LAPACK  3.10.1
LAPACK: Linear Algebra PACKage
lapacke_zgbbrd_work.c
Go to the documentation of this file.
1 /*****************************************************************************
2  Copyright (c) 2014, Intel Corp.
3  All rights reserved.
4 
5  Redistribution and use in source and binary forms, with or without
6  modification, are permitted provided that the following conditions are met:
7 
8  * Redistributions of source code must retain the above copyright notice,
9  this list of conditions and the following disclaimer.
10  * Redistributions in binary form must reproduce the above copyright
11  notice, this list of conditions and the following disclaimer in the
12  documentation and/or other materials provided with the distribution.
13  * Neither the name of Intel Corporation nor the names of its contributors
14  may be used to endorse or promote products derived from this software
15  without specific prior written permission.
16 
17  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  THE POSSIBILITY OF SUCH DAMAGE.
28 *****************************************************************************
29 * Contents: Native middle-level C interface to LAPACK function zgbbrd
30 * Author: Intel Corporation
31 *****************************************************************************/
32 
33 #include "lapacke_utils.h"
34 
35 lapack_int LAPACKE_zgbbrd_work( int matrix_layout, char vect, lapack_int m,
36  lapack_int n, lapack_int ncc, lapack_int kl,
38  lapack_int ldab, double* d, double* e,
42  lapack_complex_double* work, double* rwork )
43 {
44  lapack_int info = 0;
45  if( matrix_layout == LAPACK_COL_MAJOR ) {
46  /* Call LAPACK function and adjust info */
47  LAPACK_zgbbrd( &vect, &m, &n, &ncc, &kl, &ku, ab, &ldab, d, e, q, &ldq,
48  pt, &ldpt, c, &ldc, work, rwork, &info );
49  if( info < 0 ) {
50  info = info - 1;
51  }
52  } else if( matrix_layout == LAPACK_ROW_MAJOR ) {
53  lapack_int ldab_t = MAX(1,kl+ku+1);
54  lapack_int ldc_t = MAX(1,m);
55  lapack_int ldpt_t = MAX(1,n);
56  lapack_int ldq_t = MAX(1,m);
57  lapack_complex_double* ab_t = NULL;
58  lapack_complex_double* q_t = NULL;
59  lapack_complex_double* pt_t = NULL;
60  lapack_complex_double* c_t = NULL;
61  /* Check leading dimension(s) */
62  if( ldab < n ) {
63  info = -9;
64  LAPACKE_xerbla( "LAPACKE_zgbbrd_work", info );
65  return info;
66  }
67  if( ldc < ncc ) {
68  info = -17;
69  LAPACKE_xerbla( "LAPACKE_zgbbrd_work", info );
70  return info;
71  }
72  if( ldpt < n ) {
73  info = -15;
74  LAPACKE_xerbla( "LAPACKE_zgbbrd_work", info );
75  return info;
76  }
77  if( ldq < m ) {
78  info = -13;
79  LAPACKE_xerbla( "LAPACKE_zgbbrd_work", info );
80  return info;
81  }
82  /* Allocate memory for temporary array(s) */
83  ab_t = (lapack_complex_double*)
84  LAPACKE_malloc( sizeof(lapack_complex_double) * ldab_t * MAX(1,n) );
85  if( ab_t == NULL ) {
87  goto exit_level_0;
88  }
89  if( LAPACKE_lsame( vect, 'b' ) || LAPACKE_lsame( vect, 'q' ) ) {
90  q_t = (lapack_complex_double*)
92  ldq_t * MAX(1,m) );
93  if( q_t == NULL ) {
95  goto exit_level_1;
96  }
97  }
98  if( LAPACKE_lsame( vect, 'b' ) || LAPACKE_lsame( vect, 'p' ) ) {
99  pt_t = (lapack_complex_double*)
101  ldpt_t * MAX(1,n) );
102  if( pt_t == NULL ) {
104  goto exit_level_2;
105  }
106  }
107  if( ncc != 0 ) {
108  c_t = (lapack_complex_double*)
110  ldc_t * MAX(1,ncc) );
111  if( c_t == NULL ) {
113  goto exit_level_3;
114  }
115  }
116  /* Transpose input matrices */
117  LAPACKE_zgb_trans( matrix_layout, m, n, kl, ku, ab, ldab, ab_t, ldab_t );
118  if( ncc != 0 ) {
119  LAPACKE_zge_trans( matrix_layout, m, ncc, c, ldc, c_t, ldc_t );
120  }
121  /* Call LAPACK function and adjust info */
122  LAPACK_zgbbrd( &vect, &m, &n, &ncc, &kl, &ku, ab_t, &ldab_t, d, e, q_t,
123  &ldq_t, pt_t, &ldpt_t, c_t, &ldc_t, work, rwork, &info );
124  if( info < 0 ) {
125  info = info - 1;
126  }
127  /* Transpose output matrices */
128  LAPACKE_zgb_trans( LAPACK_COL_MAJOR, m, n, kl, ku, ab_t, ldab_t, ab,
129  ldab );
130  if( LAPACKE_lsame( vect, 'b' ) || LAPACKE_lsame( vect, 'q' ) ) {
131  LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, m, q_t, ldq_t, q, ldq );
132  }
133  if( LAPACKE_lsame( vect, 'b' ) || LAPACKE_lsame( vect, 'p' ) ) {
134  LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, n, pt_t, ldpt_t, pt, ldpt );
135  }
136  if( ncc != 0 ) {
137  LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, ncc, c_t, ldc_t, c, ldc );
138  }
139  /* Release memory and exit */
140  if( ncc != 0 ) {
141  LAPACKE_free( c_t );
142  }
143 exit_level_3:
144  if( LAPACKE_lsame( vect, 'b' ) || LAPACKE_lsame( vect, 'p' ) ) {
145  LAPACKE_free( pt_t );
146  }
147 exit_level_2:
148  if( LAPACKE_lsame( vect, 'b' ) || LAPACKE_lsame( vect, 'q' ) ) {
149  LAPACKE_free( q_t );
150  }
151 exit_level_1:
152  LAPACKE_free( ab_t );
153 exit_level_0:
154  if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
155  LAPACKE_xerbla( "LAPACKE_zgbbrd_work", info );
156  }
157  } else {
158  info = -1;
159  LAPACKE_xerbla( "LAPACKE_zgbbrd_work", info );
160  }
161  return info;
162 }
#define LAPACK_zgbbrd(...)
Definition: lapack.h:547
#define lapack_int
Definition: lapack.h:83
#define lapack_complex_double
Definition: lapack.h:63
#define LAPACK_COL_MAJOR
Definition: lapacke.h:53
#define LAPACKE_free(p)
Definition: lapacke.h:46
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:52
#define LAPACKE_malloc(size)
Definition: lapacke.h:43
#define LAPACK_TRANSPOSE_MEMORY_ERROR
Definition: lapacke.h:56
lapack_logical LAPACKE_lsame(char ca, char cb)
Definition: lapacke_lsame.c:35
void LAPACKE_xerbla(const char *name, lapack_int info)
void LAPACKE_zge_trans(int matrix_layout, lapack_int m, lapack_int n, const lapack_complex_double *in, lapack_int ldin, lapack_complex_double *out, lapack_int ldout)
void LAPACKE_zgb_trans(int matrix_layout, lapack_int m, lapack_int n, lapack_int kl, lapack_int ku, const lapack_complex_double *in, lapack_int ldin, lapack_complex_double *out, lapack_int ldout)
#define MAX(x, y)
Definition: lapacke_utils.h:46
lapack_int LAPACKE_zgbbrd_work(int matrix_layout, char vect, lapack_int m, lapack_int n, lapack_int ncc, lapack_int kl, lapack_int ku, lapack_complex_double *ab, lapack_int ldab, double *d, double *e, lapack_complex_double *q, lapack_int ldq, lapack_complex_double *pt, lapack_int ldpt, lapack_complex_double *c, lapack_int ldc, lapack_complex_double *work, double *rwork)