152 $ ldafb, ipiv, x, info, work, rwork )
160 INTEGER n, kl, ku, kd, ke, ldab, ldafb, info
164 COMPLEX ab( ldab, * ), afb( ldafb, * ), work( * ),
174 REAL ainvnm, anorm, tmp
194 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
201 notrans =
lsame( trans,
'N' )
202 IF ( .NOT. notrans .AND. .NOT.
lsame(trans,
'T') .AND. .NOT.
203 $
lsame( trans,
'C' ) )
THEN
205 ELSE IF( n.LT.0 )
THEN
207 ELSE IF( kl.LT.0 .OR. kl.GT.n-1 )
THEN
209 ELSE IF( ku.LT.0 .OR. ku.GT.n-1 )
THEN
211 ELSE IF( ldab.LT.kl+ku+1 )
THEN
213 ELSE IF( ldafb.LT.2*kl+ku+1 )
THEN
217 CALL xerbla(
'CLA_GBRCOND_X', -info )
229 DO j = max( i-kl, 1 ), min( i+ku, n )
230 tmp = tmp + cabs1( ab( kd+i-j, j) * x( j ) )
233 anorm = max( anorm, tmp )
238 DO j = max( i-kl, 1 ), min( i+ku, n )
239 tmp = tmp + cabs1( ab( ke-i+j, i ) * x( j ) )
242 anorm = max( anorm, tmp )
251 ELSE IF( anorm .EQ. 0.0e+0 )
THEN
261 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
268 work( i ) = work( i ) * rwork( i )
272 CALL cgbtrs(
'No transpose', n, kl, ku, 1, afb, ldafb,
273 $ ipiv, work, n, info )
275 CALL cgbtrs(
'Conjugate transpose', n, kl, ku, 1, afb,
276 $ ldafb, ipiv, work, n, info )
282 work( i ) = work( i ) / x( i )
289 work( i ) = work( i ) / x( i )
293 CALL cgbtrs(
'Conjugate transpose', n, kl, ku, 1, afb,
294 $ ldafb, ipiv, work, n, info )
296 CALL cgbtrs(
'No transpose', n, kl, ku, 1, afb, ldafb,
297 $ ipiv, work, n, info )
303 work( i ) = work( i ) * rwork( i )
311 IF( ainvnm .NE. 0.0e+0 )
subroutine xerbla(srname, info)
subroutine cgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
CGBTRS
real function cla_gbrcond_x(trans, n, kl, ku, ab, ldab, afb, ldafb, ipiv, x, info, work, rwork)
CLA_GBRCOND_X computes the infinity norm condition number of op(A)*diag(x) for general banded matrice...
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
logical function lsame(ca, cb)
LSAME