131 $ LDAF, IPIV, X, INFO,
140 INTEGER n, lda, ldaf, info
144 COMPLEX*16 a( lda, * ), af( ldaf, * ), work( * ), x( * )
145 DOUBLE PRECISION rwork( * )
152 DOUBLE PRECISION ainvnm, anorm, tmp
170 DOUBLE PRECISION cabs1
173 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
180 upper =
lsame( uplo,
'U' )
181 IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
183 ELSE IF ( n.LT.0 )
THEN
185 ELSE IF( lda.LT.max( 1, n ) )
THEN
187 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
191 CALL xerbla(
'ZLA_HERCOND_X', -info )
195 IF (
lsame( uplo,
'U' ) ) up = .true.
204 tmp = tmp + cabs1( a( j, i ) * x( j ) )
207 tmp = tmp + cabs1( a( i, j ) * x( j ) )
210 anorm = max( anorm, tmp )
216 tmp = tmp + cabs1( a( i, j ) * x( j ) )
219 tmp = tmp + cabs1( a( j, i ) * x( j ) )
222 anorm = max( anorm, tmp )
231 ELSE IF( anorm .EQ. 0.0d+0 )
THEN
241 CALL zlacn2( n, work( n+1 ), work, ainvnm, kase, isave )
248 work( i ) = work( i ) * rwork( i )
252 CALL zhetrs(
'U', n, 1, af, ldaf, ipiv,
255 CALL zhetrs(
'L', n, 1, af, ldaf, ipiv,
262 work( i ) = work( i ) / x( i )
269 work( i ) = work( i ) / x( i )
273 CALL zhetrs(
'U', n, 1, af, ldaf, ipiv,
276 CALL zhetrs(
'L', n, 1, af, ldaf, ipiv,
283 work( i ) = work( i ) * rwork( i )
291 IF( ainvnm .NE. 0.0d+0 )
subroutine xerbla(srname, info)
subroutine zhetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZHETRS
double precision function zla_hercond_x(uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork)
ZLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite m...
subroutine zlacn2(n, v, x, est, kase, isave)
ZLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
logical function lsame(ca, cb)
LSAME