LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine slasda | ( | integer | icompq, |
integer | smlsiz, | ||
integer | n, | ||
integer | sqre, | ||
real, dimension( * ) | d, | ||
real, dimension( * ) | e, | ||
real, dimension( ldu, * ) | u, | ||
integer | ldu, | ||
real, dimension( ldu, * ) | vt, | ||
integer, dimension( * ) | k, | ||
real, dimension( ldu, * ) | difl, | ||
real, dimension( ldu, * ) | difr, | ||
real, dimension( ldu, * ) | z, | ||
real, dimension( ldu, * ) | poles, | ||
integer, dimension( * ) | givptr, | ||
integer, dimension( ldgcol, * ) | givcol, | ||
integer | ldgcol, | ||
integer, dimension( ldgcol, * ) | perm, | ||
real, dimension( ldu, * ) | givnum, | ||
real, dimension( * ) | c, | ||
real, dimension( * ) | s, | ||
real, dimension( * ) | work, | ||
integer, dimension( * ) | iwork, | ||
integer | info ) |
SLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with diagonal d and off-diagonal e. Used by sbdsdc.
Download SLASDA + dependencies [TGZ] [ZIP] [TXT]
!> !> Using a divide and conquer approach, SLASDA computes the singular !> value decomposition (SVD) of a real upper bidiagonal N-by-M matrix !> B with diagonal D and offdiagonal E, where M = N + SQRE. The !> algorithm computes the singular values in the SVD B = U * S * VT. !> The orthogonal matrices U and VT are optionally computed in !> compact form. !> !> A related subroutine, SLASD0, computes the singular values and !> the singular vectors in explicit form. !>
[in] | ICOMPQ | !> ICOMPQ is INTEGER !> Specifies whether singular vectors are to be computed !> in compact form, as follows !> = 0: Compute singular values only. !> = 1: Compute singular vectors of upper bidiagonal !> matrix in compact form. !> |
[in] | SMLSIZ | !> SMLSIZ is INTEGER !> The maximum size of the subproblems at the bottom of the !> computation tree. !> |
[in] | N | !> N is INTEGER !> The row dimension of the upper bidiagonal matrix. This is !> also the dimension of the main diagonal array D. !> |
[in] | SQRE | !> SQRE is INTEGER !> Specifies the column dimension of the bidiagonal matrix. !> = 0: The bidiagonal matrix has column dimension M = N; !> = 1: The bidiagonal matrix has column dimension M = N + 1. !> |
[in,out] | D | !> D is REAL array, dimension ( N ) !> On entry D contains the main diagonal of the bidiagonal !> matrix. On exit D, if INFO = 0, contains its singular values. !> |
[in] | E | !> E is REAL array, dimension ( M-1 ) !> Contains the subdiagonal entries of the bidiagonal matrix. !> On exit, E has been destroyed. !> |
[out] | U | !> U is REAL array, !> dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced !> if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left !> singular vector matrices of all subproblems at the bottom !> level. !> |
[in] | LDU | !> LDU is INTEGER, LDU = > N. !> The leading dimension of arrays U, VT, DIFL, DIFR, POLES, !> GIVNUM, and Z. !> |
[out] | VT | !> VT is REAL array, !> dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced !> if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT**T contains the right !> singular vector matrices of all subproblems at the bottom !> level. !> |
[out] | K | !> K is INTEGER array, dimension ( N ) !> if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. !> If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th !> secular equation on the computation tree. !> |
[out] | DIFL | !> DIFL is REAL array, dimension ( LDU, NLVL ), !> where NLVL = floor(log_2 (N/SMLSIZ))). !> |
[out] | DIFR | !> DIFR is REAL array, !> dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and !> dimension ( N ) if ICOMPQ = 0. !> If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1) !> record distances between singular values on the I-th !> level and singular values on the (I -1)-th level, and !> DIFR(1:N, 2 * I ) contains the normalizing factors for !> the right singular vector matrix. See SLASD8 for details. !> |
[out] | Z | !> Z is REAL array, !> dimension ( LDU, NLVL ) if ICOMPQ = 1 and !> dimension ( N ) if ICOMPQ = 0. !> The first K elements of Z(1, I) contain the components of !> the deflation-adjusted updating row vector for subproblems !> on the I-th level. !> |
[out] | POLES | !> POLES is REAL array, !> dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced !> if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and !> POLES(1, 2*I) contain the new and old singular values !> involved in the secular equations on the I-th level. !> |
[out] | GIVPTR | !> GIVPTR is INTEGER array, !> dimension ( N ) if ICOMPQ = 1, and not referenced if !> ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records !> the number of Givens rotations performed on the I-th !> problem on the computation tree. !> |
[out] | GIVCOL | !> GIVCOL is INTEGER array, !> dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not !> referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, !> GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations !> of Givens rotations performed on the I-th level on the !> computation tree. !> |
[in] | LDGCOL | !> LDGCOL is INTEGER, LDGCOL = > N. !> The leading dimension of arrays GIVCOL and PERM. !> |
[out] | PERM | !> PERM is INTEGER array, dimension ( LDGCOL, NLVL ) !> if ICOMPQ = 1, and not referenced !> if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records !> permutations done on the I-th level of the computation tree. !> |
[out] | GIVNUM | !> GIVNUM is REAL array, !> dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not !> referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, !> GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S- !> values of Givens rotations performed on the I-th level on !> the computation tree. !> |
[out] | C | !> C is REAL array, !> dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. !> If ICOMPQ = 1 and the I-th subproblem is not square, on exit, !> C( I ) contains the C-value of a Givens rotation related to !> the right null space of the I-th subproblem. !> |
[out] | S | !> S is REAL array, dimension ( N ) if !> ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 !> and the I-th subproblem is not square, on exit, S( I ) !> contains the S-value of a Givens rotation related to !> the right null space of the I-th subproblem. !> |
[out] | WORK | !> WORK is REAL array, dimension !> (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)). !> |
[out] | IWORK | !> IWORK is INTEGER array, dimension (7*N). !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if INFO = 1, a singular value did not converge !> |
Definition at line 268 of file slasda.f.