LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sgtt01()

subroutine sgtt01 ( integer n,
real, dimension( * ) dl,
real, dimension( * ) d,
real, dimension( * ) du,
real, dimension( * ) dlf,
real, dimension( * ) df,
real, dimension( * ) duf,
real, dimension( * ) du2,
integer, dimension( * ) ipiv,
real, dimension( ldwork, * ) work,
integer ldwork,
real, dimension( * ) rwork,
real resid )

SGTT01

Purpose:
!>
!> SGTT01 reconstructs a tridiagonal matrix A from its LU factorization
!> and computes the residual
!>    norm(L*U - A) / ( norm(A) * EPS ),
!> where EPS is the machine epsilon.
!> 
Parameters
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]DL
!>          DL is REAL array, dimension (N-1)
!>          The (n-1) sub-diagonal elements of A.
!> 
[in]D
!>          D is REAL array, dimension (N)
!>          The diagonal elements of A.
!> 
[in]DU
!>          DU is REAL array, dimension (N-1)
!>          The (n-1) super-diagonal elements of A.
!> 
[in]DLF
!>          DLF is REAL array, dimension (N-1)
!>          The (n-1) multipliers that define the matrix L from the
!>          LU factorization of A.
!> 
[in]DF
!>          DF is REAL array, dimension (N)
!>          The n diagonal elements of the upper triangular matrix U from
!>          the LU factorization of A.
!> 
[in]DUF
!>          DUF is REAL array, dimension (N-1)
!>          The (n-1) elements of the first super-diagonal of U.
!> 
[in]DU2
!>          DU2 is REAL array, dimension (N-2)
!>          The (n-2) elements of the second super-diagonal of U.
!> 
[in]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          The pivot indices; for 1 <= i <= n, row i of the matrix was
!>          interchanged with row IPIV(i).  IPIV(i) will always be either
!>          i or i+1; IPIV(i) = i indicates a row interchange was not
!>          required.
!> 
[out]WORK
!>          WORK is REAL array, dimension (LDWORK,N)
!> 
[in]LDWORK
!>          LDWORK is INTEGER
!>          The leading dimension of the array WORK.  LDWORK >= max(1,N).
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (N)
!> 
[out]RESID
!>          RESID is REAL
!>          The scaled residual:  norm(L*U - A) / (norm(A) * EPS)
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 132 of file sgtt01.f.

134*
135* -- LAPACK test routine --
136* -- LAPACK is a software package provided by Univ. of Tennessee, --
137* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
138*
139* .. Scalar Arguments ..
140 INTEGER LDWORK, N
141 REAL RESID
142* ..
143* .. Array Arguments ..
144 INTEGER IPIV( * )
145 REAL D( * ), DF( * ), DL( * ), DLF( * ), DU( * ),
146 $ DU2( * ), DUF( * ), RWORK( * ),
147 $ WORK( LDWORK, * )
148* ..
149*
150* =====================================================================
151*
152* .. Parameters ..
153 REAL ONE, ZERO
154 parameter( one = 1.0e+0, zero = 0.0e+0 )
155* ..
156* .. Local Scalars ..
157 INTEGER I, IP, J, LASTJ
158 REAL ANORM, EPS, LI
159* ..
160* .. External Functions ..
161 REAL SLAMCH, SLANGT, SLANHS
162 EXTERNAL slamch, slangt, slanhs
163* ..
164* .. Intrinsic Functions ..
165 INTRINSIC min
166* ..
167* .. External Subroutines ..
168 EXTERNAL saxpy, sswap
169* ..
170* .. Executable Statements ..
171*
172* Quick return if possible
173*
174 IF( n.LE.0 ) THEN
175 resid = zero
176 RETURN
177 END IF
178*
179 eps = slamch( 'Epsilon' )
180*
181* Copy the matrix U to WORK.
182*
183 DO 20 j = 1, n
184 DO 10 i = 1, n
185 work( i, j ) = zero
186 10 CONTINUE
187 20 CONTINUE
188 DO 30 i = 1, n
189 IF( i.EQ.1 ) THEN
190 work( i, i ) = df( i )
191 IF( n.GE.2 )
192 $ work( i, i+1 ) = duf( i )
193 IF( n.GE.3 )
194 $ work( i, i+2 ) = du2( i )
195 ELSE IF( i.EQ.n ) THEN
196 work( i, i ) = df( i )
197 ELSE
198 work( i, i ) = df( i )
199 work( i, i+1 ) = duf( i )
200 IF( i.LT.n-1 )
201 $ work( i, i+2 ) = du2( i )
202 END IF
203 30 CONTINUE
204*
205* Multiply on the left by L.
206*
207 lastj = n
208 DO 40 i = n - 1, 1, -1
209 li = dlf( i )
210 CALL saxpy( lastj-i+1, li, work( i, i ), ldwork,
211 $ work( i+1, i ), ldwork )
212 ip = ipiv( i )
213 IF( ip.EQ.i ) THEN
214 lastj = min( i+2, n )
215 ELSE
216 CALL sswap( lastj-i+1, work( i, i ), ldwork, work( i+1, i ),
217 $ ldwork )
218 END IF
219 40 CONTINUE
220*
221* Subtract the matrix A.
222*
223 work( 1, 1 ) = work( 1, 1 ) - d( 1 )
224 IF( n.GT.1 ) THEN
225 work( 1, 2 ) = work( 1, 2 ) - du( 1 )
226 work( n, n-1 ) = work( n, n-1 ) - dl( n-1 )
227 work( n, n ) = work( n, n ) - d( n )
228 DO 50 i = 2, n - 1
229 work( i, i-1 ) = work( i, i-1 ) - dl( i-1 )
230 work( i, i ) = work( i, i ) - d( i )
231 work( i, i+1 ) = work( i, i+1 ) - du( i )
232 50 CONTINUE
233 END IF
234*
235* Compute the 1-norm of the tridiagonal matrix A.
236*
237 anorm = slangt( '1', n, dl, d, du )
238*
239* Compute the 1-norm of WORK, which is only guaranteed to be
240* upper Hessenberg.
241*
242 resid = slanhs( '1', n, work, ldwork, rwork )
243*
244* Compute norm(L*U - A) / (norm(A) * EPS)
245*
246 IF( anorm.LE.zero ) THEN
247 IF( resid.NE.zero )
248 $ resid = one / eps
249 ELSE
250 resid = ( resid / anorm ) / eps
251 END IF
252*
253 RETURN
254*
255* End of SGTT01
256*
subroutine saxpy(n, sa, sx, incx, sy, incy)
SAXPY
Definition saxpy.f:89
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function slangt(norm, n, dl, d, du)
SLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition slangt.f:104
real function slanhs(norm, n, a, lda, work)
SLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition slanhs.f:106
subroutine sswap(n, sx, incx, sy, incy)
SSWAP
Definition sswap.f:82
Here is the call graph for this function:
Here is the caller graph for this function: