LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine sgtt02 | ( | character | trans, |
integer | n, | ||
integer | nrhs, | ||
real, dimension( * ) | dl, | ||
real, dimension( * ) | d, | ||
real, dimension( * ) | du, | ||
real, dimension( ldx, * ) | x, | ||
integer | ldx, | ||
real, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
real | resid ) |
SGTT02
!> !> SGTT02 computes the residual for the solution to a tridiagonal !> system of equations: !> RESID = norm(B - op(A)*X) / (norm(op(A)) * norm(X) * EPS), !> where EPS is the machine epsilon. !> The norm used is the 1-norm. !>
[in] | TRANS | !> TRANS is CHARACTER !> Specifies the form of the residual. !> = 'N': B - A * X (No transpose) !> = 'T': B - A**T * X (Transpose) !> = 'C': B - A**H * X (Conjugate transpose = Transpose) !> |
[in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
[in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !> |
[in] | DL | !> DL is REAL array, dimension (N-1) !> The (n-1) sub-diagonal elements of A. !> |
[in] | D | !> D is REAL array, dimension (N) !> The diagonal elements of A. !> |
[in] | DU | !> DU is REAL array, dimension (N-1) !> The (n-1) super-diagonal elements of A. !> |
[in] | X | !> X is REAL array, dimension (LDX,NRHS) !> The computed solution vectors X. !> |
[in] | LDX | !> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !> |
[in,out] | B | !> B is REAL array, dimension (LDB,NRHS) !> On entry, the right hand side vectors for the system of !> linear equations. !> On exit, B is overwritten with the difference B - op(A)*X. !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
[out] | RESID | !> RESID is REAL !> norm(B - op(A)*X) / (norm(op(A)) * norm(X) * EPS) !> |
Definition at line 123 of file sgtt02.f.