LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sgemqr()

subroutine sgemqr ( character side,
character trans,
integer m,
integer n,
integer k,
real, dimension( lda, * ) a,
integer lda,
real, dimension( * ) t,
integer tsize,
real, dimension( ldc, * ) c,
integer ldc,
real, dimension( * ) work,
integer lwork,
integer info )

SGEMQR

Purpose:
!>
!> SGEMQR overwrites the general real M-by-N matrix C with
!>
!>                      SIDE = 'L'     SIDE = 'R'
!>     TRANS = 'N':      Q * C          C * Q
!>     TRANS = 'T':      Q**T * C       C * Q**T
!>
!> where Q is a real orthogonal matrix defined as the product
!> of blocked elementary reflectors computed by tall skinny
!> QR factorization (SGEQR)
!>
!> 
Parameters
[in]SIDE
!>          SIDE is CHARACTER*1
!>          = 'L': apply Q or Q**T from the Left;
!>          = 'R': apply Q or Q**T from the Right.
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>          = 'N':  No transpose, apply Q;
!>          = 'T':  Transpose, apply Q**T.
!> 
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >=0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix C. N >= 0.
!> 
[in]K
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines
!>          the matrix Q.
!>          If SIDE = 'L', M >= K >= 0;
!>          if SIDE = 'R', N >= K >= 0.
!> 
[in]A
!>          A is REAL array, dimension (LDA,K)
!>          Part of the data structure to represent Q as returned by SGEQR.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.
!>          If SIDE = 'L', LDA >= max(1,M);
!>          if SIDE = 'R', LDA >= max(1,N).
!> 
[in]T
!>          T is REAL array, dimension (MAX(5,TSIZE)).
!>          Part of the data structure to represent Q as returned by SGEQR.
!> 
[in]TSIZE
!>          TSIZE is INTEGER
!>          The dimension of the array T. TSIZE >= 5.
!> 
[in,out]C
!>          C is REAL array, dimension (LDC,N)
!>          On entry, the M-by-N matrix C.
!>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
!> 
[in]LDC
!>          LDC is INTEGER
!>          The leading dimension of the array C. LDC >= max(1,M).
!> 
[out]WORK
!>         (workspace) REAL array, dimension (MAX(1,LWORK))
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If LWORK = -1, then a workspace query is assumed. The routine
!>          only calculates the size of the WORK array, returns this
!>          value as WORK(1), and no error message related to WORK
!>          is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details
!>
!> These details are particular for this LAPACK implementation. Users should not
!> take them for granted. These details may change in the future, and are not likely
!> true for another LAPACK implementation. These details are relevant if one wants
!> to try to understand the code. They are not part of the interface.
!>
!> In this version,
!>
!>          T(2): row block size (MB)
!>          T(3): column block size (NB)
!>          T(6:TSIZE): data structure needed for Q, computed by
!>                           SLATSQR or SGEQRT
!>
!>  Depending on the matrix dimensions M and N, and row and column
!>  block sizes MB and NB returned by ILAENV, SGEQR will use either
!>  SLATSQR (if the matrix is tall-and-skinny) or SGEQRT to compute
!>  the QR factorization.
!>  This version of SGEMQR will use either SLAMTSQR or SGEMQRT to
!>  multiply matrix Q by another matrix.
!>  Further Details in SLAMTSQR or SGEMQRT.
!>
!> 

Definition at line 172 of file sgemqr.f.

174*
175* -- LAPACK computational routine --
176* -- LAPACK is a software package provided by Univ. of Tennessee, --
177* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
178*
179* .. Scalar Arguments ..
180 CHARACTER SIDE, TRANS
181 INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC
182* ..
183* .. Array Arguments ..
184 REAL A( LDA, * ), T( * ), C( LDC, * ), WORK( * )
185* ..
186*
187* =====================================================================
188*
189* ..
190* .. Local Scalars ..
191 LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
192 INTEGER MB, NB, LW, NBLCKS, MN, MINMNK, LWMIN
193* ..
194* .. External Functions ..
195 LOGICAL LSAME
196 EXTERNAL lsame
197 REAL SROUNDUP_LWORK
198 EXTERNAL sroundup_lwork
199* ..
200* .. External Subroutines ..
201 EXTERNAL sgemqrt, slamtsqr, xerbla
202* ..
203* .. Intrinsic Functions ..
204 INTRINSIC int, max, min, mod
205* ..
206* .. Executable Statements ..
207*
208* Test the input arguments
209*
210 lquery = ( lwork.EQ.-1 )
211 notran = lsame( trans, 'N' )
212 tran = lsame( trans, 'T' )
213 left = lsame( side, 'L' )
214 right = lsame( side, 'R' )
215*
216 mb = int( t( 2 ) )
217 nb = int( t( 3 ) )
218 IF( left ) THEN
219 lw = n * nb
220 mn = m
221 ELSE
222 lw = mb * nb
223 mn = n
224 END IF
225*
226 minmnk = min( m, n, k )
227 IF( minmnk.EQ.0 ) THEN
228 lwmin = 1
229 ELSE
230 lwmin = max( 1, lw )
231 END IF
232*
233 IF( ( mb.GT.k ) .AND. ( mn.GT.k ) ) THEN
234 IF( mod( mn - k, mb - k ).EQ.0 ) THEN
235 nblcks = ( mn - k ) / ( mb - k )
236 ELSE
237 nblcks = ( mn - k ) / ( mb - k ) + 1
238 END IF
239 ELSE
240 nblcks = 1
241 END IF
242*
243 info = 0
244 IF( .NOT.left .AND. .NOT.right ) THEN
245 info = -1
246 ELSE IF( .NOT.tran .AND. .NOT.notran ) THEN
247 info = -2
248 ELSE IF( m.LT.0 ) THEN
249 info = -3
250 ELSE IF( n.LT.0 ) THEN
251 info = -4
252 ELSE IF( k.LT.0 .OR. k.GT.mn ) THEN
253 info = -5
254 ELSE IF( lda.LT.max( 1, mn ) ) THEN
255 info = -7
256 ELSE IF( tsize.LT.5 ) THEN
257 info = -9
258 ELSE IF( ldc.LT.max( 1, m ) ) THEN
259 info = -11
260 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
261 info = -13
262 END IF
263*
264 IF( info.EQ.0 ) THEN
265 work( 1 ) = sroundup_lwork( lwmin )
266 END IF
267*
268 IF( info.NE.0 ) THEN
269 CALL xerbla( 'SGEMQR', -info )
270 RETURN
271 ELSE IF( lquery ) THEN
272 RETURN
273 END IF
274*
275* Quick return if possible
276*
277 IF( minmnk.EQ.0 ) THEN
278 RETURN
279 END IF
280*
281 IF( ( left .AND. m.LE.k ) .OR. ( right .AND. n.LE.k )
282 $ .OR. ( mb.LE.k ) .OR. ( mb.GE.max( m, n, k ) ) ) THEN
283 CALL sgemqrt( side, trans, m, n, k, nb, a, lda, t( 6 ),
284 $ nb, c, ldc, work, info )
285 ELSE
286 CALL slamtsqr( side, trans, m, n, k, mb, nb, a, lda, t( 6 ),
287 $ nb, c, ldc, work, lwork, info )
288 END IF
289*
290 work( 1 ) = sroundup_lwork( lwmin )
291*
292 RETURN
293*
294* End of SGEMQR
295*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgemqrt(side, trans, m, n, k, nb, v, ldv, t, ldt, c, ldc, work, info)
SGEMQRT
Definition sgemqrt.f:166
subroutine slamtsqr(side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)
SLAMTSQR
Definition slamtsqr.f:201
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
Here is the call graph for this function:
Here is the caller graph for this function: