LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cchkee()

program cchkee

CCHKEE

Purpose:
 CCHKEE tests the COMPLEX LAPACK subroutines for the matrix
 eigenvalue problem.  The test paths in this version are

 NEP (Nonsymmetric Eigenvalue Problem):
     Test CGEHRD, CUNGHR, CHSEQR, CTREVC, CHSEIN, and CUNMHR

 SEP (Hermitian Eigenvalue Problem):
     Test CHETRD, CUNGTR, CSTEQR, CSTERF, CSTEIN, CSTEDC,
     and drivers CHEEV(X), CHBEV(X), CHPEV(X),
                 CHEEVD,   CHBEVD,   CHPEVD

 SVD (Singular Value Decomposition):
     Test CGEBRD, CUNGBR, and CBDSQR
     and the drivers CGESVD, CGESDD

 CEV (Nonsymmetric Eigenvalue/eigenvector Driver):
     Test CGEEV

 CES (Nonsymmetric Schur form Driver):
     Test CGEES

 CVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver):
     Test CGEEVX

 CSX (Nonsymmetric Schur form Expert Driver):
     Test CGEESX

 CGG (Generalized Nonsymmetric Eigenvalue Problem):
     Test CGGHD3, CGGBAL, CGGBAK, CHGEQZ, and CTGEVC

 CGS (Generalized Nonsymmetric Schur form Driver):
     Test CGGES

 CGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver):
     Test CGGEV

 CGX (Generalized Nonsymmetric Schur form Expert Driver):
     Test CGGESX

 CXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver):
     Test CGGEVX

 CSG (Hermitian Generalized Eigenvalue Problem):
     Test CHEGST, CHEGV, CHEGVD, CHEGVX, CHPGST, CHPGV, CHPGVD,
     CHPGVX, CHBGST, CHBGV, CHBGVD, and CHBGVX

 CHB (Hermitian Band Eigenvalue Problem):
     Test CHBTRD

 CBB (Band Singular Value Decomposition):
     Test CGBBRD

 CEC (Eigencondition estimation):
     Test CTRSYL, CTREXC, CTRSNA, and CTRSEN

 CBL (Balancing a general matrix)
     Test CGEBAL

 CBK (Back transformation on a balanced matrix)
     Test CGEBAK

 CGL (Balancing a matrix pair)
     Test CGGBAL

 CGK (Back transformation on a matrix pair)
     Test CGGBAK

 GLM (Generalized Linear Regression Model):
     Tests CGGGLM

 GQR (Generalized QR and RQ factorizations):
     Tests CGGQRF and CGGRQF

 GSV (Generalized Singular Value Decomposition):
     Tests CGGSVD, CGGSVP, CTGSJA, CLAGS2, CLAPLL, and CLAPMT

 CSD (CS decomposition):
     Tests CUNCSD

 LSE (Constrained Linear Least Squares):
     Tests CGGLSE

 Each test path has a different set of inputs, but the data sets for
 the driver routines xEV, xES, xVX, and xSX can be concatenated in a
 single input file.  The first line of input should contain one of the
 3-character path names in columns 1-3.  The number of remaining lines
 depends on what is found on the first line.

 The number of matrix types used in testing is often controllable from
 the input file.  The number of matrix types for each path, and the
 test routine that describes them, is as follows:

 Path name(s)  Types    Test routine

 CHS or NEP      21     CCHKHS
 CST or SEP      21     CCHKST (routines)
                 18     CDRVST (drivers)
 CBD or SVD      16     CCHKBD (routines)
                  5     CDRVBD (drivers)
 CEV             21     CDRVEV
 CES             21     CDRVES
 CVX             21     CDRVVX
 CSX             21     CDRVSX
 CGG             26     CCHKGG (routines)
 CGS             26     CDRGES
 CGX              5     CDRGSX
 CGV             26     CDRGEV
 CXV              2     CDRGVX
 CSG             21     CDRVSG
 CHB             15     CCHKHB
 CBB             15     CCHKBB
 CEC              -     CCHKEC
 CBL              -     CCHKBL
 CBK              -     CCHKBK
 CGL              -     CCHKGL
 CGK              -     CCHKGK
 GLM              8     CCKGLM
 GQR              8     CCKGQR
 GSV              8     CCKGSV
 CSD              3     CCKCSD
 LSE              8     CCKLSE

-----------------------------------------------------------------------

 NEP input file:

 line 2:  NN, INTEGER
          Number of values of N.

 line 3:  NVAL, INTEGER array, dimension (NN)
          The values for the matrix dimension N.

 line 4:  NPARMS, INTEGER
          Number of values of the parameters NB, NBMIN, NX, NS, and
          MAXB.

 line 5:  NBVAL, INTEGER array, dimension (NPARMS)
          The values for the blocksize NB.

 line 6:  NBMIN, INTEGER array, dimension (NPARMS)
          The values for the minimum blocksize NBMIN.

 line 7:  NXVAL, INTEGER array, dimension (NPARMS)
          The values for the crossover point NX.

 line 8:  INMIN, INTEGER array, dimension (NPARMS)
          LAHQR vs TTQRE crossover point, >= 11

 line 9:  INWIN, INTEGER array, dimension (NPARMS)
          recommended deflation window size

 line 10: INIBL, INTEGER array, dimension (NPARMS)
          nibble crossover point

 line 11:  ISHFTS, INTEGER array, dimension (NPARMS)
          number of simultaneous shifts)

 line 12:  IACC22, INTEGER array, dimension (NPARMS)
          select structured matrix multiply: 0, 1 or 2)

 line 13: THRESH
          Threshold value for the test ratios.  Information will be
          printed about each test for which the test ratio is greater
          than or equal to the threshold.  To have all of the test
          ratios printed, use THRESH = 0.0 .

 line 14: NEWSD, INTEGER
          A code indicating how to set the random number seed.
          = 0:  Set the seed to a default value before each run
          = 1:  Initialize the seed to a default value only before the
                first run
          = 2:  Like 1, but use the seed values on the next line

 If line 14 was 2:

 line 15: INTEGER array, dimension (4)
          Four integer values for the random number seed.

 lines 15-EOF:  The remaining lines occur in sets of 1 or 2 and allow
          the user to specify the matrix types.  Each line contains
          a 3-character path name in columns 1-3, and the number
          of matrix types must be the first nonblank item in columns
          4-80.  If the number of matrix types is at least 1 but is
          less than the maximum number of possible types, a second
          line will be read to get the numbers of the matrix types to
          be used.  For example,
 NEP 21
          requests all of the matrix types for the nonsymmetric
          eigenvalue problem, while
 NEP  4
 9 10 11 12
          requests only matrices of type 9, 10, 11, and 12.

          The valid 3-character path names are 'NEP' or 'CHS' for the
          nonsymmetric eigenvalue routines.

-----------------------------------------------------------------------

 SEP or CSG input file:

 line 2:  NN, INTEGER
          Number of values of N.

 line 3:  NVAL, INTEGER array, dimension (NN)
          The values for the matrix dimension N.

 line 4:  NPARMS, INTEGER
          Number of values of the parameters NB, NBMIN, and NX.

 line 5:  NBVAL, INTEGER array, dimension (NPARMS)
          The values for the blocksize NB.

 line 6:  NBMIN, INTEGER array, dimension (NPARMS)
          The values for the minimum blocksize NBMIN.

 line 7:  NXVAL, INTEGER array, dimension (NPARMS)
          The values for the crossover point NX.

 line 8:  THRESH
          Threshold value for the test ratios.  Information will be
          printed about each test for which the test ratio is greater
          than or equal to the threshold.

 line 9:  TSTCHK, LOGICAL
          Flag indicating whether or not to test the LAPACK routines.

 line 10: TSTDRV, LOGICAL
          Flag indicating whether or not to test the driver routines.

 line 11: TSTERR, LOGICAL
          Flag indicating whether or not to test the error exits for
          the LAPACK routines and driver routines.

 line 12: NEWSD, INTEGER
          A code indicating how to set the random number seed.
          = 0:  Set the seed to a default value before each run
          = 1:  Initialize the seed to a default value only before the
                first run
          = 2:  Like 1, but use the seed values on the next line

 If line 12 was 2:

 line 13: INTEGER array, dimension (4)
          Four integer values for the random number seed.

 lines 13-EOF:  Lines specifying matrix types, as for NEP.
          The valid 3-character path names are 'SEP' or 'CST' for the
          Hermitian eigenvalue routines and driver routines, and
          'CSG' for the routines for the Hermitian generalized
          eigenvalue problem.

-----------------------------------------------------------------------

 SVD input file:

 line 2:  NN, INTEGER
          Number of values of M and N.

 line 3:  MVAL, INTEGER array, dimension (NN)
          The values for the matrix row dimension M.

 line 4:  NVAL, INTEGER array, dimension (NN)
          The values for the matrix column dimension N.

 line 5:  NPARMS, INTEGER
          Number of values of the parameter NB, NBMIN, NX, and NRHS.

 line 6:  NBVAL, INTEGER array, dimension (NPARMS)
          The values for the blocksize NB.

 line 7:  NBMIN, INTEGER array, dimension (NPARMS)
          The values for the minimum blocksize NBMIN.

 line 8:  NXVAL, INTEGER array, dimension (NPARMS)
          The values for the crossover point NX.

 line 9:  NSVAL, INTEGER array, dimension (NPARMS)
          The values for the number of right hand sides NRHS.

 line 10: THRESH
          Threshold value for the test ratios.  Information will be
          printed about each test for which the test ratio is greater
          than or equal to the threshold.

 line 11: TSTCHK, LOGICAL
          Flag indicating whether or not to test the LAPACK routines.

 line 12: TSTDRV, LOGICAL
          Flag indicating whether or not to test the driver routines.

 line 13: TSTERR, LOGICAL
          Flag indicating whether or not to test the error exits for
          the LAPACK routines and driver routines.

 line 14: NEWSD, INTEGER
          A code indicating how to set the random number seed.
          = 0:  Set the seed to a default value before each run
          = 1:  Initialize the seed to a default value only before the
                first run
          = 2:  Like 1, but use the seed values on the next line

 If line 14 was 2:

 line 15: INTEGER array, dimension (4)
          Four integer values for the random number seed.

 lines 15-EOF:  Lines specifying matrix types, as for NEP.
          The 3-character path names are 'SVD' or 'CBD' for both the
          SVD routines and the SVD driver routines.

-----------------------------------------------------------------------

 CEV and CES data files:

 line 1:  'CEV' or 'CES' in columns 1 to 3.

 line 2:  NSIZES, INTEGER
          Number of sizes of matrices to use. Should be at least 0
          and at most 20. If NSIZES = 0, no testing is done
          (although the remaining  3 lines are still read).

 line 3:  NN, INTEGER array, dimension(NSIZES)
          Dimensions of matrices to be tested.

 line 4:  NB, NBMIN, NX, NS, NBCOL, INTEGERs
          These integer parameters determine how blocking is done
          (see ILAENV for details)
          NB     : block size
          NBMIN  : minimum block size
          NX     : minimum dimension for blocking
          NS     : number of shifts in xHSEQR
          NBCOL  : minimum column dimension for blocking

 line 5:  THRESH, REAL
          The test threshold against which computed residuals are
          compared. Should generally be in the range from 10. to 20.
          If it is 0., all test case data will be printed.

 line 6:  NEWSD, INTEGER
          A code indicating how to set the random number seed.
          = 0:  Set the seed to a default value before each run
          = 1:  Initialize the seed to a default value only before the
                first run
          = 2:  Like 1, but use the seed values on the next line

 If line 6 was 2:

 line 7:  INTEGER array, dimension (4)
          Four integer values for the random number seed.

 lines 8 and following:  Lines specifying matrix types, as for NEP.
          The 3-character path name is 'CEV' to test CGEEV, or
          'CES' to test CGEES.

-----------------------------------------------------------------------

 The CVX data has two parts. The first part is identical to CEV,
 and the second part consists of test matrices with precomputed
 solutions.

 line 1:  'CVX' in columns 1-3.

 line 2:  NSIZES, INTEGER
          If NSIZES = 0, no testing of randomly generated examples
          is done, but any precomputed examples are tested.

 line 3:  NN, INTEGER array, dimension(NSIZES)

 line 4:  NB, NBMIN, NX, NS, NBCOL, INTEGERs

 line 5:  THRESH, REAL

 line 6:  NEWSD, INTEGER

 If line 6 was 2:

 line 7:  INTEGER array, dimension (4)

 lines 8 and following: The first line contains 'CVX' in columns 1-3
          followed by the number of matrix types, possibly with
          a second line to specify certain matrix types.
          If the number of matrix types = 0, no testing of randomly
          generated examples is done, but any precomputed examples
          are tested.

 remaining lines : Each matrix is stored on 1+N+N**2 lines, where N is
          its dimension. The first line contains the dimension N and
          ISRT (two integers). ISRT indicates whether the last N lines
          are sorted by increasing real part of the eigenvalue
          (ISRT=0) or by increasing imaginary part (ISRT=1). The next
          N**2 lines contain the matrix rowwise, one entry per line.
          The last N lines correspond to each eigenvalue. Each of
          these last N lines contains 4 real values: the real part of
          the eigenvalues, the imaginary part of the eigenvalue, the
          reciprocal condition number of the eigenvalues, and the
          reciprocal condition number of the vector eigenvector. The
          end of data is indicated by dimension N=0. Even if no data
          is to be tested, there must be at least one line containing
          N=0.

-----------------------------------------------------------------------

 The CSX data is like CVX. The first part is identical to CEV, and the
 second part consists of test matrices with precomputed solutions.

 line 1:  'CSX' in columns 1-3.

 line 2:  NSIZES, INTEGER
          If NSIZES = 0, no testing of randomly generated examples
          is done, but any precomputed examples are tested.

 line 3:  NN, INTEGER array, dimension(NSIZES)

 line 4:  NB, NBMIN, NX, NS, NBCOL, INTEGERs

 line 5:  THRESH, REAL

 line 6:  NEWSD, INTEGER

 If line 6 was 2:

 line 7:  INTEGER array, dimension (4)

 lines 8 and following: The first line contains 'CSX' in columns 1-3
          followed by the number of matrix types, possibly with
          a second line to specify certain matrix types.
          If the number of matrix types = 0, no testing of randomly
          generated examples is done, but any precomputed examples
          are tested.

 remaining lines : Each matrix is stored on 3+N**2 lines, where N is
          its dimension. The first line contains the dimension N, the
          dimension M of an invariant subspace, and ISRT. The second
          line contains M integers, identifying the eigenvalues in the
          invariant subspace (by their position in a list of
          eigenvalues ordered by increasing real part (if ISRT=0) or
          by increasing imaginary part (if ISRT=1)). The next N**2
          lines contain the matrix rowwise. The last line contains the
          reciprocal condition number for the average of the selected
          eigenvalues, and the reciprocal condition number for the
          corresponding right invariant subspace. The end of data in
          indicated by a line containing N=0, M=0, and ISRT = 0.  Even
          if no data is to be tested, there must be at least one line
          containing N=0, M=0 and ISRT=0.

-----------------------------------------------------------------------

 CGG input file:

 line 2:  NN, INTEGER
          Number of values of N.

 line 3:  NVAL, INTEGER array, dimension (NN)
          The values for the matrix dimension N.

 line 4:  NPARMS, INTEGER
          Number of values of the parameters NB, NBMIN, NBCOL, NS, and
          MAXB.

 line 5:  NBVAL, INTEGER array, dimension (NPARMS)
          The values for the blocksize NB.

 line 6:  NBMIN, INTEGER array, dimension (NPARMS)
          The values for NBMIN, the minimum row dimension for blocks.

 line 7:  NSVAL, INTEGER array, dimension (NPARMS)
          The values for the number of shifts.

 line 8:  MXBVAL, INTEGER array, dimension (NPARMS)
          The values for MAXB, used in determining minimum blocksize.

 line 9:  IACC22, INTEGER array, dimension (NPARMS)
          select structured matrix multiply: 1 or 2)

 line 10: NBCOL, INTEGER array, dimension (NPARMS)
          The values for NBCOL, the minimum column dimension for
          blocks.

 line 11: THRESH
          Threshold value for the test ratios.  Information will be
          printed about each test for which the test ratio is greater
          than or equal to the threshold.

 line 12: TSTCHK, LOGICAL
          Flag indicating whether or not to test the LAPACK routines.

 line 13: TSTDRV, LOGICAL
          Flag indicating whether or not to test the driver routines.

 line 14: TSTERR, LOGICAL
          Flag indicating whether or not to test the error exits for
          the LAPACK routines and driver routines.

 line 15: NEWSD, INTEGER
          A code indicating how to set the random number seed.
          = 0:  Set the seed to a default value before each run
          = 1:  Initialize the seed to a default value only before the
                first run
          = 2:  Like 1, but use the seed values on the next line

 If line 15 was 2:

 line 16: INTEGER array, dimension (4)
          Four integer values for the random number seed.

 lines 17-EOF:  Lines specifying matrix types, as for NEP.
          The 3-character path name is 'CGG' for the generalized
          eigenvalue problem routines and driver routines.

-----------------------------------------------------------------------

 CGS and CGV input files:

 line 1:  'CGS' or 'CGV' in columns 1 to 3.

 line 2:  NN, INTEGER
          Number of values of N.

 line 3:  NVAL, INTEGER array, dimension(NN)
          Dimensions of matrices to be tested.

 line 4:  NB, NBMIN, NX, NS, NBCOL, INTEGERs
          These integer parameters determine how blocking is done
          (see ILAENV for details)
          NB     : block size
          NBMIN  : minimum block size
          NX     : minimum dimension for blocking
          NS     : number of shifts in xHGEQR
          NBCOL  : minimum column dimension for blocking

 line 5:  THRESH, REAL
          The test threshold against which computed residuals are
          compared. Should generally be in the range from 10. to 20.
          If it is 0., all test case data will be printed.

 line 6:  TSTERR, LOGICAL
          Flag indicating whether or not to test the error exits.

 line 7:  NEWSD, INTEGER
          A code indicating how to set the random number seed.
          = 0:  Set the seed to a default value before each run
          = 1:  Initialize the seed to a default value only before the
                first run
          = 2:  Like 1, but use the seed values on the next line

 If line 17 was 2:

 line 7:  INTEGER array, dimension (4)
          Four integer values for the random number seed.

 lines 7-EOF:  Lines specifying matrix types, as for NEP.
          The 3-character path name is 'CGS' for the generalized
          eigenvalue problem routines and driver routines.

-----------------------------------------------------------------------

 CGX input file:
 line 1:  'CGX' in columns 1 to 3.

 line 2:  N, INTEGER
          Value of N.

 line 3:  NB, NBMIN, NX, NS, NBCOL, INTEGERs
          These integer parameters determine how blocking is done
          (see ILAENV for details)
          NB     : block size
          NBMIN  : minimum block size
          NX     : minimum dimension for blocking
          NS     : number of shifts in xHGEQR
          NBCOL  : minimum column dimension for blocking

 line 4:  THRESH, REAL
          The test threshold against which computed residuals are
          compared. Should generally be in the range from 10. to 20.
          Information will be printed about each test for which the
          test ratio is greater than or equal to the threshold.

 line 5:  TSTERR, LOGICAL
          Flag indicating whether or not to test the error exits for
          the LAPACK routines and driver routines.

 line 6:  NEWSD, INTEGER
          A code indicating how to set the random number seed.
          = 0:  Set the seed to a default value before each run
          = 1:  Initialize the seed to a default value only before the
                first run
          = 2:  Like 1, but use the seed values on the next line

 If line 6 was 2:

 line 7: INTEGER array, dimension (4)
          Four integer values for the random number seed.

 If line 2 was 0:

 line 7-EOF: Precomputed examples are tested.

 remaining lines : Each example is stored on 3+2*N*N lines, where N is
          its dimension. The first line contains the dimension (a
          single integer).  The next line contains an integer k such
          that only the last k eigenvalues will be selected and appear
          in the leading diagonal blocks of $A$ and $B$. The next N*N
          lines contain the matrix A, one element per line. The next N*N
          lines contain the matrix B. The last line contains the
          reciprocal of the eigenvalue cluster condition number and the
          reciprocal of the deflating subspace (associated with the
          selected eigencluster) condition number.  The end of data is
          indicated by dimension N=0.  Even if no data is to be tested,
          there must be at least one line containing N=0.

-----------------------------------------------------------------------

 CXV input files:
 line 1:  'CXV' in columns 1 to 3.

 line 2:  N, INTEGER
          Value of N.

 line 3:  NB, NBMIN, NX, NS, NBCOL, INTEGERs
          These integer parameters determine how blocking is done
          (see ILAENV for details)
          NB     : block size
          NBMIN  : minimum block size
          NX     : minimum dimension for blocking
          NS     : number of shifts in xHGEQR
          NBCOL  : minimum column dimension for blocking

 line 4:  THRESH, REAL
          The test threshold against which computed residuals are
          compared. Should generally be in the range from 10. to 20.
          Information will be printed about each test for which the
          test ratio is greater than or equal to the threshold.

 line 5:  TSTERR, LOGICAL
          Flag indicating whether or not to test the error exits for
          the LAPACK routines and driver routines.

 line 6:  NEWSD, INTEGER
          A code indicating how to set the random number seed.
          = 0:  Set the seed to a default value before each run
          = 1:  Initialize the seed to a default value only before the
                first run
          = 2:  Like 1, but use the seed values on the next line

 If line 6 was 2:

 line 7: INTEGER array, dimension (4)
          Four integer values for the random number seed.

 If line 2 was 0:

 line 7-EOF: Precomputed examples are tested.

 remaining lines : Each example is stored on 3+2*N*N lines, where N is
          its dimension. The first line contains the dimension (a
          single integer). The next N*N lines contain the matrix A, one
          element per line. The next N*N lines contain the matrix B.
          The next line contains the reciprocals of the eigenvalue
          condition numbers.  The last line contains the reciprocals of
          the eigenvector condition numbers.  The end of data is
          indicated by dimension N=0.  Even if no data is to be tested,
          there must be at least one line containing N=0.

-----------------------------------------------------------------------

 CHB input file:

 line 2:  NN, INTEGER
          Number of values of N.

 line 3:  NVAL, INTEGER array, dimension (NN)
          The values for the matrix dimension N.

 line 4:  NK, INTEGER
          Number of values of K.

 line 5:  KVAL, INTEGER array, dimension (NK)
          The values for the matrix dimension K.

 line 6:  THRESH
          Threshold value for the test ratios.  Information will be
          printed about each test for which the test ratio is greater
          than or equal to the threshold.

 line 7:  NEWSD, INTEGER
          A code indicating how to set the random number seed.
          = 0:  Set the seed to a default value before each run
          = 1:  Initialize the seed to a default value only before the
                first run
          = 2:  Like 1, but use the seed values on the next line

 If line 7 was 2:

 line 8:  INTEGER array, dimension (4)
          Four integer values for the random number seed.

 lines 8-EOF:  Lines specifying matrix types, as for NEP.
          The 3-character path name is 'CHB'.

-----------------------------------------------------------------------

 CBB input file:

 line 2:  NN, INTEGER
          Number of values of M and N.

 line 3:  MVAL, INTEGER array, dimension (NN)
          The values for the matrix row dimension M.

 line 4:  NVAL, INTEGER array, dimension (NN)
          The values for the matrix column dimension N.

 line 4:  NK, INTEGER
          Number of values of K.

 line 5:  KVAL, INTEGER array, dimension (NK)
          The values for the matrix bandwidth K.

 line 6:  NPARMS, INTEGER
          Number of values of the parameter NRHS

 line 7:  NSVAL, INTEGER array, dimension (NPARMS)
          The values for the number of right hand sides NRHS.

 line 8:  THRESH
          Threshold value for the test ratios.  Information will be
          printed about each test for which the test ratio is greater
          than or equal to the threshold.

 line 9:  NEWSD, INTEGER
          A code indicating how to set the random number seed.
          = 0:  Set the seed to a default value before each run
          = 1:  Initialize the seed to a default value only before the
                first run
          = 2:  Like 1, but use the seed values on the next line

 If line 9 was 2:

 line 10: INTEGER array, dimension (4)
          Four integer values for the random number seed.

 lines 10-EOF:  Lines specifying matrix types, as for SVD.
          The 3-character path name is 'CBB'.

-----------------------------------------------------------------------

 CEC input file:

 line  2: THRESH, REAL
          Threshold value for the test ratios.  Information will be
          printed about each test for which the test ratio is greater
          than or equal to the threshold.

 lines  3-EOF:

 Input for testing the eigencondition routines consists of a set of
 specially constructed test cases and their solutions.  The data
 format is not intended to be modified by the user.

-----------------------------------------------------------------------

 CBL and CBK input files:

 line 1:  'CBL' in columns 1-3 to test CGEBAL, or 'CBK' in
          columns 1-3 to test CGEBAK.

 The remaining lines consist of specially constructed test cases.

-----------------------------------------------------------------------

 CGL and CGK input files:

 line 1:  'CGL' in columns 1-3 to test CGGBAL, or 'CGK' in
          columns 1-3 to test CGGBAK.

 The remaining lines consist of specially constructed test cases.

-----------------------------------------------------------------------

 GLM data file:

 line 1:  'GLM' in columns 1 to 3.

 line 2:  NN, INTEGER
          Number of values of M, P, and N.

 line 3:  MVAL, INTEGER array, dimension(NN)
          Values of M (row dimension).

 line 4:  PVAL, INTEGER array, dimension(NN)
          Values of P (row dimension).

 line 5:  NVAL, INTEGER array, dimension(NN)
          Values of N (column dimension), note M <= N <= M+P.

 line 6:  THRESH, REAL
          Threshold value for the test ratios.  Information will be
          printed about each test for which the test ratio is greater
          than or equal to the threshold.

 line 7:  TSTERR, LOGICAL
          Flag indicating whether or not to test the error exits for
          the LAPACK routines and driver routines.

 line 8:  NEWSD, INTEGER
          A code indicating how to set the random number seed.
          = 0:  Set the seed to a default value before each run
          = 1:  Initialize the seed to a default value only before the
                first run
          = 2:  Like 1, but use the seed values on the next line

 If line 8 was 2:

 line 9:  INTEGER array, dimension (4)
          Four integer values for the random number seed.

 lines 9-EOF:  Lines specifying matrix types, as for NEP.
          The 3-character path name is 'GLM' for the generalized
          linear regression model routines.

-----------------------------------------------------------------------

 GQR data file:

 line 1:  'GQR' in columns 1 to 3.

 line 2:  NN, INTEGER
          Number of values of M, P, and N.

 line 3:  MVAL, INTEGER array, dimension(NN)
          Values of M.

 line 4:  PVAL, INTEGER array, dimension(NN)
          Values of P.

 line 5:  NVAL, INTEGER array, dimension(NN)
          Values of N.

 line 6:  THRESH, REAL
          Threshold value for the test ratios.  Information will be
          printed about each test for which the test ratio is greater
          than or equal to the threshold.

 line 7:  TSTERR, LOGICAL
          Flag indicating whether or not to test the error exits for
          the LAPACK routines and driver routines.

 line 8:  NEWSD, INTEGER
          A code indicating how to set the random number seed.
          = 0:  Set the seed to a default value before each run
          = 1:  Initialize the seed to a default value only before the
                first run
          = 2:  Like 1, but use the seed values on the next line

 If line 8 was 2:

 line 9:  INTEGER array, dimension (4)
          Four integer values for the random number seed.

 lines 9-EOF:  Lines specifying matrix types, as for NEP.
          The 3-character path name is 'GQR' for the generalized
          QR and RQ routines.

-----------------------------------------------------------------------

 GSV data file:

 line 1:  'GSV' in columns 1 to 3.

 line 2:  NN, INTEGER
          Number of values of M, P, and N.

 line 3:  MVAL, INTEGER array, dimension(NN)
          Values of M (row dimension).

 line 4:  PVAL, INTEGER array, dimension(NN)
          Values of P (row dimension).

 line 5:  NVAL, INTEGER array, dimension(NN)
          Values of N (column dimension).

 line 6:  THRESH, REAL
          Threshold value for the test ratios.  Information will be
          printed about each test for which the test ratio is greater
          than or equal to the threshold.

 line 7:  TSTERR, LOGICAL
          Flag indicating whether or not to test the error exits for
          the LAPACK routines and driver routines.

 line 8:  NEWSD, INTEGER
          A code indicating how to set the random number seed.
          = 0:  Set the seed to a default value before each run
          = 1:  Initialize the seed to a default value only before the
                first run
          = 2:  Like 1, but use the seed values on the next line

 If line 8 was 2:

 line 9:  INTEGER array, dimension (4)
          Four integer values for the random number seed.

 lines 9-EOF:  Lines specifying matrix types, as for NEP.
          The 3-character path name is 'GSV' for the generalized
          SVD routines.

-----------------------------------------------------------------------

 CSD data file:

 line 1:  'CSD' in columns 1 to 3.

 line 2:  NM, INTEGER
          Number of values of M, P, and N.

 line 3:  MVAL, INTEGER array, dimension(NM)
          Values of M (row and column dimension of orthogonal matrix).

 line 4:  PVAL, INTEGER array, dimension(NM)
          Values of P (row dimension of top-left block).

 line 5:  NVAL, INTEGER array, dimension(NM)
          Values of N (column dimension of top-left block).

 line 6:  THRESH, REAL
          Threshold value for the test ratios.  Information will be
          printed about each test for which the test ratio is greater
          than or equal to the threshold.

 line 7:  TSTERR, LOGICAL
          Flag indicating whether or not to test the error exits for
          the LAPACK routines and driver routines.

 line 8:  NEWSD, INTEGER
          A code indicating how to set the random number seed.
          = 0:  Set the seed to a default value before each run
          = 1:  Initialize the seed to a default value only before the
                first run
          = 2:  Like 1, but use the seed values on the next line

 If line 8 was 2:

 line 9:  INTEGER array, dimension (4)
          Four integer values for the random number seed.

 lines 9-EOF:  Lines specifying matrix types, as for NEP.
          The 3-character path name is 'CSD' for the CSD routine.

-----------------------------------------------------------------------

 LSE data file:

 line 1:  'LSE' in columns 1 to 3.

 line 2:  NN, INTEGER
          Number of values of M, P, and N.

 line 3:  MVAL, INTEGER array, dimension(NN)
          Values of M.

 line 4:  PVAL, INTEGER array, dimension(NN)
          Values of P.

 line 5:  NVAL, INTEGER array, dimension(NN)
          Values of N, note P <= N <= P+M.

 line 6:  THRESH, REAL
          Threshold value for the test ratios.  Information will be
          printed about each test for which the test ratio is greater
          than or equal to the threshold.

 line 7:  TSTERR, LOGICAL
          Flag indicating whether or not to test the error exits for
          the LAPACK routines and driver routines.

 line 8:  NEWSD, INTEGER
          A code indicating how to set the random number seed.
          = 0:  Set the seed to a default value before each run
          = 1:  Initialize the seed to a default value only before the
                first run
          = 2:  Like 1, but use the seed values on the next line

 If line 8 was 2:

 line 9:  INTEGER array, dimension (4)
          Four integer values for the random number seed.

 lines 9-EOF:  Lines specifying matrix types, as for NEP.
          The 3-character path name is 'GSV' for the generalized
          SVD routines.

-----------------------------------------------------------------------

 NMAX is currently set to 132 and must be at least 12 for some of the
 precomputed examples, and LWORK = NMAX*(5*NMAX+20) in the parameter
 statements below.  For SVD, we assume NRHS may be as big as N.  The
 parameter NEED is set to 14 to allow for 14 N-by-N matrices for CGG.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 1033 of file cchkee.F.

Here is the call graph for this function: