151 SUBROUTINE dgeqrf ( M, N, A, LDA, TAU, WORK, LWORK, INFO )
158 INTEGER INFO, LDA, LWORK, M, N
161 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
168 INTEGER I, IB, IINFO, IWS, J, K, LWKOPT, NB,
169 $ NBMIN, NX, LBWORK, NT, LLWORK
180 EXTERNAL ilaenv, sceil
189 nb = ilaenv( 1,
'DGEQRF',
' ', m, n, -1, -1 )
191 IF( nb.GT.1 .AND. nb.LT.k )
THEN
195 nx = max( 0, ilaenv( 3,
'DGEQRF',
' ', m, n, -1, -1 ) )
208 nt = k-sceil(real(k-nx)/real(nb))*nb
213 llwork = max(max((n-m)*k, (n-m)*nb), max(k*nb, nb*nb))
214 llwork = sceil(real(llwork)/real(nb))
222 ELSE IF ( nt.GT.nb )
THEN
228 lwkopt = (lbwork+llwork)*nb
229 work( 1 ) = (lwkopt+nt*nt)
233 lbwork = sceil(real(k)/real(nb))*nb
234 lwkopt = (lbwork+llwork-nb)*nb
242 lquery = ( lwork.EQ.-1 )
245 ELSE IF( n.LT.0 )
THEN
247 ELSE IF( lda.LT.max( 1, m ) )
THEN
249 ELSE IF ( .NOT.lquery )
THEN
250 IF( lwork.LE.0 .OR. ( m.GT.0 .AND. lwork.LT.max( 1, n ) ) )
254 CALL xerbla(
'DGEQRF', -info )
256 ELSE IF( lquery )
THEN
266 IF( nb.GT.1 .AND. nb.LT.k )
THEN
273 iws = (lbwork+llwork-nb)*nb
275 iws = (lbwork+llwork)*nb+nt*nt
278 IF( lwork.LT.iws )
THEN
284 nb = lwork / (llwork+(lbwork-nb))
286 nb = (lwork-nt*nt)/(lbwork+llwork)
289 nbmin = max( 2, ilaenv( 2,
'DGEQRF',
' ', m, n, -1,
295 IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k )
THEN
299 DO 10 i = 1, k - nx, nb
300 ib = min( k-i+1, nb )
304 DO 20 j = 1, i - nb, nb
308 CALL dlarfb(
'Left',
'Transpose',
'Forward',
309 $
'Columnwise', m-j+1, ib, nb,
310 $ a( j, j ), lda, work(j), lbwork,
311 $ a( j, i ), lda, work(lbwork*nb+nt*nt+1),
319 CALL dgeqr2( m-i+1, ib, a( i, i ), lda, tau( i ),
320 $ work(lbwork*nb+nt*nt+1), iinfo )
327 CALL dlarft(
'Forward',
'Columnwise', m-i+1, ib,
328 $ a( i, i ), lda, tau( i ),
343 DO 30 j = 1, i - nb, nb
347 CALL dlarfb(
'Left',
'Transpose',
'Forward',
348 $
'Columnwise', m-j+1, k-i+1, nb,
349 $ a( j, j ), lda, work(j), lbwork,
350 $ a( j, i ), lda, work(lbwork*nb+nt*nt+1),
354 CALL dgeqr2( m-i+1, k-i+1, a( i, i ), lda, tau( i ),
355 $ work(lbwork*nb+nt*nt+1),iinfo )
361 CALL dgeqr2( m-i+1, n-i+1, a( i, i ), lda, tau( i ),
371 IF ( m.LT.n .AND. i.NE.1)
THEN
376 IF ( nt .LE. nb )
THEN
377 CALL dlarft(
'Forward',
'Columnwise', m-i+1, k-i+1,
378 $ a( i, i ), lda, tau( i ), work(i), lbwork )
380 CALL dlarft(
'Forward',
'Columnwise', m-i+1, k-i+1,
381 $ a( i, i ), lda, tau( i ),
382 $ work(lbwork*nb+1), nt )
388 DO 40 j = 1, k-nx, nb
390 ib = min( k-j+1, nb )
392 CALL dlarfb(
'Left',
'Transpose',
'Forward',
393 $
'Columnwise', m-j+1, n-m, ib,
394 $ a( j, j ), lda, work(j), lbwork,
395 $ a( j, m+1 ), lda, work(lbwork*nb+nt*nt+1),
401 CALL dlarfb(
'Left',
'Transpose',
'Forward',
402 $
'Columnwise', m-j+1, n-m, k-j+1,
403 $ a( j, j ), lda, work(j), lbwork,
404 $ a( j, m+1 ), lda, work(lbwork*nb+nt*nt+1),
407 CALL dlarfb(
'Left',
'Transpose',
'Forward',
408 $
'Columnwise', m-j+1, n-m, k-j+1,
411 $ nt, a( j, m+1 ), lda, work(lbwork*nb+nt*nt+1),
subroutine xerbla(SRNAME, INFO)
XERBLA
subroutine dgeqrf(M, N, A, LDA, TAU, WORK, LWORK, INFO)
DGEQRF
subroutine dgeqr2(M, N, A, LDA, TAU, WORK, INFO)
DGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
subroutine dlarft(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)
DLARFT forms the triangular factor T of a block reflector H = I - vtvH
subroutine dlarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
DLARFB applies a block reflector or its transpose to a general rectangular matrix.