LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
stbcon.f
Go to the documentation of this file.
1*> \brief \b STBCON
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download STBCON + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stbcon.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stbcon.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stbcon.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE STBCON( NORM, UPLO, DIAG, N, KD, AB, LDAB, RCOND, WORK,
22* IWORK, INFO )
23*
24* .. Scalar Arguments ..
25* CHARACTER DIAG, NORM, UPLO
26* INTEGER INFO, KD, LDAB, N
27* REAL RCOND
28* ..
29* .. Array Arguments ..
30* INTEGER IWORK( * )
31* REAL AB( LDAB, * ), WORK( * )
32* ..
33*
34*
35*> \par Purpose:
36* =============
37*>
38*> \verbatim
39*>
40*> STBCON estimates the reciprocal of the condition number of a
41*> triangular band matrix A, in either the 1-norm or the infinity-norm.
42*>
43*> The norm of A is computed and an estimate is obtained for
44*> norm(inv(A)), then the reciprocal of the condition number is
45*> computed as
46*> RCOND = 1 / ( norm(A) * norm(inv(A)) ).
47*> \endverbatim
48*
49* Arguments:
50* ==========
51*
52*> \param[in] NORM
53*> \verbatim
54*> NORM is CHARACTER*1
55*> Specifies whether the 1-norm condition number or the
56*> infinity-norm condition number is required:
57*> = '1' or 'O': 1-norm;
58*> = 'I': Infinity-norm.
59*> \endverbatim
60*>
61*> \param[in] UPLO
62*> \verbatim
63*> UPLO is CHARACTER*1
64*> = 'U': A is upper triangular;
65*> = 'L': A is lower triangular.
66*> \endverbatim
67*>
68*> \param[in] DIAG
69*> \verbatim
70*> DIAG is CHARACTER*1
71*> = 'N': A is non-unit triangular;
72*> = 'U': A is unit triangular.
73*> \endverbatim
74*>
75*> \param[in] N
76*> \verbatim
77*> N is INTEGER
78*> The order of the matrix A. N >= 0.
79*> \endverbatim
80*>
81*> \param[in] KD
82*> \verbatim
83*> KD is INTEGER
84*> The number of superdiagonals or subdiagonals of the
85*> triangular band matrix A. KD >= 0.
86*> \endverbatim
87*>
88*> \param[in] AB
89*> \verbatim
90*> AB is REAL array, dimension (LDAB,N)
91*> The upper or lower triangular band matrix A, stored in the
92*> first kd+1 rows of the array. The j-th column of A is stored
93*> in the j-th column of the array AB as follows:
94*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
95*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
96*> If DIAG = 'U', the diagonal elements of A are not referenced
97*> and are assumed to be 1.
98*> \endverbatim
99*>
100*> \param[in] LDAB
101*> \verbatim
102*> LDAB is INTEGER
103*> The leading dimension of the array AB. LDAB >= KD+1.
104*> \endverbatim
105*>
106*> \param[out] RCOND
107*> \verbatim
108*> RCOND is REAL
109*> The reciprocal of the condition number of the matrix A,
110*> computed as RCOND = 1/(norm(A) * norm(inv(A))).
111*> \endverbatim
112*>
113*> \param[out] WORK
114*> \verbatim
115*> WORK is REAL array, dimension (3*N)
116*> \endverbatim
117*>
118*> \param[out] IWORK
119*> \verbatim
120*> IWORK is INTEGER array, dimension (N)
121*> \endverbatim
122*>
123*> \param[out] INFO
124*> \verbatim
125*> INFO is INTEGER
126*> = 0: successful exit
127*> < 0: if INFO = -i, the i-th argument had an illegal value
128*> \endverbatim
129*
130* Authors:
131* ========
132*
133*> \author Univ. of Tennessee
134*> \author Univ. of California Berkeley
135*> \author Univ. of Colorado Denver
136*> \author NAG Ltd.
137*
138*> \ingroup tbcon
139*
140* =====================================================================
141 SUBROUTINE stbcon( NORM, UPLO, DIAG, N, KD, AB, LDAB, RCOND, WORK,
142 $ IWORK, INFO )
143*
144* -- LAPACK computational routine --
145* -- LAPACK is a software package provided by Univ. of Tennessee, --
146* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
147*
148* .. Scalar Arguments ..
149 CHARACTER DIAG, NORM, UPLO
150 INTEGER INFO, KD, LDAB, N
151 REAL RCOND
152* ..
153* .. Array Arguments ..
154 INTEGER IWORK( * )
155 REAL AB( LDAB, * ), WORK( * )
156* ..
157*
158* =====================================================================
159*
160* .. Parameters ..
161 REAL ONE, ZERO
162 parameter( one = 1.0e+0, zero = 0.0e+0 )
163* ..
164* .. Local Scalars ..
165 LOGICAL NOUNIT, ONENRM, UPPER
166 CHARACTER NORMIN
167 INTEGER IX, KASE, KASE1
168 REAL AINVNM, ANORM, SCALE, SMLNUM, XNORM
169* ..
170* .. Local Arrays ..
171 INTEGER ISAVE( 3 )
172* ..
173* .. External Functions ..
174 LOGICAL LSAME
175 INTEGER ISAMAX
176 REAL SLAMCH, SLANTB
177 EXTERNAL lsame, isamax, slamch, slantb
178* ..
179* .. External Subroutines ..
180 EXTERNAL slacn2, slatbs, srscl, xerbla
181* ..
182* .. Intrinsic Functions ..
183 INTRINSIC abs, max, real
184* ..
185* .. Executable Statements ..
186*
187* Test the input parameters.
188*
189 info = 0
190 upper = lsame( uplo, 'U' )
191 onenrm = norm.EQ.'1' .OR. lsame( norm, 'O' )
192 nounit = lsame( diag, 'N' )
193*
194 IF( .NOT.onenrm .AND. .NOT.lsame( norm, 'I' ) ) THEN
195 info = -1
196 ELSE IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
197 info = -2
198 ELSE IF( .NOT.nounit .AND. .NOT.lsame( diag, 'U' ) ) THEN
199 info = -3
200 ELSE IF( n.LT.0 ) THEN
201 info = -4
202 ELSE IF( kd.LT.0 ) THEN
203 info = -5
204 ELSE IF( ldab.LT.kd+1 ) THEN
205 info = -7
206 END IF
207 IF( info.NE.0 ) THEN
208 CALL xerbla( 'STBCON', -info )
209 RETURN
210 END IF
211*
212* Quick return if possible
213*
214 IF( n.EQ.0 ) THEN
215 rcond = one
216 RETURN
217 END IF
218*
219 rcond = zero
220 smlnum = slamch( 'Safe minimum' )*real( max( 1, n ) )
221*
222* Compute the norm of the triangular matrix A.
223*
224 anorm = slantb( norm, uplo, diag, n, kd, ab, ldab, work )
225*
226* Continue only if ANORM > 0.
227*
228 IF( anorm.GT.zero ) THEN
229*
230* Estimate the norm of the inverse of A.
231*
232 ainvnm = zero
233 normin = 'N'
234 IF( onenrm ) THEN
235 kase1 = 1
236 ELSE
237 kase1 = 2
238 END IF
239 kase = 0
240 10 CONTINUE
241 CALL slacn2( n, work( n+1 ), work, iwork, ainvnm, kase, isave )
242 IF( kase.NE.0 ) THEN
243 IF( kase.EQ.kase1 ) THEN
244*
245* Multiply by inv(A).
246*
247 CALL slatbs( uplo, 'No transpose', diag, normin, n, kd,
248 $ ab, ldab, work, scale, work( 2*n+1 ), info )
249 ELSE
250*
251* Multiply by inv(A**T).
252*
253 CALL slatbs( uplo, 'Transpose', diag, normin, n, kd, ab,
254 $ ldab, work, scale, work( 2*n+1 ), info )
255 END IF
256 normin = 'Y'
257*
258* Multiply by 1/SCALE if doing so will not cause overflow.
259*
260 IF( scale.NE.one ) THEN
261 ix = isamax( n, work, 1 )
262 xnorm = abs( work( ix ) )
263 IF( scale.LT.xnorm*smlnum .OR. scale.EQ.zero )
264 $ GO TO 20
265 CALL srscl( n, scale, work, 1 )
266 END IF
267 GO TO 10
268 END IF
269*
270* Compute the estimate of the reciprocal condition number.
271*
272 IF( ainvnm.NE.zero )
273 $ rcond = ( one / anorm ) / ainvnm
274 END IF
275*
276 20 CONTINUE
277 RETURN
278*
279* End of STBCON
280*
281 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine slacn2(n, v, x, isgn, est, kase, isave)
SLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition slacn2.f:136
subroutine slatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)
SLATBS solves a triangular banded system of equations.
Definition slatbs.f:242
subroutine srscl(n, sa, sx, incx)
SRSCL multiplies a vector by the reciprocal of a real scalar.
Definition srscl.f:84
subroutine stbcon(norm, uplo, diag, n, kd, ab, ldab, rcond, work, iwork, info)
STBCON
Definition stbcon.f:143