LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dlatrd.f
Go to the documentation of this file.
1*> \brief \b DLATRD reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an orthogonal similarity transformation.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download DLATRD + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatrd.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatrd.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatrd.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE DLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
20*
21* .. Scalar Arguments ..
22* CHARACTER UPLO
23* INTEGER LDA, LDW, N, NB
24* ..
25* .. Array Arguments ..
26* DOUBLE PRECISION A( LDA, * ), E( * ), TAU( * ), W( LDW, * )
27* ..
28*
29*
30*> \par Purpose:
31* =============
32*>
33*> \verbatim
34*>
35*> DLATRD reduces NB rows and columns of a real symmetric matrix A to
36*> symmetric tridiagonal form by an orthogonal similarity
37*> transformation Q**T * A * Q, and returns the matrices V and W which are
38*> needed to apply the transformation to the unreduced part of A.
39*>
40*> If UPLO = 'U', DLATRD reduces the last NB rows and columns of a
41*> matrix, of which the upper triangle is supplied;
42*> if UPLO = 'L', DLATRD reduces the first NB rows and columns of a
43*> matrix, of which the lower triangle is supplied.
44*>
45*> This is an auxiliary routine called by DSYTRD.
46*> \endverbatim
47*
48* Arguments:
49* ==========
50*
51*> \param[in] UPLO
52*> \verbatim
53*> UPLO is CHARACTER*1
54*> Specifies whether the upper or lower triangular part of the
55*> symmetric matrix A is stored:
56*> = 'U': Upper triangular
57*> = 'L': Lower triangular
58*> \endverbatim
59*>
60*> \param[in] N
61*> \verbatim
62*> N is INTEGER
63*> The order of the matrix A.
64*> \endverbatim
65*>
66*> \param[in] NB
67*> \verbatim
68*> NB is INTEGER
69*> The number of rows and columns to be reduced.
70*> \endverbatim
71*>
72*> \param[in,out] A
73*> \verbatim
74*> A is DOUBLE PRECISION array, dimension (LDA,N)
75*> On entry, the symmetric matrix A. If UPLO = 'U', the leading
76*> n-by-n upper triangular part of A contains the upper
77*> triangular part of the matrix A, and the strictly lower
78*> triangular part of A is not referenced. If UPLO = 'L', the
79*> leading n-by-n lower triangular part of A contains the lower
80*> triangular part of the matrix A, and the strictly upper
81*> triangular part of A is not referenced.
82*> On exit:
83*> if UPLO = 'U', the last NB columns have been reduced to
84*> tridiagonal form, with the diagonal elements overwriting
85*> the diagonal elements of A; the elements above the diagonal
86*> with the array TAU, represent the orthogonal matrix Q as a
87*> product of elementary reflectors;
88*> if UPLO = 'L', the first NB columns have been reduced to
89*> tridiagonal form, with the diagonal elements overwriting
90*> the diagonal elements of A; the elements below the diagonal
91*> with the array TAU, represent the orthogonal matrix Q as a
92*> product of elementary reflectors.
93*> See Further Details.
94*> \endverbatim
95*>
96*> \param[in] LDA
97*> \verbatim
98*> LDA is INTEGER
99*> The leading dimension of the array A. LDA >= (1,N).
100*> \endverbatim
101*>
102*> \param[out] E
103*> \verbatim
104*> E is DOUBLE PRECISION array, dimension (N-1)
105*> If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
106*> elements of the last NB columns of the reduced matrix;
107*> if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
108*> the first NB columns of the reduced matrix.
109*> \endverbatim
110*>
111*> \param[out] TAU
112*> \verbatim
113*> TAU is DOUBLE PRECISION array, dimension (N-1)
114*> The scalar factors of the elementary reflectors, stored in
115*> TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
116*> See Further Details.
117*> \endverbatim
118*>
119*> \param[out] W
120*> \verbatim
121*> W is DOUBLE PRECISION array, dimension (LDW,NB)
122*> The n-by-nb matrix W required to update the unreduced part
123*> of A.
124*> \endverbatim
125*>
126*> \param[in] LDW
127*> \verbatim
128*> LDW is INTEGER
129*> The leading dimension of the array W. LDW >= max(1,N).
130*> \endverbatim
131*
132* Authors:
133* ========
134*
135*> \author Univ. of Tennessee
136*> \author Univ. of California Berkeley
137*> \author Univ. of Colorado Denver
138*> \author NAG Ltd.
139*
140*> \ingroup latrd
141*
142*> \par Further Details:
143* =====================
144*>
145*> \verbatim
146*>
147*> If UPLO = 'U', the matrix Q is represented as a product of elementary
148*> reflectors
149*>
150*> Q = H(n) H(n-1) . . . H(n-nb+1).
151*>
152*> Each H(i) has the form
153*>
154*> H(i) = I - tau * v * v**T
155*>
156*> where tau is a real scalar, and v is a real vector with
157*> v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
158*> and tau in TAU(i-1).
159*>
160*> If UPLO = 'L', the matrix Q is represented as a product of elementary
161*> reflectors
162*>
163*> Q = H(1) H(2) . . . H(nb).
164*>
165*> Each H(i) has the form
166*>
167*> H(i) = I - tau * v * v**T
168*>
169*> where tau is a real scalar, and v is a real vector with
170*> v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
171*> and tau in TAU(i).
172*>
173*> The elements of the vectors v together form the n-by-nb matrix V
174*> which is needed, with W, to apply the transformation to the unreduced
175*> part of the matrix, using a symmetric rank-2k update of the form:
176*> A := A - V*W**T - W*V**T.
177*>
178*> The contents of A on exit are illustrated by the following examples
179*> with n = 5 and nb = 2:
180*>
181*> if UPLO = 'U': if UPLO = 'L':
182*>
183*> ( a a a v4 v5 ) ( d )
184*> ( a a v4 v5 ) ( 1 d )
185*> ( a 1 v5 ) ( v1 1 a )
186*> ( d 1 ) ( v1 v2 a a )
187*> ( d ) ( v1 v2 a a a )
188*>
189*> where d denotes a diagonal element of the reduced matrix, a denotes
190*> an element of the original matrix that is unchanged, and vi denotes
191*> an element of the vector defining H(i).
192*> \endverbatim
193*>
194* =====================================================================
195 SUBROUTINE dlatrd( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
196*
197* -- LAPACK auxiliary routine --
198* -- LAPACK is a software package provided by Univ. of Tennessee, --
199* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
200*
201* .. Scalar Arguments ..
202 CHARACTER UPLO
203 INTEGER LDA, LDW, N, NB
204* ..
205* .. Array Arguments ..
206 DOUBLE PRECISION A( LDA, * ), E( * ), TAU( * ), W( LDW, * )
207* ..
208*
209* =====================================================================
210*
211* .. Parameters ..
212 DOUBLE PRECISION ZERO, ONE, HALF
213 parameter( zero = 0.0d+0, one = 1.0d+0, half = 0.5d+0 )
214* ..
215* .. Local Scalars ..
216 INTEGER I, IW
217 DOUBLE PRECISION ALPHA
218* ..
219* .. External Subroutines ..
220 EXTERNAL daxpy, dgemv, dlarfg, dscal, dsymv
221* ..
222* .. External Functions ..
223 LOGICAL LSAME
224 DOUBLE PRECISION DDOT
225 EXTERNAL lsame, ddot
226* ..
227* .. Intrinsic Functions ..
228 INTRINSIC min
229* ..
230* .. Executable Statements ..
231*
232* Quick return if possible
233*
234 IF( n.LE.0 )
235 $ RETURN
236*
237 IF( lsame( uplo, 'U' ) ) THEN
238*
239* Reduce last NB columns of upper triangle
240*
241 DO 10 i = n, n - nb + 1, -1
242 iw = i - n + nb
243 IF( i.LT.n ) THEN
244*
245* Update A(1:i,i)
246*
247 CALL dgemv( 'No transpose', i, n-i, -one, a( 1, i+1 ),
248 $ lda, w( i, iw+1 ), ldw, one, a( 1, i ), 1 )
249 CALL dgemv( 'No transpose', i, n-i, -one, w( 1,
250 $ iw+1 ),
251 $ ldw, a( i, i+1 ), lda, one, a( 1, i ), 1 )
252 END IF
253 IF( i.GT.1 ) THEN
254*
255* Generate elementary reflector H(i) to annihilate
256* A(1:i-2,i)
257*
258 CALL dlarfg( i-1, a( i-1, i ), a( 1, i ), 1,
259 $ tau( i-1 ) )
260 e( i-1 ) = a( i-1, i )
261 a( i-1, i ) = one
262*
263* Compute W(1:i-1,i)
264*
265 CALL dsymv( 'Upper', i-1, one, a, lda, a( 1, i ), 1,
266 $ zero, w( 1, iw ), 1 )
267 IF( i.LT.n ) THEN
268 CALL dgemv( 'Transpose', i-1, n-i, one, w( 1,
269 $ iw+1 ),
270 $ ldw, a( 1, i ), 1, zero, w( i+1, iw ), 1 )
271 CALL dgemv( 'No transpose', i-1, n-i, -one,
272 $ a( 1, i+1 ), lda, w( i+1, iw ), 1, one,
273 $ w( 1, iw ), 1 )
274 CALL dgemv( 'Transpose', i-1, n-i, one, a( 1,
275 $ i+1 ),
276 $ lda, a( 1, i ), 1, zero, w( i+1, iw ), 1 )
277 CALL dgemv( 'No transpose', i-1, n-i, -one,
278 $ w( 1, iw+1 ), ldw, w( i+1, iw ), 1, one,
279 $ w( 1, iw ), 1 )
280 END IF
281 CALL dscal( i-1, tau( i-1 ), w( 1, iw ), 1 )
282 alpha = -half*tau( i-1 )*ddot( i-1, w( 1, iw ), 1,
283 $ a( 1, i ), 1 )
284 CALL daxpy( i-1, alpha, a( 1, i ), 1, w( 1, iw ), 1 )
285 END IF
286*
287 10 CONTINUE
288 ELSE
289*
290* Reduce first NB columns of lower triangle
291*
292 DO 20 i = 1, nb
293*
294* Update A(i:n,i)
295*
296 CALL dgemv( 'No transpose', n-i+1, i-1, -one, a( i, 1 ),
297 $ lda, w( i, 1 ), ldw, one, a( i, i ), 1 )
298 CALL dgemv( 'No transpose', n-i+1, i-1, -one, w( i, 1 ),
299 $ ldw, a( i, 1 ), lda, one, a( i, i ), 1 )
300 IF( i.LT.n ) THEN
301*
302* Generate elementary reflector H(i) to annihilate
303* A(i+2:n,i)
304*
305 CALL dlarfg( n-i, a( i+1, i ), a( min( i+2, n ), i ),
306 $ 1,
307 $ tau( i ) )
308 e( i ) = a( i+1, i )
309 a( i+1, i ) = one
310*
311* Compute W(i+1:n,i)
312*
313 CALL dsymv( 'Lower', n-i, one, a( i+1, i+1 ), lda,
314 $ a( i+1, i ), 1, zero, w( i+1, i ), 1 )
315 CALL dgemv( 'Transpose', n-i, i-1, one, w( i+1, 1 ),
316 $ ldw,
317 $ a( i+1, i ), 1, zero, w( 1, i ), 1 )
318 CALL dgemv( 'No transpose', n-i, i-1, -one, a( i+1,
319 $ 1 ),
320 $ lda, w( 1, i ), 1, one, w( i+1, i ), 1 )
321 CALL dgemv( 'Transpose', n-i, i-1, one, a( i+1, 1 ),
322 $ lda,
323 $ a( i+1, i ), 1, zero, w( 1, i ), 1 )
324 CALL dgemv( 'No transpose', n-i, i-1, -one, w( i+1,
325 $ 1 ),
326 $ ldw, w( 1, i ), 1, one, w( i+1, i ), 1 )
327 CALL dscal( n-i, tau( i ), w( i+1, i ), 1 )
328 alpha = -half*tau( i )*ddot( n-i, w( i+1, i ), 1,
329 $ a( i+1, i ), 1 )
330 CALL daxpy( n-i, alpha, a( i+1, i ), 1, w( i+1, i ),
331 $ 1 )
332 END IF
333*
334 20 CONTINUE
335 END IF
336*
337 RETURN
338*
339* End of DLATRD
340*
341 END
subroutine daxpy(n, da, dx, incx, dy, incy)
DAXPY
Definition daxpy.f:89
subroutine dgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
DGEMV
Definition dgemv.f:158
subroutine dsymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
DSYMV
Definition dsymv.f:152
subroutine dlarfg(n, alpha, x, incx, tau)
DLARFG generates an elementary reflector (Householder matrix).
Definition dlarfg.f:104
subroutine dlatrd(uplo, n, nb, a, lda, e, tau, w, ldw)
DLATRD reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiagonal fo...
Definition dlatrd.f:196
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79