN) )
307*> The (right) orthogonal matrix computed by CGGEV.
308*> \endverbatim
309*>
310*> \param[out] QE
311*> \verbatim
312*> QE is COMPLEX array, dimension( LDQ, max(NN) )
313*> QE holds the computed right or left eigenvectors.
314*> \endverbatim
315*>
316*> \param[in] LDQE
317*> \verbatim
318*> LDQE is INTEGER
319*> The leading dimension of QE. LDQE >= max(1,max(NN)).
320*> \endverbatim
321*>
322*> \param[out] ALPHA
323*> \verbatim
324*> ALPHA is COMPLEX array, dimension (max(NN))
325*> \endverbatim
326*>
327*> \param[out] BETA
328*> \verbatim
329*> BETA is COMPLEX array, dimension (max(NN))
330*>
331*> The generalized eigenvalues of (A,B) computed by CGGEV.
332*> ( ALPHAR(k)+ALPHAI(k)*i ) / BETA(k) is the k-th
333*> generalized eigenvalue of A and B.
334*> \endverbatim
335*>
336*> \param[out] ALPHA1
337*> \verbatim
338*> ALPHA1 is COMPLEX array, dimension (max(NN))
339*> \endverbatim
340*>
341*> \param[out] BETA1
342*> \verbatim
343*> BETA1 is COMPLEX array, dimension (max(NN))
344*>
345*> Like ALPHAR, ALPHAI, BETA, these arrays contain the
346*> eigenvalues of A and B, but those computed when CGGEV only
347*> computes a partial eigendecomposition, i.e. not the
348*> eigenvalues and left and right eigenvectors.
349*> \endverbatim
350*>
351*> \param[out] WORK
352*> \verbatim
353*> WORK is COMPLEX array, dimension (LWORK)
354*> \endverbatim
355*>
356*> \param[in] LWORK
357*> \verbatim
358*> LWORK is INTEGER
359*> The number of entries in WORK. LWORK >= N*(N+1)
360*> \endverbatim
361*>
362*> \param[out] RWORK
363*> \verbatim
364*> RWORK is REAL array, dimension (8*N)
365*> Real workspace.
366*> \endverbatim
367*>
368*> \param[out] RESULT
369*> \verbatim
370*> RESULT is REAL array, dimension (2)
371*> The values computed by the tests described above.
372*> The values are currently limited to 1/ulp, to avoid overflow.
373*> \endverbatim
374*>
375*> \param[out] INFO
376*> \verbatim
377*> INFO is INTEGER
378*> = 0: successful exit
379*> < 0: if INFO = -i, the i-th argument had an illegal value.
380*> > 0: A routine returned an error code. INFO is the
381*> absolute value of the INFO value returned.
382*> \endverbatim
383*
384* Authors:
385* ========
386*
387*> \author Univ. of Tennessee
388*> \author Univ. of California Berkeley
389*> \author Univ. of Colorado Denver
390*> \author NAG Ltd.
391*
392*> \ingroup complex_eig
393*
394* =====================================================================
395 SUBROUTINE cdrgev( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
396 $ NOUNIT, A, LDA, B, S, T, Q, LDQ, Z, QE, LDQE,
397 $ ALPHA, BETA, ALPHA1, BETA1, WORK, LWORK, RWORK,
398 $ RESULT, INFO )
399*
400* -- LAPACK test routine --
401* -- LAPACK is a software package provided by Univ. of Tennessee, --
402* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
403*
404* .. Scalar Arguments ..
405 INTEGER INFO, LDA, LDQ, LDQE, LWORK, NOUNIT, NSIZES,
406 $ NTYPES
407 REAL THRESH
408* ..
409* .. Array Arguments ..
410 LOGICAL DOTYPE( * )
411 INTEGER ISEED( 4 ), NN( * )
412 REAL RESULT( * ), RWORK( * )
413 COMPLEX A( LDA, * ), ALPHA( * ), ALPHA1( * ),
414 $ b( lda, * ), beta( * ), beta1( * ),
415 $ q( ldq, * ), qe( ldqe, * ), s( lda, * ),
416 $ t( lda, * ), work( * ), z( ldq, * )
417* ..
418*
419* =====================================================================
420*
421* .. Parameters ..
422 REAL ZERO, ONE
423 PARAMETER ( ZERO = 0.0e+0, one = 1.0e+0 )
424 COMPLEX CZERO, CONE
425 parameter( czero = ( 0.0e+0, 0.0e+0 ),
426 $ cone = ( 1.0e+0, 0.0e+0 ) )
427 INTEGER MAXTYP
428 parameter( maxtyp = 26 )
429* ..
430* .. Local Scalars ..
431 LOGICAL BADNN
432 INTEGER I, IADD, IERR, IN, J, JC, JR, JSIZE, JTYPE,
433 $ MAXWRK, MINWRK, MTYPES, N, N1, NB, NERRS,
434 $ nmats, nmax, ntestt
435 REAL SAFMAX, SAFMIN, ULP, ULPINV
436 COMPLEX CTEMP
437* ..
438* .. Local Arrays ..
439 LOGICAL LASIGN( MAXTYP ), LBSIGN( MAXTYP )
440 INTEGER IOLDSD( 4 ), KADD( 6 ), KAMAGN( MAXTYP ),
441 $ KATYPE( MAXTYP ), KAZERO( MAXTYP ),
442 $ kbmagn( maxtyp ), kbtype( maxtyp ),
443 $ kbzero( maxtyp ), kclass( maxtyp ),
444 $ ktrian( maxtyp ), kz1( 6 ), kz2( 6 )
445 REAL RMAGN( 0: 3 )
446* ..
447* .. External Functions ..
448 INTEGER ILAENV
449 REAL SLAMCH
450 COMPLEX CLARND
451 EXTERNAL ilaenv, slamch, clarnd
452* ..
453* .. External Subroutines ..
454 EXTERNAL alasvm, cget52, cggev, clacpy, clarfg, claset,
456* ..
457* .. Intrinsic Functions ..
458 INTRINSIC abs, conjg, max, min, real, sign
459* ..
460* .. Data statements ..
461 DATA kclass / 15*1, 10*2, 1*3 /
462 DATA kz1 / 0, 1, 2, 1, 3, 3 /
463 DATA kz2 / 0, 0, 1, 2, 1, 1 /
464 DATA kadd / 0, 0, 0, 0, 3, 2 /
465 DATA katype / 0, 1, 0, 1, 2, 3, 4, 1, 4, 4, 1, 1, 4,
466 $ 4, 4, 2, 4, 5, 8, 7, 9, 4*4, 0 /
467 DATA kbtype / 0, 0, 1, 1, 2, -3, 1, 4, 1, 1, 4, 4,
468 $ 1, 1, -4, 2, -4, 8*8, 0 /
469 DATA kazero / 6*1, 2, 1, 2*2, 2*1, 2*2, 3, 1, 3,
470 $ 4*5, 4*3, 1 /
471 DATA kbzero / 6*1, 1, 2, 2*1, 2*2, 2*1, 4, 1, 4,
472 $ 4*6, 4*4, 1 /
473 DATA kamagn / 8*1, 2, 3, 2, 3, 2, 3, 7*1, 2, 3, 3,
474 $ 2, 1 /
475 DATA kbmagn / 8*1, 3, 2, 3, 2, 2, 3, 7*1, 3, 2, 3,
476 $ 2, 1 /
477 DATA ktrian / 16*0, 10*1 /
478 DATA lasign / 6*.false., .true., .false., 2*.true.,
479 $ 2*.false., 3*.true., .false., .true.,
480 $ 3*.false., 5*.true., .false. /
481 DATA lbsign / 7*.false., .true., 2*.false.,
482 $ 2*.true., 2*.false., .true., .false., .true.,
483 $ 9*.false. /
484* ..
485* .. Executable Statements ..
486*
487* Check for errors
488*
489 info = 0
490*
491 badnn = .false.
492 nmax = 1
493 DO 10 j = 1, nsizes
494 nmax = max( nmax, nn( j ) )
495 IF( nn( j ).LT.0 )
496 $ badnn = .true.
497 10 CONTINUE
498*
499 IF( nsizes.LT.0 ) THEN
500 info = -1
501 ELSE IF( badnn ) THEN
502 info = -2
503 ELSE IF( ntypes.LT.0 ) THEN
504 info = -3
505 ELSE IF( thresh.LT.zero ) THEN
506 info = -6
507 ELSE IF( lda.LE.1 .OR. lda.LT.nmax ) THEN
508 info = -9
509 ELSE IF( ldq.LE.1 .OR. ldq.LT.nmax ) THEN
510 info = -14
511 ELSE IF( ldqe.LE.1 .OR. ldqe.LT.nmax ) THEN
512 info = -17
513 END IF
514*
515* Compute workspace
516* (Note: Comments in the code beginning "Workspace:" describe the
517* minimal amount of workspace needed at that point in the code,
518* as well as the preferred amount for good performance.
519* NB refers to the optimal block size for the immediately
520* following subroutine, as returned by ILAENV.
521*
522 minwrk = 1
523 IF( info.EQ.0 .AND. lwork.GE.1 ) THEN
524 minwrk = nmax*( nmax+1 )
525 nb = max( 1, ilaenv( 1, 'CGEQRF', ' ', nmax, nmax, -1, -1 ),
526 $ ilaenv( 1, 'CUNMQR', 'LC', nmax, nmax, nmax, -1 ),
527 $ ilaenv( 1, 'CUNGQR', ' ', nmax, nmax, nmax, -1 ) )
528 maxwrk = max( 2*nmax, nmax*( nb+1 ), nmax*( nmax+1 ) )
529 work( 1 ) = maxwrk
530 END IF
531*
532 IF( lwork.LT.minwrk )
533 $ info = -23
534*
535 IF( info.NE.0 ) THEN
536 CALL xerbla( 'CDRGEV', -info )
537 RETURN
538 END IF
539*
540* Quick return if possible
541*
542 IF( nsizes.EQ.0 .OR. ntypes.EQ.0 )
543 $ RETURN
544*
545 ulp = slamch( 'Precision' )
546 safmin = slamch( 'Safe minimum' )
547 safmin = safmin / ulp
548 safmax = one / safmin
549 ulpinv = one / ulp
550*
551* The values RMAGN(2:3) depend on N, see below.
552*
553 rmagn( 0 ) = zero
554 rmagn( 1 ) = one
555*
556* Loop over sizes, types
557*
558 ntestt = 0
559 nerrs = 0
560 nmats = 0
561*
562 DO 220 jsize = 1, nsizes
563 n = nn( jsize )
564 n1 = max( 1, n )
565 rmagn( 2 ) = safmax*ulp / real( n1 )
566 rmagn( 3 ) = safmin*ulpinv*n1
567*
568 IF( nsizes.NE.1 ) THEN
569 mtypes = min( maxtyp, ntypes )
570 ELSE
571 mtypes = min( maxtyp+1, ntypes )
572 END IF
573*
574 DO 210 jtype = 1, mtypes
575 IF( .NOT.dotype( jtype ) )
576 $ GO TO 210
577 nmats = nmats + 1
578*
579* Save ISEED in case of an error.
580*
581 DO 20 j = 1, 4
582 ioldsd( j ) = iseed( j )
583 20 CONTINUE
584*
585* Generate test matrices A and B
586*
587* Description of control parameters:
588*
589* KCLASS: =1 means w/o rotation, =2 means w/ rotation,
590* =3 means random.
591* KATYPE: the "type" to be passed to CLATM4 for computing A.
592* KAZERO: the pattern of zeros on the diagonal for A:
593* =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),
594* =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),
595* =6: ( 0, 1, 0, xxx, 0 ). (xxx means a string of
596* non-zero entries.)
597* KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),
598* =2: large, =3: small.
599* LASIGN: .TRUE. if the diagonal elements of A are to be
600* multiplied by a random magnitude 1 number.
601* KBTYPE, KBZERO, KBMAGN, LBSIGN: the same, but for B.
602* KTRIAN: =0: don't fill in the upper triangle, =1: do.
603* KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.
604* RMAGN: used to implement KAMAGN and KBMAGN.
605*
606 IF( mtypes.GT.maxtyp )
607 $ GO TO 100
608 ierr = 0
609 IF( kclass( jtype ).LT.3 ) THEN
610*
611* Generate A (w/o rotation)
612*
613 IF( abs( katype( jtype ) ).EQ.3 ) THEN
614 in = 2*( ( n-1 ) / 2 ) + 1
615 IF( in.NE.n )
616 $ CALL claset( 'Full', n, n, czero, czero, a, lda )
617 ELSE
618 in = n
619 END IF
620 CALL clatm4( katype( jtype ), in, kz1( kazero( jtype ) ),
621 $ kz2( kazero( jtype ) ), lasign( jtype ),
622 $ rmagn( kamagn( jtype ) ), ulp,
623 $ rmagn( ktrian( jtype )*kamagn( jtype ) ), 2,
624 $ iseed, a, lda )
625 iadd = kadd( kazero( jtype ) )
626 IF( iadd.GT.0 .AND. iadd.LE.n )
627 $ a( iadd, iadd ) = rmagn( kamagn( jtype ) )
628*
629* Generate B (w/o rotation)
630*
631 IF( abs( kbtype( jtype ) ).EQ.3 ) THEN
632 in = 2*( ( n-1 ) / 2 ) + 1
633 IF( in.NE.n )
634 $ CALL claset( 'Full', n, n, czero, czero, b, lda )
635 ELSE
636 in = n
637 END IF
638 CALL clatm4( kbtype( jtype ), in, kz1( kbzero( jtype ) ),
639 $ kz2( kbzero( jtype ) ), lbsign( jtype ),
640 $ rmagn( kbmagn( jtype ) ), one,
641 $ rmagn( ktrian( jtype )*kbmagn( jtype ) ), 2,
642 $ iseed, b, lda )
643 iadd = kadd( kbzero( jtype ) )
644 IF( iadd.NE.0 .AND. iadd.LE.n )
645 $ b( iadd, iadd ) = rmagn( kbmagn( jtype ) )
646*
647 IF( kclass( jtype ).EQ.2 .AND. n.GT.0 ) THEN
648*
649* Include rotations
650*
651* Generate Q, Z as Householder transformations times
652* a diagonal matrix.
653*
654 DO 40 jc = 1, n - 1
655 DO 30 jr = jc, n
656 q( jr, jc ) = clarnd( 3, iseed )
657 z( jr, jc ) = clarnd( 3, iseed )
658 30 CONTINUE
659 CALL clarfg( n+1-jc, q( jc, jc ), q( jc+1, jc ), 1,
660 $ work( jc ) )
661 work( 2*n+jc ) = sign( one, real( q( jc, jc ) ) )
662 q( jc, jc ) = cone
663 CALL clarfg( n+1-jc, z( jc, jc ), z( jc+1, jc ), 1,
664 $ work( n+jc ) )
665 work( 3*n+jc ) = sign( one, real( z( jc, jc ) ) )
666 z( jc, jc ) = cone
667 40 CONTINUE
668 ctemp = clarnd( 3, iseed )
669 q( n, n ) = cone
670 work( n ) = czero
671 work( 3*n ) = ctemp / abs( ctemp )
672 ctemp = clarnd( 3, iseed )
673 z( n, n ) = cone
674 work( 2*n ) = czero
675 work( 4*n ) = ctemp / abs( ctemp )
676*
677* Apply the diagonal matrices
678*
679 DO 60 jc = 1, n
680 DO 50 jr = 1, n
681 a( jr, jc ) = work( 2*n+jr )*
682 $ conjg( work( 3*n+jc ) )*
683 $ a( jr, jc )
684 b( jr, jc ) = work( 2*n+jr )*
685 $ conjg( work( 3*n+jc ) )*
686 $ b( jr, jc )
687 50 CONTINUE
688 60 CONTINUE
689 CALL cunm2r( 'L', 'N', n, n, n-1, q, ldq, work, a,
690 $ lda, work( 2*n+1 ), ierr )
691 IF( ierr.NE.0 )
692 $ GO TO 90
693 CALL cunm2r( 'R', 'C', n, n, n-1, z, ldq, work( n+1 ),
694 $ a, lda, work( 2*n+1 ), ierr )
695 IF( ierr.NE.0 )
696 $ GO TO 90
697 CALL cunm2r( 'L', 'N', n, n, n-1, q, ldq, work, b,
698 $ lda, work( 2*n+1 ), ierr )
699 IF( ierr.NE.0 )
700 $ GO TO 90
701 CALL cunm2r( 'R', 'C', n, n, n-1, z, ldq, work( n+1 ),
702 $ b, lda, work( 2*n+1 ), ierr )
703 IF( ierr.NE.0 )
704 $ GO TO 90
705 END IF
706 ELSE
707*
708* Random matrices
709*
710 DO 80 jc = 1, n
711 DO 70 jr = 1, n
712 a( jr, jc ) = rmagn( kamagn( jtype ) )*
713 $ clarnd( 4, iseed )
714 b( jr, jc ) = rmagn( kbmagn( jtype ) )*
715 $ clarnd( 4, iseed )
716 70 CONTINUE
717 80 CONTINUE
718 END IF
719*
720 90 CONTINUE
721*
722 IF( ierr.NE.0 ) THEN
723 WRITE( nounit, fmt = 9999 )'Generator', ierr, n, jtype,
724 $ ioldsd
725 info = abs( ierr )
726 RETURN
727 END IF
728*
729 100 CONTINUE
730*
731 DO 110 i = 1, 7
732 result( i ) = -one
733 110 CONTINUE
734*
735* Call CGGEV to compute eigenvalues and eigenvectors.
736*
737 CALL clacpy( ' ', n, n, a, lda, s, lda )
738 CALL clacpy( ' ', n, n, b, lda, t, lda )
739 CALL cggev( 'V', 'V', n, s, lda, t, lda, alpha, beta, q,
740 $ ldq, z, ldq, work, lwork, rwork, ierr )
741 IF( ierr.NE.0 .AND. ierr.NE.n+1 ) THEN
742 result( 1 ) = ulpinv
743 WRITE( nounit, fmt = 9999 )'CGGEV1', ierr, n, jtype,
744 $ ioldsd
745 info = abs( ierr )
746 GO TO 190
747 END IF
748*
749* Do the tests (1) and (2)
750*
751 CALL cget52( .true., n, a, lda, b, lda, q, ldq, alpha, beta,
752 $ work, rwork, result( 1 ) )
753 IF( result( 2 ).GT.thresh ) THEN
754 WRITE( nounit, fmt = 9998 )'Left', 'CGGEV1',
755 $ result( 2 ), n, jtype, ioldsd
756 END IF
757*
758* Do the tests (3) and (4)
759*
760 CALL cget52( .false., n, a, lda, b, lda, z, ldq, alpha,
761 $ beta, work, rwork, result( 3 ) )
762 IF( result( 4 ).GT.thresh ) THEN
763 WRITE( nounit, fmt = 9998 )'Right', 'CGGEV1',
764 $ result( 4 ), n, jtype, ioldsd
765 END IF
766*
767* Do test (5)
768*
769 CALL clacpy( ' ', n, n, a, lda, s, lda )
770 CALL clacpy( ' ', n, n, b, lda, t, lda )
771 CALL cggev( 'N', 'N', n, s, lda, t, lda, alpha1, beta1, q,
772 $ ldq, z, ldq, work, lwork, rwork, ierr )
773 IF( ierr.NE.0 .AND. ierr.NE.n+1 ) THEN
774 result( 1 ) = ulpinv
775 WRITE( nounit, fmt = 9999 )'CGGEV2', ierr, n, jtype,
776 $ ioldsd
777 info = abs( ierr )
778 GO TO 190
779 END IF
780*
781 DO 120 j = 1, n
782 IF( alpha( j ).NE.alpha1( j ) .OR. beta( j ).NE.
783 $ beta1( j ) )result( 5 ) = ulpinv
784 120 CONTINUE
785*
786* Do test (6): Compute eigenvalues and left eigenvectors,
787* and test them
788*
789 CALL clacpy( ' ', n, n, a, lda, s, lda )
790 CALL clacpy( ' ', n, n, b, lda, t, lda )
791 CALL cggev( 'V', 'N', n, s, lda, t, lda, alpha1, beta1, qe,
792 $ ldqe, z, ldq, work, lwork, rwork, ierr )
793 IF( ierr.NE.0 .AND. ierr.NE.n+1 ) THEN
794 result( 1 ) = ulpinv
795 WRITE( nounit, fmt = 9999 )'CGGEV3', ierr, n, jtype,
796 $ ioldsd
797 info = abs( ierr )
798 GO TO 190
799 END IF
800*
801 DO 130 j = 1, n
802 IF( alpha( j ).NE.alpha1( j ) .OR. beta( j ).NE.
803 $ beta1( j ) )result( 6 ) = ulpinv
804 130 CONTINUE
805*
806 DO 150 j = 1, n
807 DO 140 jc = 1, n
808 IF( q( j, jc ).NE.qe( j, jc ) )
809 $ result( 6 ) = ulpinv
810 140 CONTINUE
811 150 CONTINUE
812*
813* Do test (7): Compute eigenvalues and right eigenvectors,
814* and test them
815*
816 CALL clacpy( ' ', n, n, a, lda, s, lda )
817 CALL clacpy( ' ', n, n, b, lda, t, lda )
818 CALL cggev( 'N', 'V', n, s, lda, t, lda, alpha1, beta1, q,
819 $ ldq, qe, ldqe, work, lwork, rwork, ierr )
820 IF( ierr.NE.0 .AND. ierr.NE.n+1 ) THEN
821 result( 1 ) = ulpinv
822 WRITE( nounit, fmt = 9999 )'CGGEV4', ierr, n, jtype,
823 $ ioldsd
824 info = abs( ierr )
825 GO TO 190
826 END IF
827*
828 DO 160 j = 1, n
829 IF( alpha( j ).NE.alpha1( j ) .OR. beta( j ).NE.
830 $ beta1( j ) )result( 7 ) = ulpinv
831 160 CONTINUE
832*
833 DO 180 j = 1, n
834 DO 170 jc = 1, n
835 IF( z( j, jc ).NE.qe( j, jc ) )
836 $ result( 7 ) = ulpinv
837 170 CONTINUE
838 180 CONTINUE
839*
840* End of Loop -- Check for RESULT(j) > THRESH
841*
842 190 CONTINUE
843*
844 ntestt = ntestt + 7
845*
846* Print out tests which fail.
847*
848 DO 200 jr = 1, 7
849 IF( result( jr ).GE.thresh ) THEN
850*
851* If this is the first test to fail,
852* print a header to the data file.
853*
854 IF( nerrs.EQ.0 ) THEN
855 WRITE( nounit, fmt = 9997 )'CGV'
856*
857* Matrix types
858*
859 WRITE( nounit, fmt = 9996 )
860 WRITE( nounit, fmt = 9995 )
861 WRITE( nounit, fmt = 9994 )'Orthogonal'
862*
863* Tests performed
864*
865 WRITE( nounit, fmt = 9993 )
866*
867 END IF
868 nerrs = nerrs + 1
869 IF( result( jr ).LT.10000.0 ) THEN
870 WRITE( nounit, fmt = 9992 )n, jtype, ioldsd, jr,
871 $ result( jr )
872 ELSE
873 WRITE( nounit, fmt = 9991 )n, jtype, ioldsd, jr,
874 $ result( jr )
875 END IF
876 END IF
877 200 CONTINUE
878*
879 210 CONTINUE
880 220 CONTINUE
881*
882* Summary
883*
884 CALL alasvm( 'CGV', nounit, nerrs, ntestt, 0 )
885*
886 work( 1 ) = maxwrk
887*
888 RETURN
889*
890 9999 FORMAT( ' CDRGEV: ', a, ' returned INFO=', i6, '.', / 3x, 'N=',
891 $ i6, ', JTYPE=', i6, ', ISEED=(', 3( i5, ',' ), i5, ')' )
892*
893 9998 FORMAT( ' CDRGEV: ', a, ' Eigenvectors from ', a, ' incorrectly ',
894 $ 'normalized.', / ' Bits of error=', 0p, g10.3, ',', 3x,
895 $ 'N=', i4, ', JTYPE=', i3, ', ISEED=(', 3( i4, ',' ), i5,
896 $ ')' )
897*
898 9997 FORMAT( / 1x, a3, ' -- Complex Generalized eigenvalue problem ',
899 $ 'driver' )
900*
901 9996 FORMAT( ' Matrix types (see CDRGEV for details): ' )
902*
903 9995 FORMAT( ' Special Matrices:', 23x,
904 $ '(J''=transposed Jordan block)',
905 $ / ' 1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J'',J'') ',
906 $ '6=(diag(J'',I), diag(I,J''))', / ' Diagonal Matrices: ( ',
907 $ 'D=diag(0,1,2,...) )', / ' 7=(D,I) 9=(large*D, small*I',
908 $ ') 11=(large*I, small*D) 13=(large*D, large*I)', /
909 $ ' 8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) ',
910 $ ' 14=(small*D, small*I)', / ' 15=(D, reversed D)' )
911 9994 FORMAT( ' Matrices Rotated by Random ', a, ' Matrices U, V:',
912 $ / ' 16=Transposed Jordan Blocks 19=geometric ',
913 $ 'alpha, beta=0,1', / ' 17=arithm. alpha&beta ',
914 $ ' 20=arithmetic alpha, beta=0,1', / ' 18=clustered ',
915 $ 'alpha, beta=0,1 21=random alpha, beta=0,1',
916 $ / ' Large & Small Matrices:', / ' 22=(large, small) ',
917 $ '23=(small,large) 24=(small,small) 25=(large,large)',
918 $ / ' 26=random O(1) matrices.' )
919*
920 9993 FORMAT( / ' Tests performed: ',
921 $ / ' 1 = max | ( b A - a B )''*l | / const.,',
922 $ / ' 2 = | |VR(i)| - 1 | / ulp,',
923 $ / ' 3 = max | ( b A - a B )*r | / const.',
924 $ / ' 4 = | |VL(i)| - 1 | / ulp,',
925 $ / ' 5 = 0 if W same no matter if r or l computed,',
926 $ / ' 6 = 0 if l same no matter if l computed,',
927 $ / ' 7 = 0 if r same no matter if r computed,', / 1x )
928 9992 FORMAT( ' Matrix order=', i5, ', type=', i2, ', seed=',
929 $ 4( i4, ',' ), ' result ', i2, ' is', 0p, f8.2 )
930 9991 FORMAT( ' Matrix order=', i5, ', type=', i2, ', seed=',
931 $ 4( i4, ',' ), ' result ', i2, ' is', 1p, e10.3 )
932*
933* End of CDRGEV
934*
935 END
subroutine alasvm(type, nout, nfail, nrun, nerrs)
ALASVM
Definition alasvm.f:73
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cdrgev(nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, b, s, t, q, ldq, z, qe, ldqe, alpha, beta, alpha1, beta1, work, lwork, rwork, result, info)
CDRGEV
Definition cdrgev.f:399
subroutine cget52(left, n, a, lda, b, ldb, e, lde, alpha, beta, work, rwork, result)
CGET52
Definition cget52.f:161
subroutine clatm4(itype, n, nz1, nz2, rsign, amagn, rcond, triang, idist, iseed, a, lda)
CLATM4
Definition clatm4.f:171
subroutine cggev(jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr, work, lwork, rwork, info)
CGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices
Definition cggev.f:215
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:101
subroutine clarfg(n, alpha, x, incx, tau)
CLARFG generates an elementary reflector (Householder matrix).
Definition clarfg.f:104
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:104
subroutine cunm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
CUNM2R multiplies a general matrix by the unitary matrix from a QR factorization determined by cgeqrf...
Definition cunm2r.f:157