 LAPACK 3.11.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ zcklse()

 subroutine zcklse ( integer NN, integer, dimension( * ) MVAL, integer, dimension( * ) PVAL, integer, dimension( * ) NVAL, integer NMATS, integer, dimension( 4 ) ISEED, double precision THRESH, integer NMAX, complex*16, dimension( * ) A, complex*16, dimension( * ) AF, complex*16, dimension( * ) B, complex*16, dimension( * ) BF, complex*16, dimension( * ) X, complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer NIN, integer NOUT, integer INFO )

ZCKLSE

Purpose:
``` ZCKLSE tests ZGGLSE - a subroutine for solving linear equality
constrained least square problem (LSE).```
Parameters
 [in] NN ``` NN is INTEGER The number of values of (M,P,N) contained in the vectors (MVAL, PVAL, NVAL).``` [in] MVAL ``` MVAL is INTEGER array, dimension (NN) The values of the matrix row(column) dimension M.``` [in] PVAL ``` PVAL is INTEGER array, dimension (NN) The values of the matrix row(column) dimension P.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix column(row) dimension N.``` [in] NMATS ``` NMATS is INTEGER The number of matrix types to be tested for each combination of matrix dimensions. If NMATS >= NTYPES (the maximum number of matrix types), then all the different types are generated for testing. If NMATS < NTYPES, another input line is read to get the numbers of the matrix types to be used.``` [in,out] ISEED ``` ISEED is INTEGER array, dimension (4) On entry, the seed of the random number generator. The array elements should be between 0 and 4095, otherwise they will be reduced mod 4096, and ISEED(4) must be odd. On exit, the next seed in the random number sequence after all the test matrices have been generated.``` [in] THRESH ``` THRESH is DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for M or N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] AF ` AF is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] B ` B is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] BF ` BF is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] X ` X is COMPLEX*16 array, dimension (5*NMAX)` [out] WORK ` WORK is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] RWORK ` RWORK is DOUBLE PRECISION array, dimension (NMAX)` [in] NIN ``` NIN is INTEGER The unit number for input.``` [in] NOUT ``` NOUT is INTEGER The unit number for output.``` [out] INFO ``` INFO is INTEGER = 0 : successful exit > 0 : If ZLATMS returns an error code, the absolute value of it is returned.```

Definition at line 165 of file zcklse.f.

168*
169* -- LAPACK test routine --
170* -- LAPACK is a software package provided by Univ. of Tennessee, --
171* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
172*
173* .. Scalar Arguments ..
174 INTEGER INFO, NIN, NMATS, NMAX, NN, NOUT
175 DOUBLE PRECISION THRESH
176* ..
177* .. Array Arguments ..
178 INTEGER ISEED( 4 ), MVAL( * ), NVAL( * ), PVAL( * )
179 DOUBLE PRECISION RWORK( * )
180 COMPLEX*16 A( * ), AF( * ), B( * ), BF( * ), WORK( * ),
181 \$ X( * )
182* ..
183*
184* =====================================================================
185*
186* .. Parameters ..
187 INTEGER NTESTS
188 parameter( ntests = 7 )
189 INTEGER NTYPES
190 parameter( ntypes = 8 )
191* ..
192* .. Local Scalars ..
193 LOGICAL FIRSTT
194 CHARACTER DISTA, DISTB, TYPE
195 CHARACTER*3 PATH
196 INTEGER I, IINFO, IK, IMAT, KLA, KLB, KUA, KUB, LDA,
197 \$ LDB, LWORK, M, MODEA, MODEB, N, NFAIL, NRUN,
198 \$ NT, P
199 DOUBLE PRECISION ANORM, BNORM, CNDNMA, CNDNMB
200* ..
201* .. Local Arrays ..
202 LOGICAL DOTYPE( NTYPES )
203 DOUBLE PRECISION RESULT( NTESTS )
204* ..
205* .. External Subroutines ..
206 EXTERNAL alahdg, alareq, alasum, dlatb9, zlarhs, zlatms,
207 \$ zlsets
208* ..
209* .. Intrinsic Functions ..
210 INTRINSIC abs, max
211* ..
212* .. Executable Statements ..
213*
214* Initialize constants and the random number seed.
215*
216 path( 1: 3 ) = 'LSE'
217 info = 0
218 nrun = 0
219 nfail = 0
220 firstt = .true.
221 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
222 lda = nmax
223 ldb = nmax
224 lwork = nmax*nmax
225*
226* Check for valid input values.
227*
228 DO 10 ik = 1, nn
229 m = mval( ik )
230 p = pval( ik )
231 n = nval( ik )
232 IF( p.GT.n .OR. n.GT.m+p ) THEN
233 IF( firstt ) THEN
234 WRITE( nout, fmt = * )
235 firstt = .false.
236 END IF
237 WRITE( nout, fmt = 9997 )m, p, n
238 END IF
239 10 CONTINUE
240 firstt = .true.
241*
242* Do for each value of M in MVAL.
243*
244 DO 40 ik = 1, nn
245 m = mval( ik )
246 p = pval( ik )
247 n = nval( ik )
248 IF( p.GT.n .OR. n.GT.m+p )
249 \$ GO TO 40
250*
251 DO 30 imat = 1, ntypes
252*
253* Do the tests only if DOTYPE( IMAT ) is true.
254*
255 IF( .NOT.dotype( imat ) )
256 \$ GO TO 30
257*
258* Set up parameters with DLATB9 and generate test
259* matrices A and B with ZLATMS.
260*
261 CALL dlatb9( path, imat, m, p, n, TYPE, KLA, KUA, KLB, KUB,
262 \$ ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB,
263 \$ DISTA, DISTB )
264*
265 CALL zlatms( m, n, dista, iseed, TYPE, RWORK, MODEA, CNDNMA,
266 \$ ANORM, KLA, KUA, 'No packing', A, LDA, WORK,
267 \$ IINFO )
268 IF( iinfo.NE.0 ) THEN
269 WRITE( nout, fmt = 9999 )iinfo
270 info = abs( iinfo )
271 GO TO 30
272 END IF
273*
274 CALL zlatms( p, n, distb, iseed, TYPE, RWORK, MODEB, CNDNMB,
275 \$ BNORM, KLB, KUB, 'No packing', B, LDB, WORK,
276 \$ IINFO )
277 IF( iinfo.NE.0 ) THEN
278 WRITE( nout, fmt = 9999 )iinfo
279 info = abs( iinfo )
280 GO TO 30
281 END IF
282*
283* Generate the right-hand sides C and D for the LSE.
284*
285 CALL zlarhs( 'ZGE', 'New solution', 'Upper', 'N', m, n,
286 \$ max( m-1, 0 ), max( n-1, 0 ), 1, a, lda,
287 \$ x( 4*nmax+1 ), max( n, 1 ), x, max( m, 1 ),
288 \$ iseed, iinfo )
289*
290 CALL zlarhs( 'ZGE', 'Computed', 'Upper', 'N', p, n,
291 \$ max( p-1, 0 ), max( n-1, 0 ), 1, b, ldb,
292 \$ x( 4*nmax+1 ), max( n, 1 ), x( 2*nmax+1 ),
293 \$ max( p, 1 ), iseed, iinfo )
294*
295 nt = 2
296*
297 CALL zlsets( m, p, n, a, af, lda, b, bf, ldb, x,
298 \$ x( nmax+1 ), x( 2*nmax+1 ), x( 3*nmax+1 ),
299 \$ x( 4*nmax+1 ), work, lwork, rwork,
300 \$ result( 1 ) )
301*
302* Print information about the tests that did not
303* pass the threshold.
304*
305 DO 20 i = 1, nt
306 IF( result( i ).GE.thresh ) THEN
307 IF( nfail.EQ.0 .AND. firstt ) THEN
308 firstt = .false.
309 CALL alahdg( nout, path )
310 END IF
311 WRITE( nout, fmt = 9998 )m, p, n, imat, i,
312 \$ result( i )
313 nfail = nfail + 1
314 END IF
315 20 CONTINUE
316 nrun = nrun + nt
317*
318 30 CONTINUE
319 40 CONTINUE
320*
321* Print a summary of the results.
322*
323 CALL alasum( path, nout, nfail, nrun, 0 )
324*
325 9999 FORMAT( ' ZLATMS in ZCKLSE INFO = ', i5 )
326 9998 FORMAT( ' M=', i4, ' P=', i4, ', N=', i4, ', type ', i2,
327 \$ ', test ', i2, ', ratio=', g13.6 )
328 9997 FORMAT( ' *** Invalid input for LSE: M = ', i6, ', P = ', i6,
329 \$ ', N = ', i6, ';', / ' must satisfy P <= N <= P+M ',
330 \$ '(this set of values will be skipped)' )
331 RETURN
332*
333* End of ZCKLSE
334*
subroutine alareq(PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT)
ALAREQ
Definition: alareq.f:90
subroutine alahdg(IOUNIT, PATH)
ALAHDG
Definition: alahdg.f:62
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine zlsets(M, P, N, A, AF, LDA, B, BF, LDB, C, CF, D, DF, X, WORK, LWORK, RWORK, RESULT)
ZLSETS
Definition: zlsets.f:151
subroutine zlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
ZLARHS
Definition: zlarhs.f:208
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
Definition: zlatms.f:332
subroutine dlatb9(PATH, IMAT, M, P, N, TYPE, KLA, KUA, KLB, KUB, ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB, DISTA, DISTB)
DLATB9
Definition: dlatb9.f:170
Here is the call graph for this function:
Here is the caller graph for this function: