LAPACK  3.10.1
LAPACK: Linear Algebra PACKage
dchkps.f
Go to the documentation of this file.
1 *> \brief \b DCHKPS
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE DCHKPS( DOTYPE, NN, NVAL, NNB, NBVAL, NRANK, RANKVAL,
12 * THRESH, TSTERR, NMAX, A, AFAC, PERM, PIV, WORK,
13 * RWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * DOUBLE PRECISION THRESH
17 * INTEGER NMAX, NN, NNB, NOUT, NRANK
18 * LOGICAL TSTERR
19 * ..
20 * .. Array Arguments ..
21 * DOUBLE PRECISION A( * ), AFAC( * ), PERM( * ), RWORK( * ),
22 * $ WORK( * )
23 * INTEGER NBVAL( * ), NVAL( * ), PIV( * ), RANKVAL( * )
24 * LOGICAL DOTYPE( * )
25 * ..
26 *
27 *
28 *> \par Purpose:
29 * =============
30 *>
31 *> \verbatim
32 *>
33 *> DCHKPS tests DPSTRF.
34 *> \endverbatim
35 *
36 * Arguments:
37 * ==========
38 *
39 *> \param[in] DOTYPE
40 *> \verbatim
41 *> DOTYPE is LOGICAL array, dimension (NTYPES)
42 *> The matrix types to be used for testing. Matrices of type j
43 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
44 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
45 *> \endverbatim
46 *>
47 *> \param[in] NN
48 *> \verbatim
49 *> NN is INTEGER
50 *> The number of values of N contained in the vector NVAL.
51 *> \endverbatim
52 *>
53 *> \param[in] NVAL
54 *> \verbatim
55 *> NVAL is INTEGER array, dimension (NN)
56 *> The values of the matrix dimension N.
57 *> \endverbatim
58 *>
59 *> \param[in] NNB
60 *> \verbatim
61 *> NNB is INTEGER
62 *> The number of values of NB contained in the vector NBVAL.
63 *> \endverbatim
64 *>
65 *> \param[in] NBVAL
66 *> \verbatim
67 *> NBVAL is INTEGER array, dimension (NNB)
68 *> The values of the block size NB.
69 *> \endverbatim
70 *>
71 *> \param[in] NRANK
72 *> \verbatim
73 *> NRANK is INTEGER
74 *> The number of values of RANK contained in the vector RANKVAL.
75 *> \endverbatim
76 *>
77 *> \param[in] RANKVAL
78 *> \verbatim
79 *> RANKVAL is INTEGER array, dimension (NBVAL)
80 *> The values of the block size NB.
81 *> \endverbatim
82 *>
83 *> \param[in] THRESH
84 *> \verbatim
85 *> THRESH is DOUBLE PRECISION
86 *> The threshold value for the test ratios. A result is
87 *> included in the output file if RESULT >= THRESH. To have
88 *> every test ratio printed, use THRESH = 0.
89 *> \endverbatim
90 *>
91 *> \param[in] TSTERR
92 *> \verbatim
93 *> TSTERR is LOGICAL
94 *> Flag that indicates whether error exits are to be tested.
95 *> \endverbatim
96 *>
97 *> \param[in] NMAX
98 *> \verbatim
99 *> NMAX is INTEGER
100 *> The maximum value permitted for N, used in dimensioning the
101 *> work arrays.
102 *> \endverbatim
103 *>
104 *> \param[out] A
105 *> \verbatim
106 *> A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
107 *> \endverbatim
108 *>
109 *> \param[out] AFAC
110 *> \verbatim
111 *> AFAC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
112 *> \endverbatim
113 *>
114 *> \param[out] PERM
115 *> \verbatim
116 *> PERM is DOUBLE PRECISION array, dimension (NMAX*NMAX)
117 *> \endverbatim
118 *>
119 *> \param[out] PIV
120 *> \verbatim
121 *> PIV is INTEGER array, dimension (NMAX)
122 *> \endverbatim
123 *>
124 *> \param[out] WORK
125 *> \verbatim
126 *> WORK is DOUBLE PRECISION array, dimension (NMAX*3)
127 *> \endverbatim
128 *>
129 *> \param[out] RWORK
130 *> \verbatim
131 *> RWORK is DOUBLE PRECISION array, dimension (NMAX)
132 *> \endverbatim
133 *>
134 *> \param[in] NOUT
135 *> \verbatim
136 *> NOUT is INTEGER
137 *> The unit number for output.
138 *> \endverbatim
139 *
140 * Authors:
141 * ========
142 *
143 *> \author Univ. of Tennessee
144 *> \author Univ. of California Berkeley
145 *> \author Univ. of Colorado Denver
146 *> \author NAG Ltd.
147 *
148 *> \ingroup double_lin
149 *
150 * =====================================================================
151  SUBROUTINE dchkps( DOTYPE, NN, NVAL, NNB, NBVAL, NRANK, RANKVAL,
152  $ THRESH, TSTERR, NMAX, A, AFAC, PERM, PIV, WORK,
153  $ RWORK, NOUT )
154 *
155 * -- LAPACK test routine --
156 * -- LAPACK is a software package provided by Univ. of Tennessee, --
157 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
158 *
159 * .. Scalar Arguments ..
160  DOUBLE PRECISION THRESH
161  INTEGER NMAX, NN, NNB, NOUT, NRANK
162  LOGICAL TSTERR
163 * ..
164 * .. Array Arguments ..
165  DOUBLE PRECISION A( * ), AFAC( * ), PERM( * ), RWORK( * ),
166  $ WORK( * )
167  INTEGER NBVAL( * ), NVAL( * ), PIV( * ), RANKVAL( * )
168  LOGICAL DOTYPE( * )
169 * ..
170 *
171 * =====================================================================
172 *
173 * .. Parameters ..
174  DOUBLE PRECISION ONE
175  PARAMETER ( ONE = 1.0d+0 )
176  INTEGER NTYPES
177  parameter( ntypes = 9 )
178 * ..
179 * .. Local Scalars ..
180  DOUBLE PRECISION ANORM, CNDNUM, RESULT, TOL
181  INTEGER COMPRANK, I, IMAT, IN, INB, INFO, IRANK, IUPLO,
182  $ izero, kl, ku, lda, mode, n, nb, nerrs, nfail,
183  $ nimat, nrun, rank, rankdiff
184  CHARACTER DIST, TYPE, UPLO
185  CHARACTER*3 PATH
186 * ..
187 * .. Local Arrays ..
188  INTEGER ISEED( 4 ), ISEEDY( 4 )
189  CHARACTER UPLOS( 2 )
190 * ..
191 * .. External Subroutines ..
192  EXTERNAL alaerh, alahd, alasum, derrps, dlacpy, dlatb5,
194 * ..
195 * .. Scalars in Common ..
196  INTEGER INFOT, NUNIT
197  LOGICAL LERR, OK
198  CHARACTER*32 SRNAMT
199 * ..
200 * .. Common blocks ..
201  COMMON / infoc / infot, nunit, ok, lerr
202  COMMON / srnamc / srnamt
203 * ..
204 * .. Intrinsic Functions ..
205  INTRINSIC dble, max, ceiling
206 * ..
207 * .. Data statements ..
208  DATA iseedy / 1988, 1989, 1990, 1991 /
209  DATA uplos / 'U', 'L' /
210 * ..
211 * .. Executable Statements ..
212 *
213 * Initialize constants and the random number seed.
214 *
215  path( 1: 1 ) = 'Double precision'
216  path( 2: 3 ) = 'PS'
217  nrun = 0
218  nfail = 0
219  nerrs = 0
220  DO 100 i = 1, 4
221  iseed( i ) = iseedy( i )
222  100 CONTINUE
223 *
224 * Test the error exits
225 *
226  IF( tsterr )
227  $ CALL derrps( path, nout )
228  infot = 0
229  CALL xlaenv( 2, 2 )
230 *
231 * Do for each value of N in NVAL
232 *
233  DO 150 in = 1, nn
234  n = nval( in )
235  lda = max( n, 1 )
236  nimat = ntypes
237  IF( n.LE.0 )
238  $ nimat = 1
239 *
240  izero = 0
241  DO 140 imat = 1, nimat
242 *
243 * Do the tests only if DOTYPE( IMAT ) is true.
244 *
245  IF( .NOT.dotype( imat ) )
246  $ GO TO 140
247 *
248 * Do for each value of RANK in RANKVAL
249 *
250  DO 130 irank = 1, nrank
251 *
252 * Only repeat test 3 to 5 for different ranks
253 * Other tests use full rank
254 *
255  IF( ( imat.LT.3 .OR. imat.GT.5 ) .AND. irank.GT.1 )
256  $ GO TO 130
257 *
258  rank = ceiling( ( n * dble( rankval( irank ) ) )
259  $ / 100.d+0 )
260 *
261 *
262 * Do first for UPLO = 'U', then for UPLO = 'L'
263 *
264  DO 120 iuplo = 1, 2
265  uplo = uplos( iuplo )
266 *
267 * Set up parameters with DLATB5 and generate a test matrix
268 * with DLATMT.
269 *
270  CALL dlatb5( path, imat, n, TYPE, kl, ku, anorm,
271  $ mode, cndnum, dist )
272 *
273  srnamt = 'DLATMT'
274  CALL dlatmt( n, n, dist, iseed, TYPE, rwork, mode,
275  $ cndnum, anorm, rank, kl, ku, uplo, a,
276  $ lda, work, info )
277 *
278 * Check error code from DLATMT.
279 *
280  IF( info.NE.0 ) THEN
281  CALL alaerh( path, 'DLATMT', info, 0, uplo, n,
282  $ n, -1, -1, -1, imat, nfail, nerrs,
283  $ nout )
284  GO TO 120
285  END IF
286 *
287 * Do for each value of NB in NBVAL
288 *
289  DO 110 inb = 1, nnb
290  nb = nbval( inb )
291  CALL xlaenv( 1, nb )
292 *
293 * Compute the pivoted L*L' or U'*U factorization
294 * of the matrix.
295 *
296  CALL dlacpy( uplo, n, n, a, lda, afac, lda )
297  srnamt = 'DPSTRF'
298 *
299 * Use default tolerance
300 *
301  tol = -one
302  CALL dpstrf( uplo, n, afac, lda, piv, comprank,
303  $ tol, work, info )
304 *
305 * Check error code from DPSTRF.
306 *
307  IF( (info.LT.izero)
308  $ .OR.(info.NE.izero.AND.rank.EQ.n)
309  $ .OR.(info.LE.izero.AND.rank.LT.n) ) THEN
310  CALL alaerh( path, 'DPSTRF', info, izero,
311  $ uplo, n, n, -1, -1, nb, imat,
312  $ nfail, nerrs, nout )
313  GO TO 110
314  END IF
315 *
316 * Skip the test if INFO is not 0.
317 *
318  IF( info.NE.0 )
319  $ GO TO 110
320 *
321 * Reconstruct matrix from factors and compute residual.
322 *
323 * PERM holds permuted L*L^T or U^T*U
324 *
325  CALL dpst01( uplo, n, a, lda, afac, lda, perm, lda,
326  $ piv, rwork, result, comprank )
327 *
328 * Print information about the tests that did not pass
329 * the threshold or where computed rank was not RANK.
330 *
331  IF( n.EQ.0 )
332  $ comprank = 0
333  rankdiff = rank - comprank
334  IF( result.GE.thresh ) THEN
335  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
336  $ CALL alahd( nout, path )
337  WRITE( nout, fmt = 9999 )uplo, n, rank,
338  $ rankdiff, nb, imat, result
339  nfail = nfail + 1
340  END IF
341  nrun = nrun + 1
342  110 CONTINUE
343 *
344  120 CONTINUE
345  130 CONTINUE
346  140 CONTINUE
347  150 CONTINUE
348 *
349 * Print a summary of the results.
350 *
351  CALL alasum( path, nout, nfail, nrun, nerrs )
352 *
353  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', RANK =', i3,
354  $ ', Diff =', i5, ', NB =', i4, ', type ', i2, ', Ratio =',
355  $ g12.5 )
356  RETURN
357 *
358 * End of DCHKPS
359 *
360  END
subroutine dlacpy(UPLO, M, N, A, LDA, B, LDB)
DLACPY copies all or part of one two-dimensional array to another.
Definition: dlacpy.f:103
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine derrps(PATH, NUNIT)
DERRPS
Definition: derrps.f:55
subroutine dpst01(UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM, PIV, RWORK, RESID, RANK)
DPST01
Definition: dpst01.f:134
subroutine dlatb5(PATH, IMAT, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
DLATB5
Definition: dlatb5.f:114
subroutine dchkps(DOTYPE, NN, NVAL, NNB, NBVAL, NRANK, RANKVAL, THRESH, TSTERR, NMAX, A, AFAC, PERM, PIV, WORK, RWORK, NOUT)
DCHKPS
Definition: dchkps.f:154
subroutine dlatmt(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, RANK, KL, KU, PACK, A, LDA, WORK, INFO)
DLATMT
Definition: dlatmt.f:331
subroutine dpstrf(UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO)
DPSTRF computes the Cholesky factorization with complete pivoting of a real symmetric positive semide...
Definition: dpstrf.f:142