LAPACK  3.10.1
LAPACK: Linear Algebra PACKage
zchktz.f
Go to the documentation of this file.
1 *> \brief \b ZCHKTZ
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE ZCHKTZ( DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR, A,
12 * COPYA, S, TAU, WORK, RWORK, NOUT )
13 *
14 * .. Scalar Arguments ..
15 * LOGICAL TSTERR
16 * INTEGER NM, NN, NOUT
17 * DOUBLE PRECISION THRESH
18 * ..
19 * .. Array Arguments ..
20 * LOGICAL DOTYPE( * )
21 * INTEGER MVAL( * ), NVAL( * )
22 * DOUBLE PRECISION S( * ), RWORK( * )
23 * COMPLEX*16 A( * ), COPYA( * ), TAU( * ), WORK( * )
24 * ..
25 *
26 *
27 *> \par Purpose:
28 * =============
29 *>
30 *> \verbatim
31 *>
32 *> ZCHKTZ tests ZTZRZF.
33 *> \endverbatim
34 *
35 * Arguments:
36 * ==========
37 *
38 *> \param[in] DOTYPE
39 *> \verbatim
40 *> DOTYPE is LOGICAL array, dimension (NTYPES)
41 *> The matrix types to be used for testing. Matrices of type j
42 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
43 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
44 *> \endverbatim
45 *>
46 *> \param[in] NM
47 *> \verbatim
48 *> NM is INTEGER
49 *> The number of values of M contained in the vector MVAL.
50 *> \endverbatim
51 *>
52 *> \param[in] MVAL
53 *> \verbatim
54 *> MVAL is INTEGER array, dimension (NM)
55 *> The values of the matrix row dimension M.
56 *> \endverbatim
57 *>
58 *> \param[in] NN
59 *> \verbatim
60 *> NN is INTEGER
61 *> The number of values of N contained in the vector NVAL.
62 *> \endverbatim
63 *>
64 *> \param[in] NVAL
65 *> \verbatim
66 *> NVAL is INTEGER array, dimension (NN)
67 *> The values of the matrix column dimension N.
68 *> \endverbatim
69 *>
70 *> \param[in] THRESH
71 *> \verbatim
72 *> THRESH is DOUBLE PRECISION
73 *> The threshold value for the test ratios. A result is
74 *> included in the output file if RESULT >= THRESH. To have
75 *> every test ratio printed, use THRESH = 0.
76 *> \endverbatim
77 *>
78 *> \param[in] TSTERR
79 *> \verbatim
80 *> TSTERR is LOGICAL
81 *> Flag that indicates whether error exits are to be tested.
82 *> \endverbatim
83 *>
84 *> \param[out] A
85 *> \verbatim
86 *> A is COMPLEX*16 array, dimension (MMAX*NMAX)
87 *> where MMAX is the maximum value of M in MVAL and NMAX is the
88 *> maximum value of N in NVAL.
89 *> \endverbatim
90 *>
91 *> \param[out] COPYA
92 *> \verbatim
93 *> COPYA is COMPLEX*16 array, dimension (MMAX*NMAX)
94 *> \endverbatim
95 *>
96 *> \param[out] S
97 *> \verbatim
98 *> S is DOUBLE PRECISION array, dimension
99 *> (min(MMAX,NMAX))
100 *> \endverbatim
101 *>
102 *> \param[out] TAU
103 *> \verbatim
104 *> TAU is COMPLEX*16 array, dimension (MMAX)
105 *> \endverbatim
106 *>
107 *> \param[out] WORK
108 *> \verbatim
109 *> WORK is COMPLEX*16 array, dimension
110 *> (MMAX*NMAX + 4*NMAX + MMAX)
111 *> \endverbatim
112 *>
113 *> \param[out] RWORK
114 *> \verbatim
115 *> RWORK is DOUBLE PRECISION array, dimension (2*NMAX)
116 *> \endverbatim
117 *>
118 *> \param[in] NOUT
119 *> \verbatim
120 *> NOUT is INTEGER
121 *> The unit number for output.
122 *> \endverbatim
123 *
124 * Authors:
125 * ========
126 *
127 *> \author Univ. of Tennessee
128 *> \author Univ. of California Berkeley
129 *> \author Univ. of Colorado Denver
130 *> \author NAG Ltd.
131 *
132 *> \ingroup complex16_lin
133 *
134 * =====================================================================
135  SUBROUTINE zchktz( DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR, A,
136  $ COPYA, S, TAU, WORK, RWORK, NOUT )
137 *
138 * -- LAPACK test routine --
139 * -- LAPACK is a software package provided by Univ. of Tennessee, --
140 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
141 *
142 * .. Scalar Arguments ..
143  LOGICAL TSTERR
144  INTEGER NM, NN, NOUT
145  DOUBLE PRECISION THRESH
146 * ..
147 * .. Array Arguments ..
148  LOGICAL DOTYPE( * )
149  INTEGER MVAL( * ), NVAL( * )
150  DOUBLE PRECISION S( * ), RWORK( * )
151  COMPLEX*16 A( * ), COPYA( * ), TAU( * ), WORK( * )
152 * ..
153 *
154 * =====================================================================
155 *
156 * .. Parameters ..
157  INTEGER NTYPES
158  parameter( ntypes = 3 )
159  INTEGER NTESTS
160  parameter( ntests = 3 )
161  DOUBLE PRECISION ONE, ZERO
162  parameter( one = 1.0d0, zero = 0.0d0 )
163 * ..
164 * .. Local Scalars ..
165  CHARACTER*3 PATH
166  INTEGER I, IM, IMODE, IN, INFO, K, LDA, LWORK, M,
167  $ mnmin, mode, n, nerrs, nfail, nrun
168  DOUBLE PRECISION EPS
169 * ..
170 * .. Local Arrays ..
171  INTEGER ISEED( 4 ), ISEEDY( 4 )
172  DOUBLE PRECISION RESULT( NTESTS )
173 * ..
174 * .. External Functions ..
175  DOUBLE PRECISION DLAMCH, ZQRT12, ZRZT01, ZRZT02
176  EXTERNAL dlamch, zqrt12, zrzt01, zrzt02
177 * ..
178 * .. External Subroutines ..
179  EXTERNAL alahd, alasum, dlaord, zerrtz, zgeqr2, zlacpy,
180  $ zlaset, zlatms, ztzrzf
181 * ..
182 * .. Intrinsic Functions ..
183  INTRINSIC dcmplx, max, min
184 * ..
185 * .. Scalars in Common ..
186  LOGICAL LERR, OK
187  CHARACTER*32 SRNAMT
188  INTEGER INFOT, IOUNIT
189 * ..
190 * .. Common blocks ..
191  COMMON / infoc / infot, iounit, ok, lerr
192  COMMON / srnamc / srnamt
193 * ..
194 * .. Data statements ..
195  DATA iseedy / 1988, 1989, 1990, 1991 /
196 * ..
197 * .. Executable Statements ..
198 *
199 * Initialize constants and the random number seed.
200 *
201  path( 1: 1 ) = 'Zomplex precision'
202  path( 2: 3 ) = 'TZ'
203  nrun = 0
204  nfail = 0
205  nerrs = 0
206  DO 10 i = 1, 4
207  iseed( i ) = iseedy( i )
208  10 CONTINUE
209  eps = dlamch( 'Epsilon' )
210 *
211 * Test the error exits
212 *
213  IF( tsterr )
214  $ CALL zerrtz( path, nout )
215  infot = 0
216 *
217  DO 70 im = 1, nm
218 *
219 * Do for each value of M in MVAL.
220 *
221  m = mval( im )
222  lda = max( 1, m )
223 *
224  DO 60 in = 1, nn
225 *
226 * Do for each value of N in NVAL for which M .LE. N.
227 *
228  n = nval( in )
229  mnmin = min( m, n )
230  lwork = max( 1, n*n+4*m+n )
231 *
232  IF( m.LE.n ) THEN
233  DO 50 imode = 1, ntypes
234  IF( .NOT.dotype( imode ) )
235  $ GO TO 50
236 *
237 * Do for each type of singular value distribution.
238 * 0: zero matrix
239 * 1: one small singular value
240 * 2: exponential distribution
241 *
242  mode = imode - 1
243 *
244 * Test ZTZRQF
245 *
246 * Generate test matrix of size m by n using
247 * singular value distribution indicated by `mode'.
248 *
249  IF( mode.EQ.0 ) THEN
250  CALL zlaset( 'Full', m, n, dcmplx( zero ),
251  $ dcmplx( zero ), a, lda )
252  DO 30 i = 1, mnmin
253  s( i ) = zero
254  30 CONTINUE
255  ELSE
256  CALL zlatms( m, n, 'Uniform', iseed,
257  $ 'Nonsymmetric', s, imode,
258  $ one / eps, one, m, n, 'No packing', a,
259  $ lda, work, info )
260  CALL zgeqr2( m, n, a, lda, work, work( mnmin+1 ),
261  $ info )
262  CALL zlaset( 'Lower', m-1, n, dcmplx( zero ),
263  $ dcmplx( zero ), a( 2 ), lda )
264  CALL dlaord( 'Decreasing', mnmin, s, 1 )
265  END IF
266 *
267 * Save A and its singular values
268 *
269  CALL zlacpy( 'All', m, n, a, lda, copya, lda )
270 *
271 * Call ZTZRZF to reduce the upper trapezoidal matrix to
272 * upper triangular form.
273 *
274  srnamt = 'ZTZRZF'
275  CALL ztzrzf( m, n, a, lda, tau, work, lwork, info )
276 *
277 * Compute norm(svd(a) - svd(r))
278 *
279  result( 1 ) = zqrt12( m, m, a, lda, s, work,
280  $ lwork, rwork )
281 *
282 * Compute norm( A - R*Q )
283 *
284  result( 2 ) = zrzt01( m, n, copya, a, lda, tau, work,
285  $ lwork )
286 *
287 * Compute norm(Q'*Q - I).
288 *
289  result( 3 ) = zrzt02( m, n, a, lda, tau, work, lwork )
290 *
291 * Print information about the tests that did not pass
292 * the threshold.
293 *
294  DO 40 k = 1, ntests
295  IF( result( k ).GE.thresh ) THEN
296  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
297  $ CALL alahd( nout, path )
298  WRITE( nout, fmt = 9999 )m, n, imode, k,
299  $ result( k )
300  nfail = nfail + 1
301  END IF
302  40 CONTINUE
303  nrun = nrun + 3
304  50 CONTINUE
305  END IF
306  60 CONTINUE
307  70 CONTINUE
308 *
309 * Print a summary of the results.
310 *
311  CALL alasum( path, nout, nfail, nrun, nerrs )
312 *
313  9999 FORMAT( ' M =', i5, ', N =', i5, ', type ', i2, ', test ', i2,
314  $ ', ratio =', g12.5 )
315 *
316 * End if ZCHKTZ
317 *
318  END
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine zchktz(DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR, A, COPYA, S, TAU, WORK, RWORK, NOUT)
ZCHKTZ
Definition: zchktz.f:137
subroutine zerrtz(PATH, NUNIT)
ZERRTZ
Definition: zerrtz.f:54
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
Definition: zlatms.f:332
subroutine zgeqr2(M, N, A, LDA, TAU, WORK, INFO)
ZGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Definition: zgeqr2.f:130
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
subroutine zlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: zlaset.f:106
subroutine ztzrzf(M, N, A, LDA, TAU, WORK, LWORK, INFO)
ZTZRZF
Definition: ztzrzf.f:151
subroutine dlaord(JOB, N, X, INCX)
DLAORD
Definition: dlaord.f:73