172 SUBROUTINE clatm6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA,
173 $ BETA, WX, WY, S, DIF )
180 INTEGER LDA, LDX, LDY, N, TYPE
181 COMPLEX ALPHA, BETA, WX, WY
184 REAL DIF( * ), S( * )
185 COMPLEX A( LDA, * ), B( LDA, * ), X( LDX, * ),
192 REAL RONE, TWO, THREE
193 parameter( rone = 1.0e+0, two = 2.0e+0, three = 3.0e+0 )
195 parameter( zero = ( 0.0e+0, 0.0e+0 ),
196 $ one = ( 1.0e+0, 0.0e+0 ) )
203 COMPLEX WORK( 26 ), Z( 8, 8 )
206 INTRINSIC cabs, cmplx, conjg, real, sqrt
220 a( i, i ) = cmplx( i ) + alpha
230 a( 1, 1 ) = cmplx( rone, rone )
231 a( 2, 2 ) = conjg( a( 1, 1 ) )
233 a( 4, 4 ) = cmplx( real( one+alpha ), real( one+beta ) )
234 a( 5, 5 ) = conjg( a( 4, 4 ) )
239 CALL clacpy(
'F', n, n, b, lda, y, ldy )
240 y( 3, 1 ) = -conjg( wy )
241 y( 4, 1 ) = conjg( wy )
242 y( 5, 1 ) = -conjg( wy )
243 y( 3, 2 ) = -conjg( wy )
244 y( 4, 2 ) = conjg( wy )
245 y( 5, 2 ) = -conjg( wy )
247 CALL clacpy(
'F', n, n, b, lda, x, ldx )
263 a( 1, 3 ) = wx*a( 1, 1 ) + wy*a( 3, 3 )
264 a( 2, 3 ) = -wx*a( 2, 2 ) + wy*a( 3, 3 )
265 a( 1, 4 ) = wx*a( 1, 1 ) - wy*a( 4, 4 )
266 a( 2, 4 ) = wx*a( 2, 2 ) - wy*a( 4, 4 )
267 a( 1, 5 ) = -wx*a( 1, 1 ) + wy*a( 5, 5 )
268 a( 2, 5 ) = wx*a( 2, 2 ) + wy*a( 5, 5 )
272 s( 1 ) = rone / sqrt( ( rone+three*cabs( wy )*cabs( wy ) ) /
273 $ ( rone+cabs( a( 1, 1 ) )*cabs( a( 1, 1 ) ) ) )
274 s( 2 ) = rone / sqrt( ( rone+three*cabs( wy )*cabs( wy ) ) /
275 $ ( rone+cabs( a( 2, 2 ) )*cabs( a( 2, 2 ) ) ) )
276 s( 3 ) = rone / sqrt( ( rone+two*cabs( wx )*cabs( wx ) ) /
277 $ ( rone+cabs( a( 3, 3 ) )*cabs( a( 3, 3 ) ) ) )
278 s( 4 ) = rone / sqrt( ( rone+two*cabs( wx )*cabs( wx ) ) /
279 $ ( rone+cabs( a( 4, 4 ) )*cabs( a( 4, 4 ) ) ) )
280 s( 5 ) = rone / sqrt( ( rone+two*cabs( wx )*cabs( wx ) ) /
281 $ ( rone+cabs( a( 5, 5 ) )*cabs( a( 5, 5 ) ) ) )
283 CALL clakf2( 1, 4, a, lda, a( 2, 2 ), b, b( 2, 2 ), z, 8 )
284 CALL cgesvd(
'N',
'N', 8, 8, z, 8, rwork, work, 1, work( 2 ), 1,
285 $ work( 3 ), 24, rwork( 9 ), info )
286 dif( 1 ) = rwork( 8 )
288 CALL clakf2( 4, 1, a, lda, a( 5, 5 ), b, b( 5, 5 ), z, 8 )
289 CALL cgesvd(
'N',
'N', 8, 8, z, 8, rwork, work, 1, work( 2 ), 1,
290 $ work( 3 ), 24, rwork( 9 ), info )
291 dif( 5 ) = rwork( 8 )
subroutine cgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, info)
CGESVD computes the singular value decomposition (SVD) for GE matrices