LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
zla_hercond_x.f
Go to the documentation of this file.
1*> \brief \b ZLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZLA_HERCOND_X + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_hercond_x.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_hercond_x.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_hercond_x.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* DOUBLE PRECISION FUNCTION ZLA_HERCOND_X( UPLO, N, A, LDA, AF,
20* LDAF, IPIV, X, INFO,
21* WORK, RWORK )
22*
23* .. Scalar Arguments ..
24* CHARACTER UPLO
25* INTEGER N, LDA, LDAF, INFO
26* ..
27* .. Array Arguments ..
28* INTEGER IPIV( * )
29* COMPLEX*16 A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
30* DOUBLE PRECISION RWORK( * )
31* ..
32*
33*
34*> \par Purpose:
35* =============
36*>
37*> \verbatim
38*>
39*> ZLA_HERCOND_X computes the infinity norm condition number of
40*> op(A) * diag(X) where X is a COMPLEX*16 vector.
41*> \endverbatim
42*
43* Arguments:
44* ==========
45*
46*> \param[in] UPLO
47*> \verbatim
48*> UPLO is CHARACTER*1
49*> = 'U': Upper triangle of A is stored;
50*> = 'L': Lower triangle of A is stored.
51*> \endverbatim
52*>
53*> \param[in] N
54*> \verbatim
55*> N is INTEGER
56*> The number of linear equations, i.e., the order of the
57*> matrix A. N >= 0.
58*> \endverbatim
59*>
60*> \param[in] A
61*> \verbatim
62*> A is COMPLEX*16 array, dimension (LDA,N)
63*> On entry, the N-by-N matrix A.
64*> \endverbatim
65*>
66*> \param[in] LDA
67*> \verbatim
68*> LDA is INTEGER
69*> The leading dimension of the array A. LDA >= max(1,N).
70*> \endverbatim
71*>
72*> \param[in] AF
73*> \verbatim
74*> AF is COMPLEX*16 array, dimension (LDAF,N)
75*> The block diagonal matrix D and the multipliers used to
76*> obtain the factor U or L as computed by ZHETRF.
77*> \endverbatim
78*>
79*> \param[in] LDAF
80*> \verbatim
81*> LDAF is INTEGER
82*> The leading dimension of the array AF. LDAF >= max(1,N).
83*> \endverbatim
84*>
85*> \param[in] IPIV
86*> \verbatim
87*> IPIV is INTEGER array, dimension (N)
88*> Details of the interchanges and the block structure of D
89*> as determined by CHETRF.
90*> \endverbatim
91*>
92*> \param[in] X
93*> \verbatim
94*> X is COMPLEX*16 array, dimension (N)
95*> The vector X in the formula op(A) * diag(X).
96*> \endverbatim
97*>
98*> \param[out] INFO
99*> \verbatim
100*> INFO is INTEGER
101*> = 0: Successful exit.
102*> i > 0: The ith argument is invalid.
103*> \endverbatim
104*>
105*> \param[out] WORK
106*> \verbatim
107*> WORK is COMPLEX*16 array, dimension (2*N).
108*> Workspace.
109*> \endverbatim
110*>
111*> \param[out] RWORK
112*> \verbatim
113*> RWORK is DOUBLE PRECISION array, dimension (N).
114*> Workspace.
115*> \endverbatim
116*
117* Authors:
118* ========
119*
120*> \author Univ. of Tennessee
121*> \author Univ. of California Berkeley
122*> \author Univ. of Colorado Denver
123*> \author NAG Ltd.
124*
125*> \ingroup la_hercond
126*
127* =====================================================================
128 DOUBLE PRECISION FUNCTION zla_hercond_x( UPLO, N, A, LDA, AF,
129 $ LDAF, IPIV, X, INFO,
130 $ WORK, RWORK )
131*
132* -- LAPACK computational routine --
133* -- LAPACK is a software package provided by Univ. of Tennessee, --
134* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
135*
136* .. Scalar Arguments ..
137 CHARACTER uplo
138 INTEGER n, lda, ldaf, info
139* ..
140* .. Array Arguments ..
141 INTEGER ipiv( * )
142 COMPLEX*16 a( lda, * ), af( ldaf, * ), work( * ), x( * )
143 DOUBLE PRECISION rwork( * )
144* ..
145*
146* =====================================================================
147*
148* .. Local Scalars ..
149 INTEGER kase, i, j
150 DOUBLE PRECISION ainvnm, anorm, tmp
151 LOGICAL up, upper
152 COMPLEX*16 zdum
153* ..
154* .. Local Arrays ..
155 INTEGER isave( 3 )
156* ..
157* .. External Functions ..
158 LOGICAL lsame
159 EXTERNAL lsame
160* ..
161* .. External Subroutines ..
162 EXTERNAL zlacn2, zhetrs, xerbla
163* ..
164* .. Intrinsic Functions ..
165 INTRINSIC abs, max
166* ..
167* .. Statement Functions ..
168 DOUBLE PRECISION cabs1
169* ..
170* .. Statement Function Definitions ..
171 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
172* ..
173* .. Executable Statements ..
174*
175 zla_hercond_x = 0.0d+0
176*
177 info = 0
178 upper = lsame( uplo, 'U' )
179 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
180 info = -1
181 ELSE IF ( n.LT.0 ) THEN
182 info = -2
183 ELSE IF( lda.LT.max( 1, n ) ) THEN
184 info = -4
185 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
186 info = -6
187 END IF
188 IF( info.NE.0 ) THEN
189 CALL xerbla( 'ZLA_HERCOND_X', -info )
190 RETURN
191 END IF
192 up = .false.
193 IF ( lsame( uplo, 'U' ) ) up = .true.
194*
195* Compute norm of op(A)*op2(C).
196*
197 anorm = 0.0d+0
198 IF ( up ) THEN
199 DO i = 1, n
200 tmp = 0.0d+0
201 DO j = 1, i
202 tmp = tmp + cabs1( a( j, i ) * x( j ) )
203 END DO
204 DO j = i+1, n
205 tmp = tmp + cabs1( a( i, j ) * x( j ) )
206 END DO
207 rwork( i ) = tmp
208 anorm = max( anorm, tmp )
209 END DO
210 ELSE
211 DO i = 1, n
212 tmp = 0.0d+0
213 DO j = 1, i
214 tmp = tmp + cabs1( a( i, j ) * x( j ) )
215 END DO
216 DO j = i+1, n
217 tmp = tmp + cabs1( a( j, i ) * x( j ) )
218 END DO
219 rwork( i ) = tmp
220 anorm = max( anorm, tmp )
221 END DO
222 END IF
223*
224* Quick return if possible.
225*
226 IF( n.EQ.0 ) THEN
227 zla_hercond_x = 1.0d+0
228 RETURN
229 ELSE IF( anorm .EQ. 0.0d+0 ) THEN
230 RETURN
231 END IF
232*
233* Estimate the norm of inv(op(A)).
234*
235 ainvnm = 0.0d+0
236*
237 kase = 0
238 10 CONTINUE
239 CALL zlacn2( n, work( n+1 ), work, ainvnm, kase, isave )
240 IF( kase.NE.0 ) THEN
241 IF( kase.EQ.2 ) THEN
242*
243* Multiply by R.
244*
245 DO i = 1, n
246 work( i ) = work( i ) * rwork( i )
247 END DO
248*
249 IF ( up ) THEN
250 CALL zhetrs( 'U', n, 1, af, ldaf, ipiv,
251 $ work, n, info )
252 ELSE
253 CALL zhetrs( 'L', n, 1, af, ldaf, ipiv,
254 $ work, n, info )
255 ENDIF
256*
257* Multiply by inv(X).
258*
259 DO i = 1, n
260 work( i ) = work( i ) / x( i )
261 END DO
262 ELSE
263*
264* Multiply by inv(X**H).
265*
266 DO i = 1, n
267 work( i ) = work( i ) / x( i )
268 END DO
269*
270 IF ( up ) THEN
271 CALL zhetrs( 'U', n, 1, af, ldaf, ipiv,
272 $ work, n, info )
273 ELSE
274 CALL zhetrs( 'L', n, 1, af, ldaf, ipiv,
275 $ work, n, info )
276 END IF
277*
278* Multiply by R.
279*
280 DO i = 1, n
281 work( i ) = work( i ) * rwork( i )
282 END DO
283 END IF
284 GO TO 10
285 END IF
286*
287* Compute the estimate of the reciprocal condition number.
288*
289 IF( ainvnm .NE. 0.0d+0 )
290 $ zla_hercond_x = 1.0d+0 / ainvnm
291*
292 RETURN
293*
294* End of ZLA_HERCOND_X
295*
296 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zhetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZHETRS
Definition zhetrs.f:118
double precision function zla_hercond_x(uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork)
ZLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite m...
subroutine zlacn2(n, v, x, est, kase, isave)
ZLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition zlacn2.f:131
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48