LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cla_gbrcond_x.f
Go to the documentation of this file.
1*> \brief \b CLA_GBRCOND_X computes the infinity norm condition number of op(A)*diag(x) for general banded matrices.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLA_GBRCOND_X + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_gbrcond_x.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_gbrcond_x.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_gbrcond_x.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* REAL FUNCTION CLA_GBRCOND_X( TRANS, N, KL, KU, AB, LDAB, AFB,
22* LDAFB, IPIV, X, INFO, WORK, RWORK )
23*
24* .. Scalar Arguments ..
25* CHARACTER TRANS
26* INTEGER N, KL, KU, KD, KE, LDAB, LDAFB, INFO
27* ..
28* .. Array Arguments ..
29* INTEGER IPIV( * )
30* COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), WORK( * ),
31* $ X( * )
32* REAL RWORK( * )
33* ..
34*
35*
36*> \par Purpose:
37* =============
38*>
39*> \verbatim
40*>
41*> CLA_GBRCOND_X Computes the infinity norm condition number of
42*> op(A) * diag(X) where X is a COMPLEX vector.
43*> \endverbatim
44*
45* Arguments:
46* ==========
47*
48*> \param[in] TRANS
49*> \verbatim
50*> TRANS is CHARACTER*1
51*> Specifies the form of the system of equations:
52*> = 'N': A * X = B (No transpose)
53*> = 'T': A**T * X = B (Transpose)
54*> = 'C': A**H * X = B (Conjugate Transpose = Transpose)
55*> \endverbatim
56*>
57*> \param[in] N
58*> \verbatim
59*> N is INTEGER
60*> The number of linear equations, i.e., the order of the
61*> matrix A. N >= 0.
62*> \endverbatim
63*>
64*> \param[in] KL
65*> \verbatim
66*> KL is INTEGER
67*> The number of subdiagonals within the band of A. KL >= 0.
68*> \endverbatim
69*>
70*> \param[in] KU
71*> \verbatim
72*> KU is INTEGER
73*> The number of superdiagonals within the band of A. KU >= 0.
74*> \endverbatim
75*>
76*> \param[in] AB
77*> \verbatim
78*> AB is COMPLEX array, dimension (LDAB,N)
79*> On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
80*> The j-th column of A is stored in the j-th column of the
81*> array AB as follows:
82*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
83*> \endverbatim
84*>
85*> \param[in] LDAB
86*> \verbatim
87*> LDAB is INTEGER
88*> The leading dimension of the array AB. LDAB >= KL+KU+1.
89*> \endverbatim
90*>
91*> \param[in] AFB
92*> \verbatim
93*> AFB is COMPLEX array, dimension (LDAFB,N)
94*> Details of the LU factorization of the band matrix A, as
95*> computed by CGBTRF. U is stored as an upper triangular
96*> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
97*> and the multipliers used during the factorization are stored
98*> in rows KL+KU+2 to 2*KL+KU+1.
99*> \endverbatim
100*>
101*> \param[in] LDAFB
102*> \verbatim
103*> LDAFB is INTEGER
104*> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
105*> \endverbatim
106*>
107*> \param[in] IPIV
108*> \verbatim
109*> IPIV is INTEGER array, dimension (N)
110*> The pivot indices from the factorization A = P*L*U
111*> as computed by CGBTRF; row i of the matrix was interchanged
112*> with row IPIV(i).
113*> \endverbatim
114*>
115*> \param[in] X
116*> \verbatim
117*> X is COMPLEX array, dimension (N)
118*> The vector X in the formula op(A) * diag(X).
119*> \endverbatim
120*>
121*> \param[out] INFO
122*> \verbatim
123*> INFO is INTEGER
124*> = 0: Successful exit.
125*> i > 0: The ith argument is invalid.
126*> \endverbatim
127*>
128*> \param[out] WORK
129*> \verbatim
130*> WORK is COMPLEX array, dimension (2*N).
131*> Workspace.
132*> \endverbatim
133*>
134*> \param[out] RWORK
135*> \verbatim
136*> RWORK is REAL array, dimension (N).
137*> Workspace.
138*> \endverbatim
139*
140* Authors:
141* ========
142*
143*> \author Univ. of Tennessee
144*> \author Univ. of California Berkeley
145*> \author Univ. of Colorado Denver
146*> \author NAG Ltd.
147*
148*> \ingroup la_gbrcond
149*
150* =====================================================================
151 REAL function cla_gbrcond_x( trans, n, kl, ku, ab, ldab, afb,
152 $ ldafb, ipiv, x, info, work, rwork )
153*
154* -- LAPACK computational routine --
155* -- LAPACK is a software package provided by Univ. of Tennessee, --
156* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
157*
158* .. Scalar Arguments ..
159 CHARACTER trans
160 INTEGER n, kl, ku, kd, ke, ldab, ldafb, info
161* ..
162* .. Array Arguments ..
163 INTEGER ipiv( * )
164 COMPLEX ab( ldab, * ), afb( ldafb, * ), work( * ),
165 $ x( * )
166 REAL rwork( * )
167* ..
168*
169* =====================================================================
170*
171* .. Local Scalars ..
172 LOGICAL notrans
173 INTEGER kase, i, j
174 REAL ainvnm, anorm, tmp
175 COMPLEX zdum
176* ..
177* .. Local Arrays ..
178 INTEGER isave( 3 )
179* ..
180* .. External Functions ..
181 LOGICAL lsame
182 EXTERNAL lsame
183* ..
184* .. External Subroutines ..
185 EXTERNAL clacn2, cgbtrs, xerbla
186* ..
187* .. Intrinsic Functions ..
188 INTRINSIC abs, max
189* ..
190* .. Statement Functions ..
191 REAL cabs1
192* ..
193* .. Statement Function Definitions ..
194 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
195* ..
196* .. Executable Statements ..
197*
198 cla_gbrcond_x = 0.0e+0
199*
200 info = 0
201 notrans = lsame( trans, 'N' )
202 IF ( .NOT. notrans .AND. .NOT. lsame(trans, 'T') .AND. .NOT.
203 $ lsame( trans, 'C' ) ) THEN
204 info = -1
205 ELSE IF( n.LT.0 ) THEN
206 info = -2
207 ELSE IF( kl.LT.0 .OR. kl.GT.n-1 ) THEN
208 info = -3
209 ELSE IF( ku.LT.0 .OR. ku.GT.n-1 ) THEN
210 info = -4
211 ELSE IF( ldab.LT.kl+ku+1 ) THEN
212 info = -6
213 ELSE IF( ldafb.LT.2*kl+ku+1 ) THEN
214 info = -8
215 END IF
216 IF( info.NE.0 ) THEN
217 CALL xerbla( 'CLA_GBRCOND_X', -info )
218 RETURN
219 END IF
220*
221* Compute norm of op(A)*op2(C).
222*
223 kd = ku + 1
224 ke = kl + 1
225 anorm = 0.0
226 IF ( notrans ) THEN
227 DO i = 1, n
228 tmp = 0.0e+0
229 DO j = max( i-kl, 1 ), min( i+ku, n )
230 tmp = tmp + cabs1( ab( kd+i-j, j) * x( j ) )
231 END DO
232 rwork( i ) = tmp
233 anorm = max( anorm, tmp )
234 END DO
235 ELSE
236 DO i = 1, n
237 tmp = 0.0e+0
238 DO j = max( i-kl, 1 ), min( i+ku, n )
239 tmp = tmp + cabs1( ab( ke-i+j, i ) * x( j ) )
240 END DO
241 rwork( i ) = tmp
242 anorm = max( anorm, tmp )
243 END DO
244 END IF
245*
246* Quick return if possible.
247*
248 IF( n.EQ.0 ) THEN
249 cla_gbrcond_x = 1.0e+0
250 RETURN
251 ELSE IF( anorm .EQ. 0.0e+0 ) THEN
252 RETURN
253 END IF
254*
255* Estimate the norm of inv(op(A)).
256*
257 ainvnm = 0.0e+0
258*
259 kase = 0
260 10 CONTINUE
261 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
262 IF( kase.NE.0 ) THEN
263 IF( kase.EQ.2 ) THEN
264*
265* Multiply by R.
266*
267 DO i = 1, n
268 work( i ) = work( i ) * rwork( i )
269 END DO
270*
271 IF ( notrans ) THEN
272 CALL cgbtrs( 'No transpose', n, kl, ku, 1, afb, ldafb,
273 $ ipiv, work, n, info )
274 ELSE
275 CALL cgbtrs( 'Conjugate transpose', n, kl, ku, 1, afb,
276 $ ldafb, ipiv, work, n, info )
277 ENDIF
278*
279* Multiply by inv(X).
280*
281 DO i = 1, n
282 work( i ) = work( i ) / x( i )
283 END DO
284 ELSE
285*
286* Multiply by inv(X**H).
287*
288 DO i = 1, n
289 work( i ) = work( i ) / x( i )
290 END DO
291*
292 IF ( notrans ) THEN
293 CALL cgbtrs( 'Conjugate transpose', n, kl, ku, 1, afb,
294 $ ldafb, ipiv, work, n, info )
295 ELSE
296 CALL cgbtrs( 'No transpose', n, kl, ku, 1, afb, ldafb,
297 $ ipiv, work, n, info )
298 END IF
299*
300* Multiply by R.
301*
302 DO i = 1, n
303 work( i ) = work( i ) * rwork( i )
304 END DO
305 END IF
306 GO TO 10
307 END IF
308*
309* Compute the estimate of the reciprocal condition number.
310*
311 IF( ainvnm .NE. 0.0e+0 )
312 $ cla_gbrcond_x = 1.0e+0 / ainvnm
313*
314 RETURN
315*
316* End of CLA_GBRCOND_X
317*
318 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
CGBTRS
Definition cgbtrs.f:138
real function cla_gbrcond_x(trans, n, kl, ku, ab, ldab, afb, ldafb, ipiv, x, info, work, rwork)
CLA_GBRCOND_X computes the infinity norm condition number of op(A)*diag(x) for general banded matrice...
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition clacn2.f:133
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48