LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ztrt01()

subroutine ztrt01 ( character  uplo,
character  diag,
integer  n,
complex*16, dimension( lda, * )  a,
integer  lda,
complex*16, dimension( ldainv, * )  ainv,
integer  ldainv,
double precision  rcond,
double precision, dimension( * )  rwork,
double precision  resid 
)

ZTRT01

Purpose:
 ZTRT01 computes the residual for a triangular matrix A times its
 inverse:
    RESID = norm( A*AINV - I ) / ( N * norm(A) * norm(AINV) * EPS ),
 where EPS is the machine epsilon.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the matrix A is upper or lower triangular.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]DIAG
          DIAG is CHARACTER*1
          Specifies whether or not the matrix A is unit triangular.
          = 'N':  Non-unit triangular
          = 'U':  Unit triangular
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The triangular matrix A.  If UPLO = 'U', the leading n by n
          upper triangular part of the array A contains the upper
          triangular matrix, and the strictly lower triangular part of
          A is not referenced.  If UPLO = 'L', the leading n by n lower
          triangular part of the array A contains the lower triangular
          matrix, and the strictly upper triangular part of A is not
          referenced.  If DIAG = 'U', the diagonal elements of A are
          also not referenced and are assumed to be 1.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]AINV
          AINV is COMPLEX*16 array, dimension (LDAINV,N)
          On entry, the (triangular) inverse of the matrix A, in the
          same storage format as A.
          On exit, the contents of AINV are destroyed.
[in]LDAINV
          LDAINV is INTEGER
          The leading dimension of the array AINV.  LDAINV >= max(1,N).
[out]RCOND
          RCOND is DOUBLE PRECISION
          The reciprocal condition number of A, computed as
          1/(norm(A) * norm(AINV)).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESID
          RESID is DOUBLE PRECISION
          norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 123 of file ztrt01.f.

125*
126* -- LAPACK test routine --
127* -- LAPACK is a software package provided by Univ. of Tennessee, --
128* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
129*
130* .. Scalar Arguments ..
131 CHARACTER DIAG, UPLO
132 INTEGER LDA, LDAINV, N
133 DOUBLE PRECISION RCOND, RESID
134* ..
135* .. Array Arguments ..
136 DOUBLE PRECISION RWORK( * )
137 COMPLEX*16 A( LDA, * ), AINV( LDAINV, * )
138* ..
139*
140* =====================================================================
141*
142* .. Parameters ..
143 DOUBLE PRECISION ZERO, ONE
144 parameter( zero = 0.0d+0, one = 1.0d+0 )
145* ..
146* .. Local Scalars ..
147 INTEGER J
148 DOUBLE PRECISION AINVNM, ANORM, EPS
149* ..
150* .. External Functions ..
151 LOGICAL LSAME
152 DOUBLE PRECISION DLAMCH, ZLANTR
153 EXTERNAL lsame, dlamch, zlantr
154* ..
155* .. External Subroutines ..
156 EXTERNAL ztrmv
157* ..
158* .. Intrinsic Functions ..
159 INTRINSIC dble
160* ..
161* .. Executable Statements ..
162*
163* Quick exit if N = 0
164*
165 IF( n.LE.0 ) THEN
166 rcond = one
167 resid = zero
168 RETURN
169 END IF
170*
171* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
172*
173 eps = dlamch( 'Epsilon' )
174 anorm = zlantr( '1', uplo, diag, n, n, a, lda, rwork )
175 ainvnm = zlantr( '1', uplo, diag, n, n, ainv, ldainv, rwork )
176 IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
177 rcond = zero
178 resid = one / eps
179 RETURN
180 END IF
181 rcond = ( one / anorm ) / ainvnm
182*
183* Set the diagonal of AINV to 1 if AINV has unit diagonal.
184*
185 IF( lsame( diag, 'U' ) ) THEN
186 DO 10 j = 1, n
187 ainv( j, j ) = one
188 10 CONTINUE
189 END IF
190*
191* Compute A * AINV, overwriting AINV.
192*
193 IF( lsame( uplo, 'U' ) ) THEN
194 DO 20 j = 1, n
195 CALL ztrmv( 'Upper', 'No transpose', diag, j, a, lda,
196 $ ainv( 1, j ), 1 )
197 20 CONTINUE
198 ELSE
199 DO 30 j = 1, n
200 CALL ztrmv( 'Lower', 'No transpose', diag, n-j+1, a( j, j ),
201 $ lda, ainv( j, j ), 1 )
202 30 CONTINUE
203 END IF
204*
205* Subtract 1 from each diagonal element to form A*AINV - I.
206*
207 DO 40 j = 1, n
208 ainv( j, j ) = ainv( j, j ) - one
209 40 CONTINUE
210*
211* Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS)
212*
213 resid = zlantr( '1', uplo, 'Non-unit', n, n, ainv, ldainv, rwork )
214*
215 resid = ( ( resid*rcond ) / dble( n ) ) / eps
216*
217 RETURN
218*
219* End of ZTRT01
220*
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function zlantr(norm, uplo, diag, m, n, a, lda, work)
ZLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition zlantr.f:142
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine ztrmv(uplo, trans, diag, n, a, lda, x, incx)
ZTRMV
Definition ztrmv.f:147
Here is the call graph for this function:
Here is the caller graph for this function: